Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,699)

Search Parameters:
Keywords = traversability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 12725 KB  
Article
Development of Virtual Reference-Based Preview Semi-Active Suspension System
by SeonHo Jeong and Yonghwan Jeong
Actuators 2026, 15(1), 67; https://doi.org/10.3390/act15010067 (registering DOI) - 22 Jan 2026
Abstract
This paper presents a virtual reference-based preview semi-active suspension system using a Magneto-Rheological (MR) damper to improve ride comfort when traversing bumps. The algorithm is designed to track the virtual reference profile of the vehicle’s corner by introducing a Model Predictive Control (MPC) [...] Read more.
This paper presents a virtual reference-based preview semi-active suspension system using a Magneto-Rheological (MR) damper to improve ride comfort when traversing bumps. The algorithm is designed to track the virtual reference profile of the vehicle’s corner by introducing a Model Predictive Control (MPC) method while considering the passivity of the MR damper. The proposed MPC is formulated to rely solely on estimable variables from an Inertial Measurement Unit (IMU) and vertical accelerometer. To support implementation on an Electronic Control Unit (ECU), the suspension state estimator employs a simple band-limited filtering structure. The proposed method is evaluated in simulation and achieves performance comparable to a controller that has accurate prior knowledge of the road profile. In addition, simulation results demonstrate that the proposed approach exhibits low sensitivity to sensor noise and bump perception uncertainty, making it well suited for real-world vehicle applications. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

14 pages, 42038 KB  
Article
Three-Dimensional Combustion Field Temperature Measurement Based on Planar Array Sensors
by Xiaodong Huang, Zhiling Li, Jia Wang, Wei Zhang, Yang Liu, Xiaoyong Zhang and Yanan Bao
Micromachines 2026, 17(1), 135; https://doi.org/10.3390/mi17010135 - 22 Jan 2026
Abstract
High-resolution three-dimensional temperature fields are essential for studying flame combustion, and tunable diode laser absorption tomography (TDLAT) is an effective method for diagnosing flame combustion conditions. In actual combustion measurements, the reliance of TDLAT on line-of-sight (LOS) measurements leads to limited data and [...] Read more.
High-resolution three-dimensional temperature fields are essential for studying flame combustion, and tunable diode laser absorption tomography (TDLAT) is an effective method for diagnosing flame combustion conditions. In actual combustion measurements, the reliance of TDLAT on line-of-sight (LOS) measurements leads to limited data and reduced dimensionality in analyzing combustion fields. This study proposes a method using area-array sensor-coupled absorption spectroscopy to measure the three-dimensional temperature field of flame accurately, aiming for enhanced combustion diagnosis. The laser beam is configured into a cone shape, and after traversing the combustion field under examination, the area-array sensor receives a projection signal. This signal is then used to reconstruct a high-resolution, multidimensional temperature field. We confirmed the accuracy and robustness of the algorithm through numerical simulations and compared these with experimental results from the TDLAT setup. Our TDLAT detection system demonstrates high precision and effectively measures temperature fields in complex flame imaging scenarios. Full article
Show Figures

Figure 1

15 pages, 4315 KB  
Article
Deep Learning for Real-Time Detection of Brassicogethes aeneus in Oilseed Rape Using the YOLOv4 Architecture
by Ziemowit Malecha, Kajetan Ożarowski, Rafał Siemasz, Maciej Chorowski, Krzysztof Tomczuk, Bernadeta Strochalska and Anna Wondołowska-Grabowska
Appl. Sci. 2026, 16(2), 1075; https://doi.org/10.3390/app16021075 - 21 Jan 2026
Abstract
The growing global population and increasing food demand highlight the need for sustainable agricultural practices that balance productivity with environmental protection. Traditional blanket pesticide spraying leads to overuse of chemicals, environmental pollution, and biodiversity loss. This study aims to develop an innovative approach [...] Read more.
The growing global population and increasing food demand highlight the need for sustainable agricultural practices that balance productivity with environmental protection. Traditional blanket pesticide spraying leads to overuse of chemicals, environmental pollution, and biodiversity loss. This study aims to develop an innovative approach to precision pest management using mobile computing, computer vision, and deep learning techniques. A mobile measurement platform equipped with cameras and an onboard computer was designed to collect real-time field data and detect pest infestations. The system uses an advanced object detection algorithm based on the YOLOv4 architecture, trained on a custom dataset of rapeseed pest images. Modifications were made to enhance detection accuracy, especially for small objects. Field tests demonstrated the system’s ability to identify and count pests, such as the pollen beetle (Brassicogethes aeneus), in rapeseed crops. The collected data, combined with GPS information, generated pest density maps, which can guide site-specific pesticide applications. The results show that the proposed method achieved a mean average precision (mAP) of 83.7% on the test dataset. Field measurements conducted during the traversal of rapeseed fields enabled the creation of density maps illustrating the distribution of pollen beetles. Based on these maps, the potential for pesticide savings was demonstrated, and the migration dynamics of pollen beetle were discussed. Full article
Show Figures

Figure 1

16 pages, 6655 KB  
Article
Comparative Study on Model Applicability for Longitudinal Seismic Response of Shield Tunnels Under Design Earthquake Loading
by Ben Niu, Yayi Chen, Zhuo Cheng, Shengfeng Yang, Junyi Li and Yadong Li
Buildings 2026, 16(2), 417; https://doi.org/10.3390/buildings16020417 - 19 Jan 2026
Viewed by 36
Abstract
To investigate model applicability for the seismic analysis of shield tunnels in adverse geological sections, this study compares the beam–spring model (BSM) and mass–beam–spring model (MBSM). The Shantou Bay subsea shield tunnel, located in a Seismic Fortification Intensity Degree 8 region (PGA = [...] Read more.
To investigate model applicability for the seismic analysis of shield tunnels in adverse geological sections, this study compares the beam–spring model (BSM) and mass–beam–spring model (MBSM). The Shantou Bay subsea shield tunnel, located in a Seismic Fortification Intensity Degree 8 region (PGA = 0.15 g), is used as the case study. Based on the Response Displacement Method, numerical simulations were conducted via ABAQUS and Python (Version 2.7) scripts to evaluate dynamic responses under unidirectional and tri-directional ground motions. Results indicate that while both models capture longitudinal response patterns, significant amplitude differences exist. Specifically, by accounting for soil inertial effects and shear transfer, the MBSM yields peak relative displacements, joint openings, and internal forces at soft–hard rock interfaces that are approximately 60–130% higher than those of the BSM. Furthermore, tri-directional input significantly amplifies structural responses, exhibiting distinct abrupt changes at geological transition zones. These findings provide a vital reference for the seismic design of shield tunnels traversing complex geological conditions. Full article
Show Figures

Figure 1

15 pages, 2937 KB  
Article
Investigating the Diurnal Variations in Radio Refractivity and Its Implications for Radio Communications over South Africa
by Akinsanmi Akinbolati and Bolanle T. Abe
Telecom 2026, 7(1), 11; https://doi.org/10.3390/telecom7010011 - 19 Jan 2026
Viewed by 64
Abstract
The metric for probing the variation in atmospheric refractive indices is radio refractivity (RR), which is a key factor in determining the losses associated with a radio signal as it traverses from one atmospheric layer to another. Ten years (2015–2024) of surface hourly [...] Read more.
The metric for probing the variation in atmospheric refractive indices is radio refractivity (RR), which is a key factor in determining the losses associated with a radio signal as it traverses from one atmospheric layer to another. Ten years (2015–2024) of surface hourly data of temperature (K), pressure (P), and relative humidity (RH) obtained from ERA-5 reanalysis were used for RR computations based on ITU-R models. Twelve major cities of South Africa were benchmarked for the study. Time series plots of the overall ten-year RR hourly mean were generated for the cities. The correlation coefficient (R) between RR and RH was investigated. The results indicate the highest and lowest RR of 360.94 and 301.09 (N-Units) in Pietermaritzburg and Kimberly, respectively, with a range of 59.85 over the country. In the southern coast, Pietermaritzburg recorded the highest and lowest values of 360.14 and 325.52 (N-Units) at 21:00 and 11:00 hrs., followed by Durban with 348.55 and 339.44 at 17:00 and 10:00 hrs., Bhisho with 346.88 and 320.622 at 00:00 and 11:00 hrs., and Cape Town with 328.54 and 322.47 (N-Units) at 00:00 and 10:00 hrs., respectively. In the central region, Bloemfontein recorded values of 344.97 and 305.58 at 04:00 and 13:00 hrs., respectively, while Kimberly recorded 338.06 and 301.09 at 04:00 and 13:00 hrs., respectively. In the northern region, Johannesburg recorded the highest and lowest values of 358.79 and 318.56 (N-Units) at 03:00 and 13:00 hrs., respectively; Pretoria recorded values of 352.25 and 316.76 at 04:00 and 13:00 hrs., respectively; Emalahleni recorded values of 358.79 and 318.95 at 03:00 and 13:00 hrs., respectively; and Polokwane recorded values of 357.59 and 320.82 at 03:00 and 13:00 hrs., respectively. Mahikeng recorded values of 346.70 and 311.37 at 04:00 and 13:00 h, while Mbombela recorded values of 360.11 and 329.17 (N-Units) at 00:00 and 12:00 h, respectively. The implications of these results are a higher refractive attenuation effect of terrestrial transmitted radio signals in cities with higher RR and during the early morning, evening, and night hours of the day. A high positive (R) of 0.84 to 0.99 was observed between RR and RH across the country. A geo-spatial RR contour map was generated for the study stations for practical applications and could be helpful in cities where the contour passes within South Africa. These findings should be taken into consideration in the design and reappraisal of terrestrial radio-link and power budgets to ensure quality of service. The overall findings provide practical applications for mitigating RR-prone attenuation on terrestrial radio channels, such as Radio and Television broadcasting, GSM, and microwave link systems, among others, across South Africa and other countries with similar geography and climate. Full article
Show Figures

Figure 1

28 pages, 11626 KB  
Article
A Dynamic Illumination-Constrained Spatio-Temporal A* Algorithm for Path Planning in Lunar South Pole Exploration
by Qingliang Miao and Guangfei Wei
Remote Sens. 2026, 18(2), 310; https://doi.org/10.3390/rs18020310 - 16 Jan 2026
Viewed by 93
Abstract
Future lunar south pole missions face dual challenges of highly variable illumination and rugged terrain that directly constrain rover mobility and energy sustainability. To address these issues, this study proposes a dynamic illumination-constrained spatio-temporal A* (DIC3D-A*) path-planning algorithm that jointly optimizes terrain safety [...] Read more.
Future lunar south pole missions face dual challenges of highly variable illumination and rugged terrain that directly constrain rover mobility and energy sustainability. To address these issues, this study proposes a dynamic illumination-constrained spatio-temporal A* (DIC3D-A*) path-planning algorithm that jointly optimizes terrain safety and illumination continuity in polar environments. Using high-resolution digital elevation model data from the Lunar Reconnaissance Orbiter Laser Altimeter, a 1300 m × 1300 m terrain model with 5 m/pixel spatial resolution was constructed. Hourly solar visibility for November–December 2026 was computed based on planetary ephemerides to generate a dynamic illumination dataset. The algorithm integrates slope, distance, and illumination into a unified heuristic cost function, performing a time-dependent search in a 3D spatiotemporal state space. Simulation results show that, compared with conventional A* algorithms considering only terrain or distance, the DIC3D-A* algorithm improves CSDV by 106.1% and 115.1%, respectively. Moreover, relative to illumination-based A* algorithms, it reduces the average terrain roughness index by 17.2%, while achieving shorter path length and faster computation than both the Rapidly-exploring Random Tree Star and Deep Q-Network baselines. These results demonstrate that dynamic illumination is the dominant environmental factor affecting lunar polar rover traversal and that DIC3D-A* provides an efficient, energy-aware framework for illumination-adaptive navigation in upcoming missions such as Chang’E-7. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Graphical abstract

14 pages, 6748 KB  
Article
Roller Joining of AA1050 and AA6061 Aluminum Foam Immediately After Heating Process
by Yoshihiko Hangai, Shingo Nagatake, Ryosuke Suzuki, Kenji Amagai and Nobuhiro Yoshikawa
Metals 2026, 16(1), 102; https://doi.org/10.3390/met16010102 - 16 Jan 2026
Viewed by 92
Abstract
Aluminum foam is attracting attention as a multifunctional, ultra-lightweight material. To apply this aluminum foam to actual industrial materials, aluminum foam plates are required. In addition, it is expected that a multi-layer aluminum foam composed of dissimilar aluminum alloy foam layers can further [...] Read more.
Aluminum foam is attracting attention as a multifunctional, ultra-lightweight material. To apply this aluminum foam to actual industrial materials, aluminum foam plates are required. In addition, it is expected that a multi-layer aluminum foam composed of dissimilar aluminum alloy foam layers can further enhance its functionality. In this study, we attempted to fabricate a three-layer aluminum foam composed of commercially pure aluminum AA1050 and Al-Mg-Si aluminum alloy AA6061 by heating and foaming a total of three pieces of AA1050 precursor and AA6061 precursor arranged alternately, followed by immediate roller joining. It was found that, by traversing a roller immediately after foaming the AA1050 and AA6061 precursors, the aluminum foam could be joined while forming it into a flat plate. In addition, X-ray CT images of the fabricated samples revealed that material flow induced by roller traversing ruptured the surface skin layer. Numerous pores were observed within the sample, indicating pores were maintained during the roller traversing and no significant differences in porosities were identified between AA1050 aluminum foam and AA6061 aluminum foam. Furthermore, from the four-point bending test and the observation of samples after bending test, although quantitative mechanical properties were not obtained due to the as-joined samples were used for the bending test, pores were observed at the fracture surfaces, confirming that roller joining achieved seamless joining. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

26 pages, 5029 KB  
Article
Analysis, Modeling, and Simulation of a Rocker–Bogie System Overcoming a Harmonic Bump
by Giandomenico Di Massa, Pierangelo Malfi, Stefano Pagano, Ernesto Rocca and Sergio Savino
Machines 2026, 14(1), 103; https://doi.org/10.3390/machines14010103 - 16 Jan 2026
Viewed by 135
Abstract
Rocker–bogie suspension systems have been extensively employed in planetary exploration rovers due to their ability to traverse highly irregular terrains while maintaining ground contact. Traditionally, their mechanical behavior has been analyzed using quasi-static models, given the low operational speeds typical of space missions. [...] Read more.
Rocker–bogie suspension systems have been extensively employed in planetary exploration rovers due to their ability to traverse highly irregular terrains while maintaining ground contact. Traditionally, their mechanical behavior has been analyzed using quasi-static models, given the low operational speeds typical of space missions. However, similar configurations are now being proposed for terrestrial applications in agriculture, defense, and logistics, where higher traversal speeds and more varied terrain conditions require a deeper understanding of the system’s dynamic response. This study analyzes some aspects of the kinematic and dynamic behavior of a rover with rocker–bogie suspension while traversing an obstacle with a harmonic profile. Both quasi-static and dynamic simulations are conducted, focusing on the time-varying contact forces at the wheels. Key findings include identifying the rate at which load reduction at which the load on one wheel becomes zero and the wheel tends to lift off the ground. These threshold speeds are mapped as a function of height and wavelength of the bump, providing design insights for applications requiring higher traversal speeds on uneven terrain. The analysis may also prove valuable for rovers equipped with visual sensor systems capable of mapping their surroundings and identifying obstacles, to determine whether they can be traversed and, if so, at what maximum speed. An experimental investigation was conducted with a small-scale rover to verify the theoretical results, for which the threshold speed was found to be 0.3 m/s, calculated for h = 16 mm and λ = 80 mm. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

18 pages, 8313 KB  
Article
Study on the Direct Current Breakdown Characteristics and Influence of Electric Field Distribution in Water Droplets in Rod–Plate Air Gaps
by Jianli Zhao, Zhaoyang Du, Jiankun Zhao, Song Fu and Bin Cao
Appl. Sci. 2026, 16(2), 930; https://doi.org/10.3390/app16020930 - 16 Jan 2026
Viewed by 86
Abstract
This study primarily simulates the flashover phenomenon between the metal fittings (rods) and the skirt surface (plates) of insulators when water droplets traverse between them under heavy rain conditions. High-speed cameras recorded droplet deformation and breakdown processes, while electric field simulation software modeled [...] Read more.
This study primarily simulates the flashover phenomenon between the metal fittings (rods) and the skirt surface (plates) of insulators when water droplets traverse between them under heavy rain conditions. High-speed cameras recorded droplet deformation and breakdown processes, while electric field simulation software modeled the air gap’s electric field distribution. The effects of air gap length, axial position of the water droplet, droplet conductivity, droplet diameter, and voltage polarity on the DC breakdown voltage were analyzed. Results indicate that a larger air gap leads to a greater reduction in droplet breakdown voltage and lower electric field uniformity. The breakdown voltage is essentially independent of changes in the axial position of the droplet and the droplet’s conductivity. The breakdown voltage exhibits no significant correlation with droplet diameter. Droplets rarely break down when voltage is applied to the electrodes, indicating that flashover at the low-voltage end of insulators during rainfall occurs infrequently. This research holds significant importance for elucidating the flashover mechanisms of water droplets at both ends (high-voltage and low-voltage) of the insulators and for guiding the design of external insulation for power equipment. Full article
Show Figures

Figure 1

14 pages, 245 KB  
Article
Conflict, Gendered Borders, and Emotional Mobility: The Case of Kashmiri Women Seeking Legal Justice
by Sweta Sen and Aarash Pirzada
Societies 2026, 16(1), 29; https://doi.org/10.3390/soc16010029 - 15 Jan 2026
Viewed by 192
Abstract
How do Kashmiri women, seeking justice for the enforced disappearance and detention of their male relatives, navigate and negotiate with the gendered borders of ‘spaces of legality’? Drawing on ethnographic research and interviews with key stakeholders, this article uses spaces of legality, exemplified [...] Read more.
How do Kashmiri women, seeking justice for the enforced disappearance and detention of their male relatives, navigate and negotiate with the gendered borders of ‘spaces of legality’? Drawing on ethnographic research and interviews with key stakeholders, this article uses spaces of legality, exemplified by courts, police stations, and judicial bodies, as its primary analytical sites to examine the multiple ways Kashmiri women traverse from ‘home’ into a masculine, public space. The theoretical framework argues that pre-existing patriarchal norms, in collusion with militarization and conflict-induced hypermasculinity, engender an intangible gendered border for women in Kashmir. In navigating this border, they engage in what we term ‘emotional mobility’, an infra-political agentic movement that results in renegotiating their roles, both at home and outside. Full article
24 pages, 39327 KB  
Article
Forest Surveying with Robotics and AI: SLAM-Based Mapping, Terrain-Aware Navigation, and Tree Parameter Estimation
by Lorenzo Scalera, Eleonora Maset, Diego Tiozzo Fasiolo, Khalid Bourr, Simone Cottiga, Andrea De Lorenzo, Giovanni Carabin, Giorgio Alberti, Alessandro Gasparetto, Fabrizio Mazzetto and Stefano Seriani
Machines 2026, 14(1), 99; https://doi.org/10.3390/machines14010099 - 14 Jan 2026
Viewed by 150
Abstract
Forest surveying and inspection face significant challenges due to unstructured environments, variable terrain conditions, and the high costs of manual data collection. Although mobile robotics and artificial intelligence offer promising solutions, reliable autonomous navigation in forest, terrain-aware path planning, and tree parameter estimation [...] Read more.
Forest surveying and inspection face significant challenges due to unstructured environments, variable terrain conditions, and the high costs of manual data collection. Although mobile robotics and artificial intelligence offer promising solutions, reliable autonomous navigation in forest, terrain-aware path planning, and tree parameter estimation remain open challenges. In this paper, we present the results of the AI4FOREST project, which addresses these issues through three main contributions. First, we develop an autonomous mobile robot, integrating SLAM-based navigation, 3D point cloud reconstruction, and a vision-based deep learning architecture to enable tree detection and diameter estimation. This system demonstrates the feasibility of generating a digital twin of forest while operating autonomously. Second, to overcome the limitations of classical navigation approaches in heterogeneous natural terrains, we introduce a machine learning-based surrogate model of wheel–soil interaction, trained on a large synthetic dataset derived from classical terramechanics. Compared to purely geometric planners, the proposed model enables realistic dynamics simulation and improves navigation robustness by accounting for terrain–vehicle interactions. Finally, we investigate the impact of point cloud density on the accuracy of forest parameter estimation, identifying the minimum sampling requirements needed to extract tree diameters and heights. This analysis provides support to balance sensor performance, robot speed, and operational costs. Overall, the AI4FOREST project advances the state of the art in autonomous forest monitoring by jointly addressing SLAM-based mapping, terrain-aware navigation, and tree parameter estimation. Full article
Show Figures

Figure 1

24 pages, 3471 KB  
Article
Transformable Quadruped Wheelchair: Unified Walking and Wheeled Locomotion via Mode-Conditioned Policy Distillation
by Atsuki Akamisaka and Katashi Nagao
Sensors 2026, 26(2), 566; https://doi.org/10.3390/s26020566 - 14 Jan 2026
Viewed by 251
Abstract
In recent years, while progress has been made in barrier-free design, the complete elimination of physical barriers such as uneven road surfaces and stairs remains difficult, and wheelchair passengers continue to face significant mobility constraints. This study aims to verify the effectiveness of [...] Read more.
In recent years, while progress has been made in barrier-free design, the complete elimination of physical barriers such as uneven road surfaces and stairs remains difficult, and wheelchair passengers continue to face significant mobility constraints. This study aims to verify the effectiveness of a transformable quadruped wheelchair that can switch between two modes of movement: walking and wheeled travel. Specifically, reinforcement learning using Proximal Policy Optimization (PPO) was used to acquire walking strategies for uneven terrain and wheeled travel strategies for flat terrain. NVIDIA Isaac Sim was used for simulation. To evaluate the stability of both modes, we performed a frequency analysis of the passenger’s acceleration data. As a result, we observed periodic vibrations around 2 Hz in the vertical direction in walking mode, while in wheeled mode, we confirmed extremely small vibrations and stable running. Furthermore, we distilled these two strategies into a single mode-conditional strategy and conducted long-distance running experiments involving mode transformation. The results demonstrated that by adaptively switching between walking and wheeled modes depending on the terrain, mobility efficiency was significantly improved compared to continuous operation in a single mode. This study demonstrates the effectiveness of an approach that involves learning multiple specialized strategies and switching between them as needed to efficiently traverse diverse environments using a transformable robot. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

24 pages, 3434 KB  
Article
Hierarchical Route Planning Framework and MMDQN Agent-Based Intelligent Obstacle Avoidance for UAVs
by Boyu Dong, Yuzhen Zhang, Peiyuan Yuan, Shuntong Lu, Tao Huang and Gong Zhang
Drones 2026, 10(1), 57; https://doi.org/10.3390/drones10010057 - 13 Jan 2026
Viewed by 247
Abstract
Efficient route planning technology is the core support for ensuring the successful execution of unmanned aerial vehicle (UAV) flight missions. In this paper, the coordination issue of global route planning and local real-time obstacle avoidance in complex mountainous environments is studied. To deal [...] Read more.
Efficient route planning technology is the core support for ensuring the successful execution of unmanned aerial vehicle (UAV) flight missions. In this paper, the coordination issue of global route planning and local real-time obstacle avoidance in complex mountainous environments is studied. To deal with this issue, a hierarchical route planning framework is designed, including global route planning and AI-based local route re-planning using deep reinforcement learning, exhibiting both flexible versatility and practical coordination and deployment efficiency. Throughout the entire flight, the local route re-planning task triggered by dynamic threats can be executed in real time. Meanwhile, a multi-model DQN (MMDQN) agent with a Monte Carlo traversal iterative learning (MCTIL) strategy is designed for local route re-planning. Compared to existing methods, this agent can be directly used to generate local obstacle avoidance routes in various scenarios at any time during the flight, which simplifies the complicated structure and training process of conventional deep reinforcement learning (DRL) agents in dynamic, complex environments. Using the framework structure and MMDQN agent for local route re-planning ensures the safety and efficiency of the mission, as well as local obstacle avoidance during global flights. These performances are verified through simulations based on actual terrain data. Full article
(This article belongs to the Special Issue Advances in AI Large Models for Unmanned Aerial Vehicles)
Show Figures

Figure 1

46 pages, 3979 KB  
Article
GeoMIP: A Geometric-Topological and Dynamic Programming Framework for Enhanced Computational Tractability of Minimum Information Partition in Integrated Information Theory
by Jaime Díaz-Arancibia, Luz Enith Guerrero, Jeferson Arango-López, Luis Fernando Castillo and Ana Bustamante-Mora
Appl. Sci. 2026, 16(2), 809; https://doi.org/10.3390/app16020809 - 13 Jan 2026
Viewed by 151
Abstract
The computational tractability of Integrated Information Theory (IIT) is fundamentally constrained by the exponential cost of identifying the Minimum Information Partition (MIP), which is required to quantify integrated information (Φ). Existing approaches become impractical beyond ~15–20 variables, limiting IIT analyses on realistic neural [...] Read more.
The computational tractability of Integrated Information Theory (IIT) is fundamentally constrained by the exponential cost of identifying the Minimum Information Partition (MIP), which is required to quantify integrated information (Φ). Existing approaches become impractical beyond ~15–20 variables, limiting IIT analyses on realistic neural and complex systems. We introduce GeoMIP, a geometric–topological framework that recasts the MIP search as a graph-based optimization problem on the n-dimensional hypercube graph: discrete system states are modeled as graph vertices, and Hamming distance adjacency defines edges and shortest-path structures. Building on a tensor-decomposed representation of the transition probabilities, GeoMIP constructs a transition-cost (ground cost) structure by dynamic programming over graph neighborhoods and BFS-like exploration by Hamming levels, exploiting hypercube symmetries to reduce redundant evaluations. We validate GeoMIP against PyPhi, ensuring reliability of MIP identification and Φ computation. Across multiple implementations, GeoMIP achieves 165–326× speedups over PyPhi while maintaining 98–100% agreement in partition identification. Heuristic extensions further enable analyses up to ~25 variables, substantially expanding the practical IIT regime. Overall, by leveraging the hypercube’s explicit graph structure (vertices, edges, shortest paths, and automorphisms), GeoMIP turns an intractable combinatorial search into a scalable graph-based procedure for IIT partitioning. Full article
Show Figures

Figure 1

21 pages, 3780 KB  
Article
Chromatin Nano-Organization in Peripheral Blood Mononuclear Cells After In-Solution Irradiation with the Beta-Emitter Lu-177
by Myriam Schäfer, Razan Muhtadi, Sarah Schumann, Felix Bestvater, Uta Eberlein, Georg Hildenbrand, Harry Scherthan and Michael Hausmann
Biomolecules 2026, 16(1), 142; https://doi.org/10.3390/biom16010142 - 13 Jan 2026
Viewed by 150
Abstract
Background: In nuclear medicine, numerous cancer types are treated via internal irradiation with radiopharmaceuticals, including low-LET (linear energy transfer) beta-emitting radionuclides like Lu-177. In most cases, such treatments lead to low-dose exposure of organ systems with β-irradiation, which induces only few isolated [...] Read more.
Background: In nuclear medicine, numerous cancer types are treated via internal irradiation with radiopharmaceuticals, including low-LET (linear energy transfer) beta-emitting radionuclides like Lu-177. In most cases, such treatments lead to low-dose exposure of organ systems with β-irradiation, which induces only few isolated DSBs (double-strand breaks) in the nuclei of hit cells, the most threatening DNA damage type. That damaging effect contrasts with the clustering of DNA damage and DSBs in nuclei traversed by high-LET particles (α particles, ions, etc.). Methods: After in-solution β-irradiation for 1 h with Lu-177 leading to an absorbed dose of about 100 mGy, we investigated the spatial nano-organization of chromatin at DSB damage sites, of repair proteins and of heterochromatin marks via single-molecule localization microscopy (SMLM) in PBMCs. For evaluation, mathematical approaches were used (Ripley distance frequency statistics, DBScan clustering, persistent homology and similarity measurements). Results: We analyzed, at the nanoscale, the distribution of the DNA damage response (DDR) proteins γH2AX, 53BP1, MRE11 and pATM in the chromatin regions surrounding a DSB. Furthermore, local changes in spatial H3K9me3 heterochromatin organization were analyzed relative to γH2AX distribution. SMLM measurements of the different fluorescent molecule tags revealed characteristic clustering of the DDR markers around one or two damage foci per PBMC cell nucleus. Ripley distance histograms suggested the concentration of MRE11 molecules inside γH2AX-clusters, while 53BP1 was present throughout the entire γH2AX clusters. Persistent homology comparisons for 53BP1, MRE11 and γH2AX by Jaccard index calculation revealed significant topological similarities for each of these markers. Since the heterochromatin organization of cell nuclei determines the identity of cell nuclei and correlates to genome activity, it also influences DNA repair. Therefore, the histone H3 tri methyl mark H3K9me3 was analyzed for its topology. In contrast to typical results obtained through photon irradiation, where γH2AX and H3K9me3 markers were well separated, the results obtained here also showed a close spatial proximity (“co-localization”) in many cases (minimum distance of markers = marker size), even with the strictest co-localization distance threshold (20 nm) for γH2AX and H3K9me3. The data support the results from the literature where only one DSB induced by low-dose low LET irradiation (<100 mGy) can remain without heterochromatin relaxation for subsequent repair. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop