Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = transverse shrinkage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3090 KB  
Article
Regional Brain Volume Changes Across Adulthood: A Multi-Cohort Study Using MRI Data
by Jae Hyuk Shim, Hyeon-Man Baek and Jung Hoon
Brain Sci. 2025, 15(10), 1096; https://doi.org/10.3390/brainsci15101096 (registering DOI) - 11 Oct 2025
Abstract
Background/Objectives: Age-related structural changes in the human brain provide essential insights into cognitive aging and the onset of neurodegenerative diseases. This study aimed to comprehensively characterize age-related volumetric changes across multiple brain regions in a large, diverse, cognitively healthy cohort spanning adulthood (ages [...] Read more.
Background/Objectives: Age-related structural changes in the human brain provide essential insights into cognitive aging and the onset of neurodegenerative diseases. This study aimed to comprehensively characterize age-related volumetric changes across multiple brain regions in a large, diverse, cognitively healthy cohort spanning adulthood (ages 21–90), integrating Korean, Information eXtraction from Images (IXI), and Alzheimer’s Disease Neuroimaging Initiative (ADNI) MRI datasets of cognitively healthy participants to characterize normative volumetric changes across adulthood using demographically diverse datasets. Methods: High resolution 3T T1-weighted MRI images from three distinct cohorts (totaling 1833 subjects) were processed through an optimized neuroimaging pipeline, combining advanced preprocessing with neural network-based segmentation. Volumetric data for 95 brain structures were segmented and analyzed across seven age bins (21–30 through 81–90). Pipeline reliability was validated against FreeSurfer using intraclass correlation coefficients (ICC) and coefficients of variation (CoV). Regression-based correction was used to correct for sex and cohort effects on brain region volume. Then, percentage change in each mean bilateral volumes of regions across the lifespan were computed to describe volumetric changes across life spans. Results: The segmentation pipeline demonstrated excellent agreement with FreeSurfer (mean ICC: 0.9965). Drastic volumetric expansions were observed in white matter hypointensities (122.6%), lateral ventricles (115.9%), and inferior lateral ventricles (116.8%). Moderate-to-notable shrinkage was found predominantly in the frontal lobe (pars triangularis: 21.5%), parietal lobe (inferior parietal: 20.4%), temporal lobe (transverse temporal: 21.6%), and cingulate cortex (caudal anterior cingulate: 16.1%). Minimal volume changes occurred in regions such as the insula (3.7%) and pallidum (2.6%). Conclusions: This study presents a comprehensive reference of normative regional brain volume changes across adulthood, highlighting substantial inter-regional variability. The findings can provide an essential foundation for differentiating normal aging patterns from early pathological alterations. Full article
(This article belongs to the Section Developmental Neuroscience)
Show Figures

Figure 1

11 pages, 3622 KB  
Case Report
Dissociation Between Tumor Response and PTTM Progression During Entrectinib Therapy in NTRK Fusion-Positive Colon Cancer
by Hideki Nagano, Shigekazu Ohyama, Atsushi Sato, Jun Igarashi, Tomoko Yamamoto and Mikiko Kobayashi
Curr. Oncol. 2025, 32(9), 506; https://doi.org/10.3390/curroncol32090506 - 11 Sep 2025
Viewed by 380
Abstract
We report a rare case of pulmonary tumor thrombotic microangiopathy (PTTM) in a patient with metastatic neurotrophic tropomyosin receptor kinase (NTRK) fusion-positive transverse colon cancer who exhibited a marked radiologic and biochemical response to entrectinib. Despite significant tumor shrinkage, progressive dyspnea and hypoxemia [...] Read more.
We report a rare case of pulmonary tumor thrombotic microangiopathy (PTTM) in a patient with metastatic neurotrophic tropomyosin receptor kinase (NTRK) fusion-positive transverse colon cancer who exhibited a marked radiologic and biochemical response to entrectinib. Despite significant tumor shrinkage, progressive dyspnea and hypoxemia developed approximately four weeks after therapy initiation. Chest CT revealed diffuse interstitial infiltrates, initially interpreted as drug-induced pneumonitis or infection. Entrectinib was discontinued, but respiratory failure progressed, and the patient died shortly thereafter. Autopsy revealed widespread pulmonary microangiopathy with fibrocellular intimal proliferation and tumor emboli in small pulmonary arteries, consistent with PTTM. Notably, no hematogenous metastases were identified; instead, tumor spread appeared to occur via an atypical lymphatic route through the thoracic duct. The tumor exhibited microsatellite stability and a modest mutation burden, suggesting that lymphatic dissemination and microvascular pathology may progress independently of these genomic features. This case underscores a critical dissociation between oncologic response and vascular complications, indicating that tropomyosin receptor kinase (TRK) inhibitor monotherapy may be insufficient to prevent PTTM. Comprehensive management may require concurrent strategies targeting the pulmonary microvasculature, including antiangiogenic therapy and modulation of cytokine and growth factor signaling. Full article
(This article belongs to the Section Surgical Oncology)
Show Figures

Figure 1

18 pages, 4603 KB  
Article
Mechanism of Load Transfer and Deformation Coordination for a Novel Sliding-Type Connection Structure in Bridge Widening: Model Test and Numerical Investigations
by Wenqing Wu, Zheng Liu, Jiyang Liu, Dan Liu, Liang Chen and Wenwei Wang
Buildings 2025, 15(17), 3248; https://doi.org/10.3390/buildings15173248 - 8 Sep 2025
Viewed by 1188
Abstract
In lateral-joint-widening projects of multi-span continuous concrete box girder bridges, significant discrepancies in longitudinal shrinkage, creep deformation, and vertical displacement between the existing and newly added bridge sections can lead to stress concentration and subsequent concrete cracking. Notably, such incompatibility often results in [...] Read more.
In lateral-joint-widening projects of multi-span continuous concrete box girder bridges, significant discrepancies in longitudinal shrinkage, creep deformation, and vertical displacement between the existing and newly added bridge sections can lead to stress concentration and subsequent concrete cracking. Notably, such incompatibility often results in pronounced overall lateral bending deformation, which compromises the structural safety and service reliability of the widened bridge. To address these challenges, this study proposes a novel sliding-type transverse connection structure. This innovative connection enables the independent development of longitudinal shrinkage and creep deformation in the new bridge superstructure relative to the old one through a sliding mechanism, thereby effectively mitigating stress concentration and minimizing overall bending deformation caused by differential deformations. To validate the feasibility and elucidate the load transfer mechanism of the proposed structure, both scaled model tests and finite element simulations were conducted. The results indicate that the connection not only effectively coordinates longitudinal deformation differences and accommodates vertical deformation between the flange plates of the new and old bridges, but also ensures efficient transverse load transfer through shear force transmission. The structural behavior is primarily governed by shear stress distribution. These findings demonstrate that the sliding-type transverse connection significantly improves deformation compatibility in bridge widening applications, thereby enhancing the mechanical performance and safety reliability of the overall structure. Full article
Show Figures

Figure 1

18 pages, 2268 KB  
Article
Effects of a Novel Mechanical Vibration Technology on the Internal Stress Distribution and Macrostructure of Continuously Cast Billets
by Shuai Liu, Jianliang Zhang, Hui Zhang and Minglin Wang
Metals 2025, 15(7), 794; https://doi.org/10.3390/met15070794 - 14 Jul 2025
Viewed by 392
Abstract
In this paper, a new mechanical vibration technology applied to continuous casting production is studied, which is used to break the dendrite at the solidification front, expand the equiaxed dendrite zone, and improve the center quality of the billet. The exciting force of [...] Read more.
In this paper, a new mechanical vibration technology applied to continuous casting production is studied, which is used to break the dendrite at the solidification front, expand the equiaxed dendrite zone, and improve the center quality of the billet. The exciting force of this vibration technology is provided by a new type of vibration equipment (Vibration roll) independently developed and designed. Firstly, an investigation is conducted into the impacts of vibration acceleration, vibration frequency, and the contact area between the Vibration roll (VR) and the billet surface on the internal stress distribution within the billet shell, respectively. Secondly, the billet with and without vibration treatment was sampled and analyzed through industrial tests. The results show that the area ratio of equiaxed dendrites in transverse specimens treated with vibration technology was 11.96%, compared to 6.55% in untreated specimens. Similarly, for longitudinal samples, the linear ratio of equiaxed dendrites was observed to be 34.56% in treated samples and 22.95% in untreated samples. Compared to the specimens without mechanical vibration, the billet treated with mechanical vibration exhibits an increase in the area ratio and linear ratio of equiaxed dendrite ratio by 5.41% and 11.61%, respectively. Moreover, the probability of bridging at the end of solidification of the billet treated by vibration technology was significantly reduced, and the central porosity and shrinkage cavities of the billet were significantly improved. This study provides the first definitive evidence that the novel mechanical vibration technology can enhance the quality of the billet during the continuous casting process. Full article
Show Figures

Figure 1

15 pages, 4312 KB  
Article
Insights into Hydration Kinetics of Cement Pastes Evaluated by Low-Field Nuclear Magnetic Resonance: Effects of Super-Absorbent Polymer as Internal Curing Agent and Calcium Oxide as Expansive Agent
by Meixin Liu, Yuan Hu, Jing Li, Xiaolin Liu, Huiwen Sun, Yunfei Di, Xia Wu and Junyi Zhang
Materials 2025, 18(4), 836; https://doi.org/10.3390/ma18040836 - 14 Feb 2025
Cited by 2 | Viewed by 880
Abstract
Understanding the hydration kinetics of cement paste is essential for adjusting the early-age performance of concrete. Low-field nuclear magnetic resonance (LF-NMR) has emerged as an innovative technique to evaluate cement hydration progress by analyzing the evolution of transverse relaxation time (T2 [...] Read more.
Understanding the hydration kinetics of cement paste is essential for adjusting the early-age performance of concrete. Low-field nuclear magnetic resonance (LF-NMR) has emerged as an innovative technique to evaluate cement hydration progress by analyzing the evolution of transverse relaxation time (T2) signals. This study provides insights into the influence of a super-absorbent polymer (SAP) as an internal curing agent and calcium oxide (CaO) as an expansive agent (EA) on LF-NMR spectroscopy of cement paste for the first time. The chemical compositions of the cement and CaO-based EA were determined by X-ray fluorescence, while the morphological characterizations of the cement, SAP and CaO-based EA materials were characterized by scanning electron microscopy. Based on the extreme points in the first-order derivatives of the T2 signal maximum amplitude curve, the hydration progress was analyzed and identified with four stages in detail. The results showed that the use of the SAP with a higher content retarded the hydration kinetics more evidently at a very early age, thus prolonging the duration of the induction and acceleration stages. The use of the CaO-based EA shortened the induction, acceleration and deceleration stages, which verified its promotion of hydration kinetics in the presence of the SAP. The combination of 3 wt% SAP and 2 wt% CaO consumed more water content synergistically in the first 100 h by hydration reactions. These findings revealed the roles of SAP and CaO-based EA (commonly adopted for low-shrinkage concrete) in adjusting hydration parameters and the microstructure evolution of cement-based materials, which would further offer fundamental knowledge for the early-age cracking control of concrete structures. Full article
Show Figures

Figure 1

13 pages, 950 KB  
Article
Application of Quantitative Magnetic Resonance Imaging (QMRI) to Evaluate the Effectiveness of Ultrasonic Atomization of Water in Truffle Preservation
by Alessia Marino, Marco Leonardi, Alessandra Zambonelli, Mirco Iotti and Angelo Galante
J. Fungi 2024, 10(10), 717; https://doi.org/10.3390/jof10100717 - 15 Oct 2024
Viewed by 1178
Abstract
Truffles of the Tuber genus (Pezizales, Ascomycetes) are among the most valuable and expensive foods, but their shelf life is limited to 7–10 days when stored at 4 °C. Alternative preservation methods have been proposed to extend their shelf life, though they may [...] Read more.
Truffles of the Tuber genus (Pezizales, Ascomycetes) are among the most valuable and expensive foods, but their shelf life is limited to 7–10 days when stored at 4 °C. Alternative preservation methods have been proposed to extend their shelf life, though they may alter certain quality parameters. Recently, a hypogeal display case equipped with an ultrasonic humidity system (HDC) was developed, extending the shelf life to 2–3 weeks, depending on the truffle species. This study assesses the efficacy of HDC in preserving Tuber melanosporum and Tuber borchii ascomata over 16 days, using quantitative magnetic resonance imaging (QMRI) to monitor water content and other parameters. Sixteen T. melanosporum and six T. borchii ascomata were stored at 4 °C in an HDC or a static fridge (SF) as controls. QMRI confirmed that T. borchii has a shorter shelf life than T. melanosporum under all conditions. HDC reduced the rate of shrinkage, water, and mass loss in both species. Additionally, the Apparent Diffusion Coefficient (ADC), longitudinal relaxation time (T1), and transverse relaxation time (T2), which reflect molecular changes, decreased more slowly in HDC than SF. QMRI proves useful for studying water-rich samples and assessing truffle preservation technologies. Further optimization of this method for industrial use is needed. Full article
(This article belongs to the Special Issue New Perspectives on Tuber Fungi)
Show Figures

Figure 1

19 pages, 5141 KB  
Article
Numerical Modeling of Distributed Macro-Synthetic Fiber and Deformed Bar Reinforcement to Resist Shear
by Benedikt Fadel Farag, Travis Thonstad and Paolo Martino Calvi
Buildings 2024, 14(10), 3247; https://doi.org/10.3390/buildings14103247 - 14 Oct 2024
Cited by 1 | Viewed by 1160
Abstract
Macro-synthetic fibers are increasingly used in concrete as secondary reinforcement to control temperature and shrinkage cracks, improving durability by limiting crack widths. However, their impact on the shear strength of structural elements remains underexplored, particularly when used in combination with traditional steel reinforcement. [...] Read more.
Macro-synthetic fibers are increasingly used in concrete as secondary reinforcement to control temperature and shrinkage cracks, improving durability by limiting crack widths. However, their impact on the shear strength of structural elements remains underexplored, particularly when used in combination with traditional steel reinforcement. To address this knowledge gap, this study developed and calibrated a non-linear numerical model to simulate the shear response of macro-synthetic fiber-reinforced concrete (PFRC) elements, using finite element software VecTor2. The model was calibrated with experimental data from PFRC panels subjected to pure shear loading, incorporating a custom concrete tension-softening model to capture the contribution of fibers. Validation against a broad range of PFRC beam experiments from the literature demonstrated the model’s accuracy, achieving an average predicted-to-experimental shear strength ratio of 0.99 (COV = 5.5%). Additionally, the model successfully replicated key response characteristics such as deformation patterns, crack propagation, and residual strength. The proposed modeling approach provides valuable insights into the interaction between fiber volume and transverse reinforcement. It also serves as a powerful tool for future numerical studies, addressing the existing data gap on PFRC behavior and exploring the synergistic effects of macro-synthetic fibers and steel reinforcement on shear strength. Full article
Show Figures

Figure 1

15 pages, 3049 KB  
Article
Multimodal Ultrasound Radiomic Technology for Diagnosing Benign and Malignant Thyroid Nodules of Ti-Rads 4-5: A Multicenter Study
by Luyao Wang, Chengjie Wang, Xuefei Deng, Yan Li, Wang Zhou, Yilv Huang, Xuan Chu, Tengfei Wang, Hai Li and Yongchao Chen
Sensors 2024, 24(19), 6203; https://doi.org/10.3390/s24196203 - 25 Sep 2024
Cited by 5 | Viewed by 2215
Abstract
This study included 468 patients and aimed to use multimodal ultrasound radiomic technology to predict the malignancy of TI-RADS 4-5 thyroid nodules. First, radiomic features are extracted from conventional two-dimensional ultrasound (transverse ultrasound and longitudinal ultrasound), strain elastography (SE), and shear-wave-imaging (SWE) images. [...] Read more.
This study included 468 patients and aimed to use multimodal ultrasound radiomic technology to predict the malignancy of TI-RADS 4-5 thyroid nodules. First, radiomic features are extracted from conventional two-dimensional ultrasound (transverse ultrasound and longitudinal ultrasound), strain elastography (SE), and shear-wave-imaging (SWE) images. Next, the least absolute shrinkage and selection operator (LASSO) is used to screen out features related to malignant tumors. Finally, a support vector machine (SVM) is used to predict the malignancy of thyroid nodules. The Shapley additive explanation (SHAP) method was used to intuitively analyze the specific contributions of radiomic features to the model’s prediction. Our proposed model has AUCs of 0.971 and 0.856 in the training and testing sets, respectively. Our proposed model has a higher prediction accuracy compared to those of models with other modal combinations. In the external validation set, the AUC of the model is 0.779, which proves that the model has good generalization ability. Moreover, SHAP analysis was used to examine the overall impacts of various radiomic features on model predictions and local explanations for individual patient evaluations. Our proposed multimodal ultrasound radiomic model can effectively integrate different data collected using multiple ultrasound sensors and has good diagnostic performance for TI-RADS 4-5 thyroid nodules. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Graphical abstract

21 pages, 15319 KB  
Article
Additive Manufacturing of Composite Polymers: Thermomechanical FEA and Experimental Study
by Saeed Behseresht and Young Ho Park
Materials 2024, 17(8), 1912; https://doi.org/10.3390/ma17081912 - 20 Apr 2024
Cited by 19 | Viewed by 4173
Abstract
This study presents a comprehensive approach for simulating the additive manufacturing process of semi-crystalline composite polymers using Fused Deposition Modeling (FDM). By combining thermomechanical Finite Element Analysis (FEA) with experimental validation, our main objective is to comprehend and model the complex behaviors of [...] Read more.
This study presents a comprehensive approach for simulating the additive manufacturing process of semi-crystalline composite polymers using Fused Deposition Modeling (FDM). By combining thermomechanical Finite Element Analysis (FEA) with experimental validation, our main objective is to comprehend and model the complex behaviors of 50 wt.% carbon fiber-reinforced Polyphenylene Sulfide (CF PPS) during FDM printing. The simulations of the FDM process encompass various theoretical aspects, including heat transfer, orthotropic thermal properties, thermal dissipation mechanisms, polymer crystallization, anisotropic viscoelasticity, and material shrinkage. We utilize Abaqus user subroutines such as UMATHT for thermal orthotropic constitutive behavior, UEPACTIVATIONVOL for progressive activation of elements, and ORIENT for material orientation. Mechanical behavior is characterized using a Maxwell model for viscoelastic materials, incorporating a dual non-isothermal crystallization kinetics model within the UMAT subroutine. Our approach is validated by comparing nodal temperature distributions obtained from both the Abaqus built-in AM Modeler and our user subroutines, showing close agreement and demonstrating the effectiveness of our simulation methods. Experimental verification further confirms the accuracy of our simulation techniques. The mechanical analysis investigates residual stresses and distortions, with particular emphasis on the critical transverse in-plane stress component. This study offers valuable insights into accurately simulating thermomechanical behaviors in additive manufacturing of composite polymers. Full article
Show Figures

Figure 1

16 pages, 4792 KB  
Article
Anti-Cracking TEOS-Based Hybrid Materials as Reinforcement Agents for Paper Relics
by Mengruo Wu, Le Mu, Zhiyue Zhang, Xiangna Han, Hong Guo and Liuyang Han
Molecules 2024, 29(8), 1834; https://doi.org/10.3390/molecules29081834 - 17 Apr 2024
Cited by 8 | Viewed by 1905
Abstract
Tetraethoxysilane (TEOS) is the most commonly used silicon-based reinforcement agent for conserving art relics due to its cost-effectiveness and commercial maturity. However, the resulting silica gel phase is prone to developing cracks as the gel shrinks during the sol–gel process, potentially causing severe [...] Read more.
Tetraethoxysilane (TEOS) is the most commonly used silicon-based reinforcement agent for conserving art relics due to its cost-effectiveness and commercial maturity. However, the resulting silica gel phase is prone to developing cracks as the gel shrinks during the sol–gel process, potentially causing severe damage to the objects being treated. In this study, dodecyltrimethoxysilane (DTMS) was introduced into TEOS to minimize this shrinkage by adding elastic long chains to weaken the capillary forces. The gel formed from the DTMS/TEOS hybrid material was transparent and crack-free, featuring a dense microstructure without mesopores or micropores. It exhibited excellent thermal stability, with a glass transition temperature of up to 109.64 °C. Evaluation experiments were conducted on artificially aged, handmade bamboo paper. The TEOS-based hybrid material effectively combined with the paper fibers through the sol–gel process, polymerizing into a network structure that enveloped the paper surface or penetrated between the fibers. The surface of the treated paper displayed excellent hydrophobic properties, with no significant changes in appearance, color, or air permeability. The mechanical properties of the treated bamboo paper improved significantly, with longitudinal and transverse tensile strengths increasing by up to 36.63% and 44.25%, respectively. These research findings demonstrate the promising potential for the application of DTMS/TEOS hybrid materials in reinforcing paper relics. Full article
(This article belongs to the Special Issue Chemical Conservation of Paper-Based Cultural Heritage)
Show Figures

Figure 1

20 pages, 2293 KB  
Article
A Parametric Study Investigating the Dowel Bar Load Transfer Efficiency in Jointed Plain Concrete Pavement Using a Finite Element Model
by Saima Yaqoob, Johan Silfwerbrand and Romain Gabriel Roger Balieu
Buildings 2024, 14(4), 1039; https://doi.org/10.3390/buildings14041039 - 8 Apr 2024
Cited by 6 | Viewed by 3869
Abstract
Transverse joints are introduced in jointed plain concrete pavement systems to mitigate the risk of cracks that can develop due to shrinkage and temperature variations. However, the structural behaviour of jointed plain concrete pavement (JPCP) is significantly affected by the transverse joint, as [...] Read more.
Transverse joints are introduced in jointed plain concrete pavement systems to mitigate the risk of cracks that can develop due to shrinkage and temperature variations. However, the structural behaviour of jointed plain concrete pavement (JPCP) is significantly affected by the transverse joint, as it creates a discontinuity between adjacent slabs. The performance of JPCP at the transverse joints is enhanced by providing steel dowel bars in the traffic direction. The dowel bar provides reliable transfer of traffic loads from the loaded side of the joint to the unloaded side, known as load transfer efficiency (LTE) or joint efficiency (JE). Furthermore, dowel bars contribute to the slab’s alignment in the JPCP. Joints are the critical component of concrete pavements that can lead to various distresses, necessitating rehabilitation. The Swedish Transport Administration (Trafikverket) is concerned with the repair of concrete pavement. Precast concrete slabs are efficient for repairing concrete pavement, but their performance relies on well-functioning dowel bars. In this study, a three-dimensional finite element model (3D-FEM) was developed using the ABAQUS software to evaluate the structural response of JPCP and analyse the flexural stress concentration in the concrete slab by considering the dowel bar at three different locations (i.e., at the concrete slabs’ top, bottom, and mid-height). Furthermore, the structural response of JPCP was also investigated for several important parameters, such as the joint opening between adjacent slabs, mispositioning of dowel bars (horizontal, vertical, and longitudinal translations), size (diameter) of the dowel bar, and bond between the slab and the dowel bar. The study found that the maximum LTE occurred when the dowel bar was positioned at the mid-depth of the concrete slab. An increase in the dowel bar diameter yielded a 3% increase in LTE. Conversely, the increase in the joint opening between slabs led to a 2.1% decrease in LTE. Additionally, the mispositioning of dowel bars in the horizontal and longitudinal directions showed a 2.1% difference in the LTE. However, a 0.5% reduction in the LTE was observed for a vertical translation. Moreover, an approximately 0.5% increase in LTE was observed when there was improved bonding between the concrete slab and dowel bar. These findings can be valuable in designing and evaluating dowel-jointed plain concrete pavements. Full article
Show Figures

Figure 1

13 pages, 3106 KB  
Article
The Effect of TIG Welding Heat Input on the Deformation of a Thin Bending Plate and Its Weld Zone
by Nan Guo, Hao Hu, Xiaojie Tang, Xiqiang Ma and Xiao Wang
Coatings 2023, 13(12), 2008; https://doi.org/10.3390/coatings13122008 - 27 Nov 2023
Cited by 2 | Viewed by 2322
Abstract
Heat input is a crucial parameter in the process of welding thin plates. It has a direct impact on the quality of the weld and the degree of deformation caused during welding. This study investigates the impact of heat input on the deformation [...] Read more.
Heat input is a crucial parameter in the process of welding thin plates. It has a direct impact on the quality of the weld and the degree of deformation caused during welding. This study investigates the impact of heat input on the deformation of a thin bending plate and its weld zone using the thermoelastic–plastic finite element method. The accuracy of the model is ascertained using the non-contact inspection method utilizing digital image correlation technology. The welding deformation patterns of thin bending plates with a radius of 500 mm were analyzed at various welding heat inputs ranging from 173 J/mm to 435 J/mm. The results indicate that the finite element prediction model proposed in this paper is highly accurate. It has been observed that, under this range of thermal input, the thin bent plates undergo saddle deformation. By examining the correlation between heat input and the maximum deformation outside of the plane, it has been determined that a heat input of at least 50 J/mm is required for the thin bending plate to experience out-of-plane deformation. Additionally, as the level of heat input increases, so too does the out-of-plane deformation of the thin bending plate. After the completion of the welding cooling process, the transverse shrinkage at the weld seam of the thin bend plate is twice that of the longitudinal shrinkage. However, the transverse deformation of the bend plate is not significantly different from the longitudinal deformation. Full article
(This article belongs to the Special Issue Recent Progress in Metal Additive Manufacturing)
Show Figures

Figure 1

12 pages, 4579 KB  
Article
Application of Steel-Fiber-Reinforced Self-Stressing Concrete in Prefabricated Pavement Joints
by Yun-Feng Xi, Sheng-Jun Ren, Bao-Ling Chen, Bing Yang, Jin Lee, Guang-Hao Zhu, Tian-Cheng Zhou and Hao Xu
Buildings 2023, 13(9), 2129; https://doi.org/10.3390/buildings13092129 - 22 Aug 2023
Cited by 4 | Viewed by 1911
Abstract
Prefabricated pavement, with its advantages of a high paving speed, low material consumption, low carbon emissions, high strength, and easy construction, has gradually been used to address issues associated with traditional cement pavement construction. However, even under the long-term combined effects of vehicle [...] Read more.
Prefabricated pavement, with its advantages of a high paving speed, low material consumption, low carbon emissions, high strength, and easy construction, has gradually been used to address issues associated with traditional cement pavement construction. However, even under the long-term combined effects of vehicle loads and environmental loads, the joints between pavement slabs remain prone to various problems. This paper proposes the use of steel-fiber-reinforced self-stressing concrete (SFRSSC) with a certain level of self-stress for joint pouring and connection to control the development of cracks in the joints and achieve seamless integration between the slabs. Additionally, the self-stress generated by SFRSSC is utilized to enhance the continuity of the prestressed design in precast slabs, thereby extending their service life. Through laboratory experiments and field tests, the self-stress magnitude, mechanical strength, and long-term applicability of SFRSSC were studied. The results indicate that SFRSSC can achieve self-stress levels of over 7 MPa under standard curing conditions, but the values decrease significantly when removed from the standard curing environment. SFRSSC exhibits a compressive strength of over 60 MPa and a flexural strength of over 9 MPa, both of which exceed the requirements of the relevant standards, making it suitable for use as a pavement joint material. During long-term monitoring in the field, SFRSSC demonstrates favorable expansion effects and high stability. The longitudinal expansion remains stable at 100 με, while the transverse expansion exhibits minor shrinkage, maintained at around 25.2 με. Therefore, the application of SFRSSC in assembly-type prestressed pavement joints shows high applicability. Full article
Show Figures

Figure 1

14 pages, 5444 KB  
Article
Process Optimization, Microstructure and Mechanical Properties of Wire Arc Additive Manufacturing of Aluminum Alloy by Using DP-GMAW Based on Response Surface Method
by Wenbo Du, Guorui Sun, Yue Li and Chao Chen
Materials 2023, 16(16), 5716; https://doi.org/10.3390/ma16165716 - 21 Aug 2023
Cited by 7 | Viewed by 2085
Abstract
Double-pulsed gas metal arc welding (DP-GMAW) is a high-performance welding method with low porosity and high frequency. Periodic shrinkage and expansion of the melt pool during DP-GMAW leads to unusual remelting, and the re-solidification behavior of the weld metal can significantly refine the [...] Read more.
Double-pulsed gas metal arc welding (DP-GMAW) is a high-performance welding method with low porosity and high frequency. Periodic shrinkage and expansion of the melt pool during DP-GMAW leads to unusual remelting, and the re-solidification behavior of the weld metal can significantly refine the weld structure. The advantages of DP-GMAW have been proven. In order to better apply DP-GMAW to aluminum alloy arc additive manufacturing, in this paper, the single-pass deposition layer parameters (double-pulse amplitude, double-pulse frequency and travel speed) of DP-GMAW will be optimized using the response surface method (RSM) with the width, height, and penetration of the deposition layer as the response values to find the superior process parameters applicable to the additive manufacturing of aluminum alloy DP-GMAW. The results show that the aluminum alloy components made by DP-GMAW additive are well formed. Due to the stirring of double-pulse arc and the abnormal remelting and solidification of metal, the microstructures in the middle and top areas show disordered growth. The average ultimate tensile strength of the transverse tensile specimen of the member can reach 175.2 MPa, and the elongation is 10.355%. Full article
Show Figures

Figure 1

21 pages, 58939 KB  
Article
Study of the TIG Welding Process of Thin-Walled Components Made of 17-4 PH Steel in the Aspect of Weld Distortion Distribution
by Marek Mróz, Bartłomiej Kucel, Patryk Rąb and Sylwia Olszewska
Materials 2023, 16(13), 4854; https://doi.org/10.3390/ma16134854 - 6 Jul 2023
Cited by 2 | Viewed by 2199
Abstract
This article presents the results of a study on the distribution of weld distortion in thin-walled components made of 17-4 PH steel, resulting from TIG (Tungsten Inert Gas) welding. Both manual and automatic welding processes were examined. Physical simulation of the automated welding [...] Read more.
This article presents the results of a study on the distribution of weld distortion in thin-walled components made of 17-4 PH steel, resulting from TIG (Tungsten Inert Gas) welding. Both manual and automatic welding processes were examined. Physical simulation of the automated welding process was conducted on a custom-built welding fixture. Analysis of weld distortion in thin-walled components made of 17-4 PH steel was based on the results of measurements of transverse shrinkage and displacement angle values. These measurements were taken on thin-walled parts before and after the welding process using a coordinate measuring machine (CMM). To determine the effect of manual and automated welding processes on the microstructure of the welded joint area, metallographic tests and hardness measurements were performed. The microstructure was analyzed using a scanning electron microscope (SEM). An analysis of the chemical composition of selected welded joint zones was also conducted. These tests were performed using an optical emission spectrometer (OES). According to the results, the use of automated welding and special fixtures for manufacturing thin-walled aircraft engine components made of 17-4 PH steel reduces the propensity of these components for distortion due to the effects of the thermal cycle of the welding process. This conclusion is supported by the results of the observation of the microstructure and analysis of the chemical composition of the various zones of the welded joint area. Full article
(This article belongs to the Special Issue Advances in Welding Process and Materials)
Show Figures

Figure 1

Back to TopTop