Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (151)

Search Parameters:
Keywords = transposable elements regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10675 KiB  
Article
Evolutionary Insights and Flowering Regulation of SPLs in Coconut Palm
by Runan Chen, Yalan Feng, Jin Zhou, Ying Wang, Fengyi Zhang, Shazia Rehman, Zhuang Yang, Zifen Lao, Hang Xu, Yong Xiao, Jie Luo and Wei Xia
Plants 2025, 14(16), 2532; https://doi.org/10.3390/plants14162532 - 14 Aug 2025
Viewed by 214
Abstract
Squamosa Promoter-Binding Protein Like (SPL) is a critical transcription factor that plays a significant role in regulating plant growth and development. Mining the coconut SPL family offers valuable insights into the regulation of important agronomic traits, including the length of the [...] Read more.
Squamosa Promoter-Binding Protein Like (SPL) is a critical transcription factor that plays a significant role in regulating plant growth and development. Mining the coconut SPL family offers valuable insights into the regulation of important agronomic traits, including the length of the juvenile phase. In this study, 25 CnSPLs were identified and were classified into eight subfamilies. Analysis of gene structure and conserved protein motifs indicated a high conservation of CnSPLs within the same subfamilies; however, variations in protein structure and gene length were observed across different subfamilies. Gene expansion analysis indicated that most gene members within subfamilies originated from duplications of the same genomic segment, and transposable element insertion contributed to the divergence of gene sequences within these subfamilies. Characterization of the miR156 target sequence in SPL transcripts revealed that subfamilies IV to VIII contained these sequences, while subfamilies I to III did not. In both coconut and 14 other plant species, some SPLs lost their miR156-binding loci due to gene structure variations. The gene expression profiles revealed significant divergence between miR156-targeted and non-targeted CnSPLs; the former exhibited low expression levels in the endosperm, while the latter showed comparable expression across all tissues. Notably, CnSPL15A demonstrated steadily increasing expression levels in leaves throughout successive leaf primordia and significantly promoted flowering when overexpressed in Arabidopsis. Transient expression assays and 5′ RACE confirmed that CnSPLs are targeted by miR156. This study establishes a foundation for investigating the evolutionary characteristics of CnSPLs and provides a theoretical framework for analyzing the functions of key CnSPLs involved in the coconut flowering control pathway. Full article
Show Figures

Figure 1

15 pages, 4969 KiB  
Article
Duplicated Genes on Homologous Chromosomes Decipher the Dominant Epistasis of the Fiberless Mutant in Cotton
by Yu Le, Xingchen Xiong, Zhiyong Xu, Meilin Chen, Yuanxue Li, Chao Fu, Chunyuan You and Zhongxu Lin
Biology 2025, 14(8), 983; https://doi.org/10.3390/biology14080983 - 2 Aug 2025
Viewed by 247
Abstract
Cotton fiber initiation determines the fiber yield, yet the genetic basis underlying lint and fuzz initiation has still not been fully uncovered. Here, map-based cloning was carried out to identify the fiberless mutant genes derived from a cross between Gossypium hirsutum acc. WT [...] Read more.
Cotton fiber initiation determines the fiber yield, yet the genetic basis underlying lint and fuzz initiation has still not been fully uncovered. Here, map-based cloning was carried out to identify the fiberless mutant genes derived from a cross between Gossypium hirsutum acc. WT and a natural fiberless mutant, fblSHZ. The 12:3:1 segregation ratio in F2 populations (including 1848 and 3100 individuals that were developed in 2016 and 2018, respectively) revealed dominant epistasis, with the fuzz gene exerting dominance over the lint gene. Genetic linkage analysis revealed that GhMYB25like_A12 controls fuzz fiber initiation, while both GhMYB25like_A12 and GhMYB25like_D12 regulate lint fiber development. Sequencing analyses showed that the fblSHZ mutant exhibited a K104M mutation in the R2R3 domain of GhMYB25like_A12 and a transposable element insertion in GhMYB25like_D12, leading to fiberless seeds. Knockout of GhMYB25like_A12 produced fuzzless seeds, knockout of GhMYB25like_D12 led to no obvious change in seeds, and knockout of both (GhMYB25like_A12&D12) resulted in fiberless seeds. The 12:3:1 ratio reappeared in the F2 population developed from the GhMYB25like_A12&D12 mutated plants as female and Jin668 as the male, which further confirmed the genetic interaction observed in fblSHZ. RNA-seq analysis revealed that GhMYB25like regulates cotton fiber initiation through multiple pathways, especially fatty acid metabolism. This study elucidates the key genes and their genetic interaction mechanisms governing cotton fiber initiation, providing a theoretical foundation for genetic improvement of cotton fiber traits. Full article
(This article belongs to the Special Issue Cotton: Genomics, Biotechnology and Molecular Breeding)
Show Figures

Figure 1

15 pages, 735 KiB  
Review
piRNA-Mediated Maintenance of Genome Stability in Gametogenesis and Cancer
by Martyna Zawalska and Maciej Tarnowski
Genes 2025, 16(7), 722; https://doi.org/10.3390/genes16070722 - 20 Jun 2025
Viewed by 874
Abstract
Epigenetics and genome science have become central to current molecular biology research. Among the key mechanisms ensuring genomic integrity is the silencing of transposable elements in germline cells, a process essential for fertility in both sexes. A pivotal component of this silencing machinery [...] Read more.
Epigenetics and genome science have become central to current molecular biology research. Among the key mechanisms ensuring genomic integrity is the silencing of transposable elements in germline cells, a process essential for fertility in both sexes. A pivotal component of this silencing machinery involves PIWI-interacting RNAs (piRNAs), a distinct class of small non-coding RNAs that regulate gene expression and suppress transposable elements at both the transcriptional and post-transcriptional levels. piRNAs function in concert with PIWI proteins, whose expression is critical for proper oogenesis, spermatogenesis, and early zygote development. Disruptions in piRNA or PIWI protein pathways not only impair germline function but also contribute to genome instability, unchecked cell proliferation, and aberrant epigenetic modifications, hallmarks of tumorigenesis. Emerging evidence links the dysregulation of the piRNA/PIWI axis to the development and progression of various cancers, including lung and colorectal carcinomas. This review highlights the fundamental roles of piRNAs and PIWI proteins in reproductive biology and their increasingly recognized relevance in cancer biology. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 602 KiB  
Article
Multi-Cohort Exploration of Repetitive Element Transcription and DNA Methylation in Human Steatotic Liver Disease
by Neil A. Youngson, Aikaterini Tourna, Timothy Chalmers, Kelly V. Prates, Josepmaria Argemi, Ramon Bataller, Koroush S. Haghighi, Lindsay E. Wu, Shilpa Chokshi, Peter Starkel, Patrick S. Western, Margaret J. Morris and Stephen M. Riordan
Int. J. Mol. Sci. 2025, 26(12), 5494; https://doi.org/10.3390/ijms26125494 - 8 Jun 2025
Viewed by 749
Abstract
Transposable elements (TEs) make up around half of the human genome. Their transcription is repressed in most somatic cells to maintain genome integrity and function. The repression is chiefly maintained by a combination of epigenetic modifications such as DNA methylation and histone modifications. [...] Read more.
Transposable elements (TEs) make up around half of the human genome. Their transcription is repressed in most somatic cells to maintain genome integrity and function. The repression is chiefly maintained by a combination of epigenetic modifications such as DNA methylation and histone modifications. However, recent research suggests that liver steatosis is associated with extensive changes to the hepatocyte epigenome. Furthermore, studies in mice have reported diet- and drug-induced changes to TE transcript levels in liver. The confirmation of these effects in human liver has not previously been undertaken. Here, we examined TE transcription in liver tissue from three patient cohorts with histologically confirmed liver steatosis caused by alcohol consumption or metabolic dysfunction. The quantitation of the number of transcripts with TE-homology in RNA-Seq data from a cohort of 90 bariatric surgery patients with metabolic dysfunction-associated steatotic liver disease (MASLD) revealed a trend for the reduction in TEs of all classes due to increasing steatosis, but no effect of fibrosis. This pattern was also present in a separate cohort of MASLD and HCC patients, as RT-qPCR also showed a reduction in Alu element transcripts in advanced steatosis, but again, no effect of fibrosis. Contrastingly, in a cohort of alcohol-related liver disease patients, the reduction in LINE-1 transcripts was associated with either increased steatosis or increased fibrosis. Moreover, the examination of LINE-1 DNA methylation levels in the MASLD and HCC cohort indicated that DNA methylation was also negatively associated with LINE-1 transcription in MASLD. This study suggests that TE transcript levels in human liver are slightly reduced by steatosis, that DNA methylation is an influential epigenetic regulator of LINE-1 retrotransposon transcription in steatosis, and that Alu transcript levels in background liver could be a new biomarker for HCC in cirrhotic and non-cirrhotic MASLD. Full article
(This article belongs to the Special Issue Targeting Epigenetic Network in Cancer)
Show Figures

Figure 1

11 pages, 995 KiB  
Review
DDM1 Maintains Heterochromatin by Regulating Histone Variants
by Yuanyi Sun, Qijun Xie, Huaixue Chu, Bin Lv, Linan Xie and Qingzhu Zhang
Int. J. Mol. Sci. 2025, 26(10), 4845; https://doi.org/10.3390/ijms26104845 - 19 May 2025
Viewed by 552
Abstract
Chromatin remodeling factors efficiently and precisely establish, maintain, regulate, and distinguish between chromatin states in eukaryotes. DECREASE in DNA METHYLATION 1 (DDM1) is an important heterochromatin remodeling factor in plants that is responsible for maintaining heterochromatin DNA methylation and suppressing most transposable elements. [...] Read more.
Chromatin remodeling factors efficiently and precisely establish, maintain, regulate, and distinguish between chromatin states in eukaryotes. DECREASE in DNA METHYLATION 1 (DDM1) is an important heterochromatin remodeling factor in plants that is responsible for maintaining heterochromatin DNA methylation and suppressing most transposable elements. Previous studies have predominantly focused on the effects of DDM1 on chromatin, with only a few focusing on its remodeling mechanisms. However, recent studies have greatly advanced understanding of the remodeling functions of DDM1 and, in particular, have clarified the mechanisms involved. In this review, we discuss the newly identified remodeling functions and mechanisms of DDM1. As DDM1 is closely involved in histone variant exchange, we first introduce the main histone variants associated with chromatin states in plants. Next, we focus on how DDM1 promotes the deposition of specific histone variants and describe its other remodeling functions. We propose that the core function of DDM1 is the regulation of histone variant distribution. DDM1 maintains heterochromatin by regulating the deposition of H2A and H3 variants, particularly by facilitating the exchange of specific histone variants. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

27 pages, 4757 KiB  
Article
Paramutation-Like Behavior of Genic piRNA-Producing Loci in Drosophila virilis
by Alina V. Bespalova, Dina A. Kulikova, Elena S. Zelentsova, Alexander P. Rezvykh, Iuliia O. Guseva, Ana P. Dorador, Mikhail B. Evgen’ev and Sergei Y. Funikov
Int. J. Mol. Sci. 2025, 26(9), 4243; https://doi.org/10.3390/ijms26094243 - 29 Apr 2025
Viewed by 608
Abstract
Piwi-interacting RNAs (piRNAs) play a crucial role in silencing transposable elements (TEs) in the germ cells of Metazoa by acting as sequence-specific guides. Originating from distinct genomic loci, called piRNA clusters, piRNA can trigger an epigenetic conversion of TE insertions into piRNA clusters [...] Read more.
Piwi-interacting RNAs (piRNAs) play a crucial role in silencing transposable elements (TEs) in the germ cells of Metazoa by acting as sequence-specific guides. Originating from distinct genomic loci, called piRNA clusters, piRNA can trigger an epigenetic conversion of TE insertions into piRNA clusters by means of a paramutation-like process. However, the variability in piRNA clusters’ capacity to induce such conversions remains poorly understood. Here, we investigated two Drosophila virilis strains with differing capacities to produce piRNAs from the subtelomeric RhoGEF3 and Adar gene loci. We found that active piRNA generation correlates with high levels of the heterochromatic mark histone 3 lysine 9 trimethylation (H3K9me3) over genomic regions that give rise to piRNAs. Importantly, the maternal transmission of piRNAs drives their production in the progeny, even from homologous loci previously inactive in piRNA biogenesis. The RhoGEF3 locus, once epigenetically converted, maintained enhanced piRNA production in subsequent generations lacking the original allele carrying the active piRNA cluster. In contrast, piRNA expression from the converted Adar locus was lost in offspring lacking the inducer allele. The present findings suggest that the paramutation-like behavior of piRNA clusters may be influenced not only by piRNAs but also by structural features and the chromatin environment in the proximity to telomeres, providing new insights into the epigenetic regulation of the Drosophila genome. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

41 pages, 28708 KiB  
Article
Identification and Characterization of LINE and SINE Retrotransposons in the African Hedgehog (Atelerix albiventris, Erinaceidae) and Their Association with 3D Genome Organization and Gene Expression
by Mengyuan Zhu, Jianxuan Zhou, Nannan Chen, Jianing Xu, Haipeng Wang, Libo Jiang and Fengtang Yang
Genes 2025, 16(4), 397; https://doi.org/10.3390/genes16040397 - 29 Mar 2025
Viewed by 988
Abstract
Background: The African hedgehog (Atelerix albiventris) exhibits specialized skin differentiation leading to spine formation, yet its regulatory mechanisms remain unclear. Transposable elements (TEs), particularly LINEs (long interspersed nuclear elements) and SINEs (short interspersed nuclear elements), are known to influence genome organization [...] Read more.
Background: The African hedgehog (Atelerix albiventris) exhibits specialized skin differentiation leading to spine formation, yet its regulatory mechanisms remain unclear. Transposable elements (TEs), particularly LINEs (long interspersed nuclear elements) and SINEs (short interspersed nuclear elements), are known to influence genome organization and gene regulation. Objectives: Given the high proportion of SINEs in the hedgehog genome, this study aims to characterize the distribution, evolutionary dynamics, and potential regulatory roles of LINEs and SINEs, focusing on their associations with chromatin architecture, DNA methylation, and gene expression. Methods: We analyzed LINE and SINE distribution using HiFi sequencing and classified TE families through phylogenetic reconstruction. Hi-C data were used to explore TE interactions with chromatin architecture, while whole-genome 5mCpG methylation was inferred from PacBio HiFi reads of muscle tissue using a deep-learning-based approach. RNA-seq data from skin tissues were analyzed to assess TE expression and potential associations with genes linked to spine development. Results: SINEs form distinct genomic blocks in GC-rich and highly methylated regions, whereas LINEs are enriched in AT-rich, hypomethylated regions. LINEs and SINEs are associated differently with A/B compartments, with SINEs in euchromatin and LINEs in heterochromatin. Methylation analysis suggests that younger TEs tend to have higher methylation levels, and expression analysis indicates that some differentially expressed TEs may be linked to genes involved in epidermal and skeletal development. Conclusions: This study provides a genome-wide perspective on LINE and SINE distribution, methylation patterns, and potential regulatory roles in A. albiventris. While not establishing a direct causal link, the findings suggest that TEs may influence gene expression associated with spine development, offering a basis for future functional studies. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 2834 KiB  
Article
Direct Targeted Degradation of Transposon RNAs by the Non-Canonical RNAi Pathway of the Fungus Mucor lusitanicus
by Ghizlane Tahiri, Carlos Lax, Francisco E. Nicolás, Victoriano Garre and Eusebio Navarro
Int. J. Mol. Sci. 2025, 26(6), 2738; https://doi.org/10.3390/ijms26062738 - 18 Mar 2025
Viewed by 626
Abstract
Mucor lusitanicus has emerged as a model organism for studying RNAi in early-diverging fungi. This fungus exhibits intricate RNAi pathways that play crucial roles in regulating gene expression, destroying invasive exogenous genetic material, and controlling the movement of transposable elements (TEs) to ensure [...] Read more.
Mucor lusitanicus has emerged as a model organism for studying RNAi in early-diverging fungi. This fungus exhibits intricate RNAi pathways that play crucial roles in regulating gene expression, destroying invasive exogenous genetic material, and controlling the movement of transposable elements (TEs) to ensure genome stability. One of the most fascinating RNAi pathways of this fungus is the non-canonical RNAi pathway (NCRIP), which is independent of Dicer and Argonaute proteins and uses the atypical RNase III R3B2 to degrade specific target messenger RNAs (mRNAs), playing an essential role in genome stability and virulence. Despite accumulating data suggesting that this pathway is a degradation mechanism, there has been no conclusive evidence. Here, we conducted a comparative transcriptomic analysis of mRNA and small RNAs regulated by r3b2, identifying 35 direct NCRIP targets. Most of these direct NCRIP targets correspond to TEs, highlighting the significant role of this RNAi pathway in TE control. Detailed functional analysis of the NCRIP targets confirmed the crucial role of r3b2 in regulating gene expression of protein-coding genes and controlling TEs other than centromeric GremLINE1 transposons, emphasizing the important role of r3b2 in genome stability. Interestingly, the RNAs of the NCRIP targets harbor a unique motif consisting of CAG repeats which are known to form hairpin structures which are targeted by RNA interference. Additionally, the generation of transformants expressing mRNAs containing the luciferase reporter gene along direct NCRIP targets reveals that this RNAi pathway is a true degradation mechanism for specific mRNAs. These results are expected to contribute to the understanding of the regulation of the NCRIP pathway through the analysis of its direct targets identified here. Full article
(This article belongs to the Special Issue Molecular Insights into Antifungal Resistance and Virulence)
Show Figures

Figure 1

13 pages, 3038 KiB  
Article
Vanadium-Dependent Haloperoxidase Gene Evolution in Brown Algae: Evidence for Horizontal Gene Transfer
by Zihao Yuan, Jie Zhang and Delin Duan
Int. J. Mol. Sci. 2025, 26(2), 716; https://doi.org/10.3390/ijms26020716 - 16 Jan 2025
Cited by 1 | Viewed by 1265
Abstract
Compared with green plants, brown algae are characterized by their ability to accumulate iodine, contributing to their ecological adaptability in high-iodide coastal environments. Vanadium-dependent haloperoxidase (V-HPO) is the key enzyme for iodine synthesis. Despite its significance, the evolutionary origin of V-HPO genes remains [...] Read more.
Compared with green plants, brown algae are characterized by their ability to accumulate iodine, contributing to their ecological adaptability in high-iodide coastal environments. Vanadium-dependent haloperoxidase (V-HPO) is the key enzyme for iodine synthesis. Despite its significance, the evolutionary origin of V-HPO genes remains underexplored. This study investigates the genomic and evolutionary dynamics of V-HPOs in brown algae, focusing on Laminariales species, particularly Saccharina japonica. Genomic analyses revealed the extensive expansion of the V-HPO gene family in brown algae, with 88 V-HPOs identified in S. japonica, surpassing the number in red algae. Phylogenetic analysis demonstrated distinct evolutionary divergence between brown and red algal V-HPOs, with the brown algal clade closely related to bacterial V-HPOs. These findings suggest horizontal gene transfer (HGT) played a key role in acquiring V-HPO genes, particularly from Acidobacteriota, a bacterial phylum known for genomic plasticity. Additionally, enriched active transposable elements were identified around V-HPO genomic clusters, highlighting their role in tandem gene duplications and rapid HGT processes. Expression profiling further revealed dynamic regulation of V-HPOs in response to environmental conditions. This study provides new insights into how HGT has driven kelp genomic adaptations and enhances understanding of marine ecological success and evolutionary processes. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 7089 KiB  
Article
Ac/Ds-like Transposon Elements Inserted in ZmABCG2a Cause Male Sterility in Maize
by Le Wang, Saeed Arshad, Taotao Li, Mengli Wei, Hong Ren, Wei Wang, Haiyan Jia, Zhengqiang Ma and Yuanxin Yan
Int. J. Mol. Sci. 2025, 26(2), 701; https://doi.org/10.3390/ijms26020701 - 15 Jan 2025
Viewed by 1011
Abstract
Using male sterile (MS) lines instead of normal inbred maternal lines in hybrid seed production can increase the yield and quality with lower production costs. Therefore, developing a new MS germplasm is essential for maize hybrid seed production in the future. Here, we [...] Read more.
Using male sterile (MS) lines instead of normal inbred maternal lines in hybrid seed production can increase the yield and quality with lower production costs. Therefore, developing a new MS germplasm is essential for maize hybrid seed production in the future. Here, we reported a male sterility gene ms*-N125, cloned from a newly found MS mutant ms*-N125. This mutant has an underdeveloped tassel that showed impaired glumes and shriveled anthers without pollen grains. The MS locus of ms*-N125 was mapped precisely to a 112-kb-interval on the chromosome 5. This interval contains only three candidate genes, Zm958, Zm959, and Zm960. Sequencing results showed that only candidate Zm960 harbored a 548-bp transposable element (TE) in its 9th exon, and the two other candidate genes were found to have no genetic variations between the mutant and wild type (WT). Thus, Zm960 is the only candidate gene for male sterility of the mutant ms*-N125. In addition, we screened another recessive MS mutant, ms*-P884, which exhibited similar male sterility phenotypes to ms*-N125. Sequencing Zm960 in ms*-P884 showed a 600-bp TE located in its 2nd exon. Zm960 encodes an ATP-binding cassette in the G subfamily of ABC (ABCG) transporters, ZmABCG2a, with both mutants which harbored an Ac/Ds-like transposon in each. To verify the function of ZmABCG2a for male sterility further, we found an ethyl methanesulfonate (EMS) mutant, zmabcg2a*, which displayed male sterility and tassel phenotypes highly similar to ms*-N125 and ms*-P884, confirming that ZmABCG2a must be the gene for male sterility in maize. In addition, the results of lipid metabolome analysis of ms*-N125 young tassels showed that the total lipid content of the mutant was significantly lower than that of the WT, with 15 subclasses of lipids, including PE (phosphatidylethanolamine), PC (phosphatidylcholine), DG (digalactosyldiacylglycerols), and MGDG (monogalactosyldiacylglycerol) which were significantly down-regulated in the ms*-N125 mutant versus its wild type. In summary, we identified alternate mutations of the ZmABCG2a gene, which may be a potential germplasm for hybrid seed production in maize. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetic Regulation of Crops, 2nd Edition)
Show Figures

Figure 1

26 pages, 6633 KiB  
Article
The Transcription of Transposable Elements Differentially Regulated by SVAs in the Major Histocompatibility Complex Class I Region of a Parkinson’s Progression Markers Initiative Cohort
by Jerzy K. Kulski, Abigail L. Pfaff and Sulev Koks
J. Mol. Pathol. 2025, 6(1), 1; https://doi.org/10.3390/jmp6010001 - 6 Jan 2025
Viewed by 2293
Abstract
Background/Objectives: The highly polymorphic Major Histocompatibility Complex (MHC) genomic region, located on the short arm of chromosome 6, is implicated genetically in Parkinson’s disease (PD), a progressive neurodegenerative disorder with motor and non-motor symptoms. Previously, we reported significant associations between SINE-VNTR-Alu (SVA) expression [...] Read more.
Background/Objectives: The highly polymorphic Major Histocompatibility Complex (MHC) genomic region, located on the short arm of chromosome 6, is implicated genetically in Parkinson’s disease (PD), a progressive neurodegenerative disorder with motor and non-motor symptoms. Previously, we reported significant associations between SINE-VNTR-Alu (SVA) expression quantitative trait loci (eQTLs) and Human Leucocyte Antigen (HLA) class I genotypes in PD. In this study, we aimed to evaluate SVA associations and their regulatory effects on transposable element (TE) transcription in the MHC class I region. Methods: Transcriptome data from the peripheral blood cells of 1530 individuals in the Parkinson’s Progression Markers Initiative (PPMI) cohort were reanalyzed for TE and gene expression using publicly available bioinformatics tools, including Salmon and Matrix-eQTL. Results: Four structurally polymorphic SVAs regulated the transcription of 18 distinct clusters of 235 TE loci, comprising LINEs (33%), SINEs (19%), LTRs (35%), and ancient transposon DNA elements (12%) located near HLA genes. The transcribed TEs were predominantly short, with an average length of 445 nucleotides. The regulatory effects of these SVAs varied significantly in terms of TE types, numbers, and transcriptional activation or repression. The SVA-regulated TE RNAs in blood cells appear to function as enhancer-like elements, differentially influencing the expression of HLA class I genes, non-HLA genes, and noncoding RNAs. Conclusions: These findings highlight the roles of SVAs and their associated TEs in the complex regulatory networks governing coding and noncoding gene expression in the MHC class I region, with potential implications for immune function and disease susceptibility. Full article
Show Figures

Graphical abstract

27 pages, 2905 KiB  
Review
The Role of Plant DNA Methylation in Development, Stress Response, and Crop Breeding
by Shuai Qiao, Wei Song, Wentao Hu, Fang Wang, Anzhong Liao, Wenfang Tan and Songtao Yang
Agronomy 2025, 15(1), 94; https://doi.org/10.3390/agronomy15010094 - 31 Dec 2024
Cited by 1 | Viewed by 3567
Abstract
DNA methylation, an evolutionarily conserved epigenetic mechanism, is crucial for controlling gene activity and ensuring genomic integrity. Altered methylation patterns can profoundly affect plant development, often resulting in atypical phenotypes. The regulation of these methylation states relies on the coordinated actions of de [...] Read more.
DNA methylation, an evolutionarily conserved epigenetic mechanism, is crucial for controlling gene activity and ensuring genomic integrity. Altered methylation patterns can profoundly affect plant development, often resulting in atypical phenotypes. The regulation of these methylation states relies on the coordinated actions of de novo methylation, maintenance, and active demethylation, orchestrated by specialized enzymes within distinct pathways. This review delves into the diverse roles of DNA methylation in plants, offering an in-depth analysis of the enzymes and regulatory factors involved. We explore how these elements function within the broader epigenetic framework, focusing on their contributions to silencing transposable elements, modulating gene expression, and shaping chromatin architecture. The review also examines the significance of DNA methylation in plant development, particularly its role in adapting to biotic and abiotic stresses. Lastly, we highlight its potential for driving innovations in crop breeding, emphasizing its applicability in advancing sustainable agriculture. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

19 pages, 5564 KiB  
Article
Pathogenomic Insights into Xanthomonas oryzae pv. oryzae’s Resistome, Virulome, and Diversity for Improved Rice Blight Management
by Peter Adeolu Adedibu, Oksana Son, Liudmila Tekutyeva and Larissa Balabanova
Life 2024, 14(12), 1690; https://doi.org/10.3390/life14121690 - 20 Dec 2024
Cited by 1 | Viewed by 1372
Abstract
Oryza sativa (rice) is a major staple food targeted for increased production to achieve food security. However, increased production is threatened by several biotic and abiotic factors, of which bacterial blight disease caused by Xanthomonas oryzae pathovar oryzae is severe. Developing effective control [...] Read more.
Oryza sativa (rice) is a major staple food targeted for increased production to achieve food security. However, increased production is threatened by several biotic and abiotic factors, of which bacterial blight disease caused by Xanthomonas oryzae pathovar oryzae is severe. Developing effective control strategies requires an up-to-date understanding of its pathogenomics. This study analyzes the genomes of 30 X. oryzae strains collected from rice-producing regions across five continents to identify genetic elements critical for its pathogenicity and adaptability and for an intraspecific diversity assessment using advanced genomics and bioinformatics tools. Resistome analysis revealed 28 distinct types of antibiotic resistance genes (ARGs), both innate and acquired, indicating a growing threat from multidrug-resistant X. oryzae strains. Sixteen virulent genes, including type III and VI secretion systems, motility genes, and effector proteins, were identified. A unique ‘MexCD-OprJ’ multidrug efflux system was detected in the Tanzanian strains, conferring resistance to multiple antibiotic classes. To curb further ARG emergence, there is a need to regulate the use of antibiotics for X. oryzae control and adopt resistant rice varieties. Transposable elements were also discovered to contribute to X. oryzae pathogenicity, facilitating the horizontal transfer of virulence genes. Pangenome analysis revealed intraspecific variation among the population, with 112 unique CDS having diverse functional roles. Strains registered in the Philippines had the most unique genes. Phylogenetic analysis confirmed the divergent evolution of X. oryzae. This study’s results will aid in identifying more effective management strategies and biocontrol alternatives for sustainable rice production. Full article
(This article belongs to the Special Issue Trends in Microbiology 2025)
Show Figures

Figure 1

14 pages, 9361 KiB  
Article
H3K4me3 Genome-Wide Distribution and Transcriptional Regulation of Transposable Elements by RNA Pol2 Deposition
by Xiaowei Chen, Hua Yang, Liqin Wang, Ying Chen, Yingnan Yang, Haonan Chen, Feng Wang, Yanli Zhang and Mingtian Deng
Int. J. Mol. Sci. 2024, 25(24), 13545; https://doi.org/10.3390/ijms252413545 - 18 Dec 2024
Cited by 2 | Viewed by 1340
Abstract
Zygotic genome activation (ZGA) is critical for early embryo development and is meticulously regulated by epigenetic modifications. H3K4me3 is a transcription-permissive histone mark preferentially found at promoters, but its distribution across genome features remains incompletely understood. In this study, we investigated the genome-wide [...] Read more.
Zygotic genome activation (ZGA) is critical for early embryo development and is meticulously regulated by epigenetic modifications. H3K4me3 is a transcription-permissive histone mark preferentially found at promoters, but its distribution across genome features remains incompletely understood. In this study, we investigated the genome-wide enrichment of H3K4me3 during early embryo development and embryonic stem cells (ESCs) in both sheep and mice. We discovered that broad H3K4me3 domains were present in MII stage oocytes and were progressively diminished, while promoter H3K4me3 enrichment was increased and correlated with gene upregulation during ZGA in sheep. Additionally, we reported the dynamic distribution of H3K4me3 at the transposable elements (TEs) during early embryo development in both sheep and mice. Specifically, the H3K4me3 distribution of LINE1 and ERVL, two subsets of TEs, was associated with their expression during early embryo development in sheep. Furthermore, H3K4me3 enrichment in TEs was greatly increased during ZGA following Kdm5b knockdown, and the distribution of RNA polymerase II (Pol2) in TEs was also markedly increased in Kdm5b knockout ESCs in mice. These findings suggest that H3K4me3 plays important roles in regulating TE expression through interaction with RNA Pol2, providing valuable insights into the regulation of ZGA initiation and cell fate determination by H3K4me3. Full article
(This article belongs to the Special Issue Molecular Genetic Biology in Embryonic Development)
Show Figures

Figure 1

21 pages, 3959 KiB  
Article
Transposable Elements Contribute to the Regulation of Long Noncoding RNAs in Drosophila melanogaster
by Yuli Gan, Lingyan Wang, Guoxian Liu, Xiruo Guo, Yiming Zhou, Kexin Chang, Zhonghui Zhang, Fang Yan, Qi Liu and Bing Chen
Insects 2024, 15(12), 950; https://doi.org/10.3390/insects15120950 - 30 Nov 2024
Cited by 1 | Viewed by 1724
Abstract
Background: Transposable elements (TEs) and noncoding sequences are major components of the genome, yet their functional contributions to long noncoding RNAs (lncRNAs) are not well understood. Although many lncRNAs originating from TEs (TE-lncRNAs) have been identified across various organisms, their characteristics and [...] Read more.
Background: Transposable elements (TEs) and noncoding sequences are major components of the genome, yet their functional contributions to long noncoding RNAs (lncRNAs) are not well understood. Although many lncRNAs originating from TEs (TE-lncRNAs) have been identified across various organisms, their characteristics and regulatory roles, particularly in insects, remain largely unexplored. This study integrated multi-omics data to investigate TE-lncRNAs in D. melanogaster, focusing on the influence of transposons across different omics levels. Results: We identified 16,118 transposons overlapping with lncRNA sequences that constitute 2119 TE-lncRNAs (40.4% of all lncRNAs) using 256 public RNA-seq samples and 15 lncRNA-seq samples of Drosophila S2 cells treated with heavy metals. Of these, 67.2% of TE-lncRNAs contain more than one TE. The LTR/Gypsy family was the most common transposon insertion. Transposons preferred to insert into promoters, transcription starting sites, and intronic regions, especially in chromosome ends. Compared with lncRNAs, TE-lncRNAs showed longer lengths, a lower conservation, and lower levels but a higher specificity of expression. Multi-omics data analysis revealed positive correlations between transposon insertions and chromatin openness at the pre-transcriptional level. Notably, a total of 516 TE-lncRNAs provided transcriptional factor binding sites through transposon insertions. The regulatory network of a key transcription factor was rewired by transposons, potentially recruiting other transcription factors to exert regulatory functions under heavy metal stress. Additionally, 99 TE-lncRNAs were associated with m6A methylation modification sites, and 115 TE-lncRNAs potentially provided candidate small open reading frames through transposon insertions. Conclusions: Our data analysis demonstrated that TEs contribute to the regulation of lncRNAs. TEs not only promote the transcriptional regulation of lncRNAs, but also facilitate their post-transcriptional and epigenetic regulation. Full article
(This article belongs to the Special Issue Transposable Elements and Noncoding Sequences in Insects)
Show Figures

Figure 1

Back to TopTop