Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (166)

Search Parameters:
Keywords = translocase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5339 KiB  
Article
Short-Term Incubation of H9c2 Cardiomyocytes with Cannabigerol Attenuates Diacylglycerol Accumulation in Lipid Overload Conditions
by Sylwia Dziemitko, Adrian Chabowski and Ewa Harasim-Symbor
Cells 2025, 14(13), 998; https://doi.org/10.3390/cells14130998 - 30 Jun 2025
Viewed by 411
Abstract
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the [...] Read more.
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the heart’s energetic substrates, promoting an increased reliance on FAs and decreased cardiac efficiency. A therapeutic application of a non-psychotropic phytocannabinoid, cannabigerol (CBG), seems to be a promising target since it interacts with different receptors and ion channels, including cannabinoid receptors—CB1 and CB2, α2 adrenoceptor, or 5-hydroxytryptamine receptor. Therefore, in the current study, we evaluated a concentration-dependent effect of CBG (2.5 µM, 5 µM, and 10 µM) on H9c2 cardiomyocytes in lipid overload conditions. Gas–liquid chromatography and Western blotting techniques were used to determine the cellular lipid content and the level of selected proteins involved in FA metabolism, glucose transport, and the insulin signaling pathway. The glucose uptake assay was performed using a colorimetric method. Eighteen-hour CBG treatment in the highest concentration (10 µM) significantly diminished the accumulation of diacylglycerols (DAGs) and the saturation status of this lipid fraction. Moreover, the same concentration of CBG markedly decreased the level of FA transporters, namely fatty acid translocase (CD36) and plasma membrane fatty acid-binding protein (FABPpm), in the presence of palmitate (PA) in the culture medium. The results of our experiment suggest that CBG can significantly modulate lipid storage and composition in cardiomyocytes, thereby protecting against lipid-induced cellular dysfunction. Full article
(This article belongs to the Special Issue Advancements in Cardiac Metabolism)
Show Figures

Graphical abstract

12 pages, 1713 KiB  
Article
Influence of Tariquidar, an ABC Transporter Inhibitor, on the Ca2+-Dependent Mitochondrial Permeability Transition Pore
by Tatiana A. Fedotcheva, Alexey G. Kruglov and Nadezhda I. Fedotcheva
Pharmaceuticals 2025, 18(6), 924; https://doi.org/10.3390/ph18060924 - 19 Jun 2025
Viewed by 389
Abstract
Background: Tariquidar (Tq) is an inhibitor of the multidrug resistance (MDR) proteins relevant to ATP-binding cassette transporters (ABC transporters), which suppresses the ATP-dependent efflux of a variety of hydrophilic and amphipathic compounds, including anticancer drugs. Tq is a representative of a new [...] Read more.
Background: Tariquidar (Tq) is an inhibitor of the multidrug resistance (MDR) proteins relevant to ATP-binding cassette transporters (ABC transporters), which suppresses the ATP-dependent efflux of a variety of hydrophilic and amphipathic compounds, including anticancer drugs. Tq is a representative of a new generation of MDR inhibitors with high affinity to ABC proteins. However, there are still no data on the possible effect of Tq on mitochondria as an important target in the regulation of cell death or survival. Methods: We investigated the influence of Tq on the Ca2+-dependent mitochondrial permeability transition pore (mPTP). The effect of Tq was assessed using several parameters, including the calcium load, membrane potential, and mitochondrial swelling. To evaluate the specific targets of Tq, selective inhibitors of components of the mitochondrial pore were used, including adenine nucleotides, carboxyatractylozide (Catr) and bongkrekic acid (BA), oligomycin, and cyclosporine A. Results: Tq decreased the calcium retention capacity, activated mitochondrial swelling, and lowered the influence of ADP and ATP, the inhibitors of the Ca2+-induced pore opening, at their low concentrations. These effects of Tq were observed in both calcium-load and swelling assays, thus mimicking the effect of Catr, a selective inhibitor of adenine nucleotide translocase (ANT). Tq also decreased the protective effect of BA, an inhibitor of ANT and mPTP, on the calcium retention capacity of mitochondria. Further, Tq dose-dependently decreased the inhibitory effect of a low ATP concentration but not of high concentrations, at which the effect of Tq was activated by oligomycin, an inhibitor of F-ATP synthase. Conclusions: The influence of Tq extends to mitochondria, specifically to the regulation of membrane permeability, promoting the activation of pore opening, probably through an interaction with ANT, a component of the pore-forming complex. The effect of Tq on the opening of mPTP is strongly dependent on the concentrations of adenine nucleotides and, consequently, on the functional state of mitochondria. The direct influence of Tq on mitochondria can be considered as a new activity that promotes the sensitization of cells to various treatments and stimuli. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

13 pages, 3591 KiB  
Article
Synergistic Engineering of the Twin-Arginine Translocation (Tat) Pathway and Membrane Capacity Enhances Extracellular Production of Amylosucrase in Bacillus licheniformis
by Caizhe Wang, Dandan Niu, Yongqing Zhou, Hui Liu, Nokuthula Peace Mchunu, Meng Zhang, Suren Singh and Zhengxiang Wang
Microorganisms 2025, 13(6), 1179; https://doi.org/10.3390/microorganisms13061179 - 22 May 2025
Viewed by 389
Abstract
Amylosucrase (AS) is a highly versatile enzyme with significant potential for industrial applications, including functional food production and glycosylation of bioactive compounds. However, its large-scale production is hampered by low secretion efficiency in microbial hosts. This study focuses on engineering the twin-arginine translocation [...] Read more.
Amylosucrase (AS) is a highly versatile enzyme with significant potential for industrial applications, including functional food production and glycosylation of bioactive compounds. However, its large-scale production is hampered by low secretion efficiency in microbial hosts. This study focuses on engineering the twin-arginine translocation (TAT) pathway and optimizing membrane resource allocation in Bacillus licheniformis to enhance the extracellular production of Neisseria polysaccharea amylosucrase (NpAS). The investigation integrates three targeted strategies: optimizing the hydrophobic region adjacent to the TAT signal peptide, modifying TAT translocases via site-directed mutagenesis, and improving inter-pathway membrane resource redistribution by deleting non-essential Sec pathway components. Among the engineered strains, BLΔDF93S-2.0AS1 achieved an extracellular enzyme activity of 706.10 U/L, equating to a 2.01-fold improvement over the parental strain. These results emphasize the potential of combining multifaceted engineering strategies to optimize heterologous protein secretion systems. Full article
(This article belongs to the Special Issue Advances in Microbial Cell Factories, 3rd Edition)
Show Figures

Figure 1

22 pages, 4136 KiB  
Article
Collapsin Response Mediator Protein 2 (CRMP2) Modulates Mitochondrial Oxidative Metabolism in Knock-In AD Mouse Model
by Tatiana Brustovetsky, Rajesh Khanna and Nickolay Brustovetsky
Cells 2025, 14(9), 647; https://doi.org/10.3390/cells14090647 - 29 Apr 2025
Viewed by 790
Abstract
We explored how the phosphorylation state of collapsin response mediator protein 2 (CRMP2) influences mitochondrial functions in cultured cortical neurons and cortical synaptic mitochondria isolated from APP-SAA KI mice, a knock-in APP mouse model of Alzheimer’s disease (AD). CRMP2 phosphorylation was increased at [...] Read more.
We explored how the phosphorylation state of collapsin response mediator protein 2 (CRMP2) influences mitochondrial functions in cultured cortical neurons and cortical synaptic mitochondria isolated from APP-SAA KI mice, a knock-in APP mouse model of Alzheimer’s disease (AD). CRMP2 phosphorylation was increased at Thr 509/514 and Ser 522 in brain cortical lysates and cultured neurons from AD mice. The basal and maximal respiration of AD neurons were decreased. Mitochondria were hyperpolarized and superoxide anion production was increased in neurons from AD mice. In isolated synaptic AD mitochondria, ADP-stimulated and DNP-stimulated respiration were decreased, whereas ADP-induced mitochondrial depolarization was reduced and prolonged. We found that CRMP2 binds to the adenine nucleotide translocase (ANT) in a phosphorylation-dependent manner. The increased CRMP2 phosphorylation in AD mice correlated with CRMP2 dissociation from the ANT and decreased ANT activity in AD mitochondria. On the other hand, recombinant CRMP2 (rCRMP2), added to the ANT-reconstituted proteoliposomes, increased ANT activity. A small molecule (S)-lacosamide ((S)-LCM), which binds to CRMP2 and suppresses CRMP2 phosphorylation by Cdk5 and GSK-3β, prevented CRMP2 hyperphosphorylation, rescued CRMP2 binding to the ANT, improved ANT activity, and restored the mitochondrial membrane potential and respiratory responses to ADP and 2,4-dinitrophenol. Thus, our study highlights an important role for CRMP2 in regulating the mitochondrial oxidative metabolism in AD by modulating the ANT activity in a phosphorylation-dependent manner. Full article
(This article belongs to the Special Issue Mitochondria at the Crossroad of Health and Disease—Second Edition)
Show Figures

Figure 1

31 pages, 3433 KiB  
Review
Nucleotide Excision Repair: Insights into Canonical and Emerging Functions of the Transcription/DNA Repair Factor TFIIH
by Amélie Zachayus, Jules Loup-Forest, Vincent Cura and Arnaud Poterszman
Genes 2025, 16(2), 231; https://doi.org/10.3390/genes16020231 - 19 Feb 2025
Cited by 2 | Viewed by 2131
Abstract
Nucleotide excision repair (NER) is a universal cut-and-paste DNA repair mechanism that corrects bulky DNA lesions such as those caused by UV radiation, environmental mutagens, and some chemotherapy drugs. In this review, we focus on the human transcription/DNA repair factor TFIIH, a key [...] Read more.
Nucleotide excision repair (NER) is a universal cut-and-paste DNA repair mechanism that corrects bulky DNA lesions such as those caused by UV radiation, environmental mutagens, and some chemotherapy drugs. In this review, we focus on the human transcription/DNA repair factor TFIIH, a key player of the NER pathway in eukaryotes. This 10-subunit multiprotein complex notably verifies the presence of a lesion and opens the DNA around the damage via its XPB and XPD subunits, two proteins identified in patients suffering from Xeroderma Pigmentosum syndrome. Isolated as a class II gene transcription factor in the late 1980s, TFIIH is a prototypic molecular machine that plays an essential role in both DNA repair and transcription initiation and harbors a DNA helicase, a DNA translocase, and kinase activity. More recently, TFIIH subunits have been identified as participating in other cellular processes, including chromosome segregation during mitosis, maintenance of mitochondrial DNA integrity, and telomere replication. Full article
(This article belongs to the Special Issue DNA Damage and Repair in Microorganisms, Plants and Mammalian Systems)
Show Figures

Figure 1

16 pages, 5623 KiB  
Article
The Silencing of the StPAM16-1 Gene Enhanced the Resistance of Potato Plants to the Phytotoxin Thaxtomin A
by Lu Liu, Shuangwei Song, Ning Liu, Zhiqin Wang, Yonglong Zhao, Naiqin Zhong, Pan Zhao and Haiyun Wang
Int. J. Mol. Sci. 2025, 26(3), 1361; https://doi.org/10.3390/ijms26031361 - 6 Feb 2025
Viewed by 2705
Abstract
Potato common scab (CS) caused by Streptomyces scabiei is a severe disease that threatens tuber quality and its market value. To date, little is known about the mechanism regulating the resistance of potato to CS. In this study, we identified a presequence translocase-associated [...] Read more.
Potato common scab (CS) caused by Streptomyces scabiei is a severe disease that threatens tuber quality and its market value. To date, little is known about the mechanism regulating the resistance of potato to CS. In this study, we identified a presequence translocase-associated motor 16 gene from potato (designated StPAM16-1) that is involved in the response to the phytotoxin thaxtomin A (TA) secreted by S. scabiei. The StPAM16-1 protein was localized in the mitochondria, and the expression of the gene was upregulated in potato leaves treated with TA. The suppression of StPAM16-1 in potato led to enhanced resistance to TA and S. scabiei. Protein interaction analyses revealed that StPAM16-1 interacted with the subunit 5b of the COP9 signalosome complex (StCSN5). Similar to that of StPAM16-1, the expression levels of StCSN5 significantly increased in potato leaves treated with TA. These results indicated that StPAM16-1 acted as a negative regulator and was functionally associated with StCSN5 in the immune response of potato plants against CS. Our study sheds light on the molecular mechanism by which PAM16 participates in the plant immune response. Furthermore, both StPAM16-1 and StCSN5 could be potential target genes in the molecular breeding of potato cultivars with increased resistance to CS. Full article
(This article belongs to the Special Issue Genetic Regulation of Plant Growth and Protection)
Show Figures

Figure 1

13 pages, 1248 KiB  
Article
Influence of the Microbial Metabolite Acetyl Phosphate on Mitochondrial Functions Under Conditions of Exogenous Acetylation and Alkalization
by Natalia V. Beloborodova and Nadezhda I. Fedotcheva
Metabolites 2024, 14(12), 703; https://doi.org/10.3390/metabo14120703 - 13 Dec 2024
Cited by 1 | Viewed by 1107
Abstract
Background. Acetyl phosphate (AcP) is a microbial intermediate involved in the central bacterial metabolism. In bacteria, it also functions as a donor of acetyl and phosphoryl groups in the nonenzymatic protein acetylation and signal transduction. In host, AcP was detected as an intermediate [...] Read more.
Background. Acetyl phosphate (AcP) is a microbial intermediate involved in the central bacterial metabolism. In bacteria, it also functions as a donor of acetyl and phosphoryl groups in the nonenzymatic protein acetylation and signal transduction. In host, AcP was detected as an intermediate of the pyruvate dehydrogenase complex, and its appearance in the blood was considered as an indication of mitochondrial breakdown. In vitro experiments showed that AcP is a powerful agent of nonenzymatic acetylation of proteins. The influence of AcP on isolated mitochondria has not been previously studied. Methods. In this work, we tested the influence of AcP on the opening of the mitochondrial permeability transition pore (mPTP), respiration, and succinate dehydrogenase (SDH) activity under neutral and alkaline conditions stimulating the nonenzymatic acetylation using polarographic, cation-selective, and spectrophotometric methods. Results. It was found that AcP slowed down the opening of the mPTP by calcium ions and decreased the efficiency of oxidative phosphorylation and the activity of SDH. These effects were observed only at neutral pH, whereas alkaline pH by itself caused a decrease in these functions to a much greater extent than AcP. AcP at a concentration of 0.5–1 mM decreased the respiratory control and the swelling rate by 20–30%, while alkalization decreased them twofold, thereby masking the effect of AcP. Presumably, the acetylation of adenine nucleotide translocase involved in both the opening of mPTP and oxidative phosphorylation underlies these changes. The intermediate electron carrier phenazine methosulfate (PMS), removing SDH inhibition at the ubiquinone-binding site, strongly activated SDH under alkaline conditions and, partially, in the presence of AcP. It can be assumed that AcP weakly inhibits the oxidation of succinate, while alkalization slows down the electron transfer from the substrate to the acceptor. Conclusions. The results show that both AcP and alkalization, by promoting nonmetabolic and nonenzymatic acetylation from the outside, retard mitochondrial functions. Full article
Show Figures

Figure 1

13 pages, 1929 KiB  
Review
Hotspots for Disease-Causing Mutations in the Mitochondrial TIM23 Import Complex
by Sahil Jain, Eyal Paz and Abdussalam Azem
Genes 2024, 15(12), 1534; https://doi.org/10.3390/genes15121534 - 28 Nov 2024
Viewed by 1488
Abstract
The human mitochondrial proteome comprises approximately 1500 proteins, with only 13 being encoded by mitochondrial DNA. The remainder are encoded by the nuclear genome, translated by cytosolic ribosomes, and subsequently imported into and sorted within mitochondria. The process of mitochondria-destined protein import is [...] Read more.
The human mitochondrial proteome comprises approximately 1500 proteins, with only 13 being encoded by mitochondrial DNA. The remainder are encoded by the nuclear genome, translated by cytosolic ribosomes, and subsequently imported into and sorted within mitochondria. The process of mitochondria-destined protein import is mediated by several intricate protein complexes distributed among the four mitochondrial compartments. The focus of this mini-review is the translocase of the inner membrane 23 (TIM23) complex that assists in the import of ~60% of the mitochondrial proteome, which includes the majority of matrix proteins as well as some inner membrane and intermembrane space proteins. To date, numerous pathogenic mutations have been reported in the genes encoding various components of the TIM23 complex. These diseases exhibit mostly developmental and neurological defects at an early age. Interestingly, accumulating evidence supports the possibility that the gene for Tim50 represents a hotspot for disease-causing mutations among core TIM23 complex components, while genes for the mitochondrial Hsp70 protein (mortalin) and its J domain regulators represent hotspots for mutations affecting presequence translocase-associated motor (PAM) subunits. The potential mechanistic implications of the discovery of disease-causing mutations on the function of the TIM23 complex, in particular Tim50, are discussed. Full article
(This article belongs to the Special Issue Variations of Rare Genetic Diseases)
Show Figures

Figure 1

13 pages, 8554 KiB  
Article
The Role of Protein–Lipid Interactions in Priming the Bacterial Translocon
by Matt Sinclair and Emad Tajkhorshid
Membranes 2024, 14(12), 249; https://doi.org/10.3390/membranes14120249 - 24 Nov 2024
Viewed by 1618
Abstract
Protein–lipid interactions demonstrate important regulatory roles in the function of membrane proteins. Nevertheless, due to the semi-liquid nature and heterogeneity of biological membranes, and dissecting the details of such interactions at high resolutions continues to pose a major challenge to experimental biophysical techniques. [...] Read more.
Protein–lipid interactions demonstrate important regulatory roles in the function of membrane proteins. Nevertheless, due to the semi-liquid nature and heterogeneity of biological membranes, and dissecting the details of such interactions at high resolutions continues to pose a major challenge to experimental biophysical techniques. Computational techniques such as molecular dynamics (MD) offer an alternative approach with both temporally and spatially high resolutions. Here, we present an extensive series of MD simulations focused on the inner membrane protein YidC (PDB: 6AL2) from Escherichia coli, a key insertase responsible for the integration and folding of membrane proteins. Notably, we observed rare lipid fenestration events, where lipids fully penetrate the vestibule of YidC, providing new insights into the lipid-mediated regulation of protein insertion mechanisms. Our findings highlight the direct involvement of lipids in modulating the greasy slide of YidC and suggest that lipids enhance the local flexibility of the C1 domain, which is crucial for recruiting substrate peptides. These results contribute to a deeper understanding of how protein–lipid interactions facilitate the functional dynamics of membrane protein insertases, with implications for broader studies of membrane protein biology. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

18 pages, 5641 KiB  
Article
The Large GTPase Guanylate-Binding Protein-1 (GBP-1) Promotes Mitochondrial Fission in Glioblastoma
by Ryan C. Kalb, Geoffrey O. Nyabuto, Michael P. Morran, Swagata Maity, Jacob S. Justinger, Andrea L. Nestor-Kalinoski and Deborah J. Vestal
Int. J. Mol. Sci. 2024, 25(20), 11236; https://doi.org/10.3390/ijms252011236 - 19 Oct 2024
Viewed by 3925
Abstract
Glioblastomas (aka Glioblastoma multiformes (GBMs)) are the most deadly of the adult brain tumors. Even with aggressive treatment, the prognosis is extremely poor. The large GTPase Guanylate-Binding Protein-1 (GBP-1) contributes to the poor prognosis of GBM by promoting migration and invasion. GBP-1 is [...] Read more.
Glioblastomas (aka Glioblastoma multiformes (GBMs)) are the most deadly of the adult brain tumors. Even with aggressive treatment, the prognosis is extremely poor. The large GTPase Guanylate-Binding Protein-1 (GBP-1) contributes to the poor prognosis of GBM by promoting migration and invasion. GBP-1 is substantially localized to the cytosolic side of the outer membrane of mitochondria in GBM cells. Because mitochondrial dynamics, particularly mitochondrial fission, can drive cell migration and invasion, the potential interactions between GBP-1 and mitochondrial dynamin-related protein 1 (Drp1) were explored. Drp1 is the major driver of mitochondrial fission. While GBP-1 and Drp1 both had punctate distributions within the cytoplasm and localized to regions of the cytoplasmic side of the plasma membrane of GBM cells, the proteins were only molecularly co-localized at the mitochondria. Subcellular fractionation showed that the presence of elevated GBP-1 promoted the movement of Drp1 from the cytosol to the mitochondria. The migration of U251 cells treated with the Drp1 inhibitor, Mdivi-1, was less inhibited in the cells with elevated GBP-1. Elevated GBP-1 in GBM cells resulted in shorter and wider mitochondria, most likely from mitochondrial fission. Mitochondrial fission can drive several important cellular processes, including cell migration, invasion, and metastasis. Full article
Show Figures

Figure 1

21 pages, 11513 KiB  
Article
Expression Profiles of Fatty Acid Transporters and the Role of n-3 and n-6 Polyunsaturated Fatty Acids in the Porcine Endometrium
by Agnieszka Blitek and Magdalena Szymanska
Int. J. Mol. Sci. 2024, 25(20), 11102; https://doi.org/10.3390/ijms252011102 - 16 Oct 2024
Cited by 1 | Viewed by 1388
Abstract
Fatty acids (FAs) are important for cell membrane composition, eicosanoid synthesis, and metabolic processes. Membrane proteins that facilitate FA transport into cells include FA translocase (also known as CD36) and FA transporter proteins (encoded by SLC27A genes). The present study aimed to examine [...] Read more.
Fatty acids (FAs) are important for cell membrane composition, eicosanoid synthesis, and metabolic processes. Membrane proteins that facilitate FA transport into cells include FA translocase (also known as CD36) and FA transporter proteins (encoded by SLC27A genes). The present study aimed to examine expression profiles of FA transporters in the endometrium of cyclic and early pregnant gilts on days 3 to 20 after estrus and the possible regulation by conceptus signals and polyunsaturated FAs (PUFAs). The effect of PUFAs on prostaglandin (PG) synthesis and transcript abundance of genes related to FA action and metabolism, angiogenesis, and immune response was also determined. Day after estrus and reproductive status of animals affected FA transporter expression, with greater levels of CD36, SLC27A1, and SLC27A4 observed in pregnant than in cyclic gilts. Conceptus-conditioned medium and/or estradiol-17β stimulated SLC27A1 and CD36 expression. Among PUFAs, linoleic acid decreased SLC27A1 and SLC27A6 mRNA expression, while arachidonic, docosahexaenoic, and eicosapentaenoic acids increased SLC27A4 transcript abundance. Moreover, arachidonic acid stimulated ACOX1, CPT1A, and IL1B expression and increased PGE2 and PGI2 secretion. In turn, α-linolenic acid up-regulated VEGFA, FGF2, FABP4, and PPARG mRNA expression. These results indicate the presence of an active transport of FAs in the porcine endometrium and the role of PUFAs as modulators of the uterine activity during conceptus implantation. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

19 pages, 6560 KiB  
Review
Host Tropism and Structural Biology of ABC Toxin Complexes
by Cole L. Martin, John H. Hill and Stephen G. Aller
Toxins 2024, 16(9), 406; https://doi.org/10.3390/toxins16090406 - 19 Sep 2024
Cited by 1 | Viewed by 1857
Abstract
ABC toxin complexes are a class of protein toxin translocases comprised of a multimeric assembly of protein subunits. Each subunit displays a unique composition, contributing to the formation of a syringe-like nano-machine with natural cargo carrying, targeting, and translocation capabilities. Many of these [...] Read more.
ABC toxin complexes are a class of protein toxin translocases comprised of a multimeric assembly of protein subunits. Each subunit displays a unique composition, contributing to the formation of a syringe-like nano-machine with natural cargo carrying, targeting, and translocation capabilities. Many of these toxins are insecticidal, drawing increasing interest in agriculture for use as biological pesticides. The A subunit (TcA) is the largest subunit of the complex and contains domains associated with membrane permeation and targeting. The B and C subunits, TcB and TcC, respectively, package into a cocoon-like structure that contains a toxic peptide and are coupled to TcA to form a continuous channel upon final assembly. In this review, we outline the current understanding and gaps in the knowledge pertaining to ABC toxins, highlighting seven published structures of TcAs and how these structures have led to a better understanding of the mechanism of host tropism and toxin translocation. We also highlight similarities and differences between homologues that contribute to variations in host specificity and conformational change. Lastly, we review the biotechnological potential of ABC toxins as both pesticides and cargo-carrying shuttles that enable the transport of peptides into cells. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

30 pages, 1918 KiB  
Review
Cell-Free DNA Hydroxymethylation in Cancer: Current and Emerging Detection Methods and Clinical Applications
by Janice J. N. Li, Geoffrey Liu and Benjamin H. Lok
Genes 2024, 15(9), 1160; https://doi.org/10.3390/genes15091160 - 3 Sep 2024
Cited by 1 | Viewed by 3798
Abstract
In the era of precision oncology, identifying abnormal genetic and epigenetic alterations has transformed the way cancer is diagnosed, managed, and treated. 5-hydroxymethylcytosine (5hmC) is an emerging epigenetic modification formed through the oxidation of 5-methylcytosine (5mC) by ten-eleven translocase (TET) enzymes. DNA hydroxymethylation [...] Read more.
In the era of precision oncology, identifying abnormal genetic and epigenetic alterations has transformed the way cancer is diagnosed, managed, and treated. 5-hydroxymethylcytosine (5hmC) is an emerging epigenetic modification formed through the oxidation of 5-methylcytosine (5mC) by ten-eleven translocase (TET) enzymes. DNA hydroxymethylation exhibits tissue- and cancer-specific patterns and is essential in DNA demethylation and gene regulation. Recent advancements in 5hmC detection methods and the discovery of 5hmC in cell-free DNA (cfDNA) have highlighted the potential for cell-free 5hmC as a cancer biomarker. This review explores the current and emerging techniques and applications of DNA hydroxymethylation in cancer, particularly in the context of cfDNA. Full article
(This article belongs to the Special Issue Animal Models, Genetic and Genomic Studies in Cancer and Its Therapy)
Show Figures

Graphical abstract

10 pages, 1214 KiB  
Article
Proteomic Dynamics of Multidrug Resistance Mechanisms in Lucena 1 Cell Line
by Emidio Beraldo-Neto, Fernanda Cardoso Amador, Karolina Rosa Fernandes, Giselle Zenker Justo, José Thalles Lacerda and Maria A. Juliano
Cells 2024, 13(17), 1427; https://doi.org/10.3390/cells13171427 - 26 Aug 2024
Cited by 2 | Viewed by 1358
Abstract
The Lucena 1 cell line, derived from the human chronic myeloid leukemia cell line K562 under selective pressure of vincristine supplementation, exhibits multidrug resistance (MDR). This study aims to explore and elucidate the underlying mechanisms driving MDR in the Lucena 1 cell line. [...] Read more.
The Lucena 1 cell line, derived from the human chronic myeloid leukemia cell line K562 under selective pressure of vincristine supplementation, exhibits multidrug resistance (MDR). This study aims to explore and elucidate the underlying mechanisms driving MDR in the Lucena 1 cell line. A proteomic analysis comparing K562 and Lucena 1 revealed qualitative differences, with a focus on the ATP-dependent efflux pump, Translocase ABCB1, a key contributor to drug resistance. Tubulin analysis identified two unique isoforms, Tubulin beta 8B and alpha chain-like 3, exclusive to Lucena 1, potentially influencing resistance mechanisms. Additionally, the association of Rap1A and Krit1 in cytoskeletal regulation and the presence of STAT1, linked to the urea cycle and tumor development, offered insights into Lucena 1’s distinctive biology. The increased expression of carbonic anhydrase I suggested a role in pH regulation. The discovery of COP9, a tumor suppressor targeting p53, further highlighted the Lucena 1 complex molecular landscape. This study offers new insights into the MDR phenotype and its multifactorial consequences in cellular pathways. Thus, unraveling the mechanisms of MDR holds promise for innovating cancer models and antitumor targeted strategies, since inhibiting the P-glycoprotein (P-gp)/ABCB1 protein is not always an effective approach given the associated treatment toxicity. Full article
(This article belongs to the Collection Tumor Microenvironment: Interaction and Metabolism)
Show Figures

Figure 1

15 pages, 2529 KiB  
Article
EPA and DHA Enhance CACT Promoter Activity by GABP/NRF2
by Eleonora Stanca, Francesco Spedicato, Anna Maria Giudetti, Laura Giannotti, Benedetta Di Chiara Stanca, Fabrizio Damiano and Luisa Siculella
Int. J. Mol. Sci. 2024, 25(16), 9095; https://doi.org/10.3390/ijms25169095 - 22 Aug 2024
Viewed by 1100
Abstract
Carnitine-acylcarnitine translocase (CACT) is a nuclear-encoded mitochondrial carrier that catalyzes the transfer of long-chain fatty acids across the inner mitochondrial membrane for β-oxidation. In this study, we conducted a structural and functional characterization of the CACT promoter to investigate the molecular mechanism underlying [...] Read more.
Carnitine-acylcarnitine translocase (CACT) is a nuclear-encoded mitochondrial carrier that catalyzes the transfer of long-chain fatty acids across the inner mitochondrial membrane for β-oxidation. In this study, we conducted a structural and functional characterization of the CACT promoter to investigate the molecular mechanism underlying the transcriptional regulation of the CACT gene by n-3 PUFA, EPA and DHA. In hepatic BRL3A cells, EPA and DHA stimulate CACT mRNA and protein expression. Deletion promoter analysis using a luciferase reporter gene assay identified a n-3 PUFA response region extending from −202 to −29 bp. This region did not contain a response element for PPARα, a well-known PUFA-responsive nuclear receptor. Instead, bioinformatic analysis revealed two highly conserved GABP responsive elements within this region. Overexpression of GABPα and GABPβ subunits, but not PPARα, increased CACT promoter activity, more remarkably upon treatment with EPA and DHA. ChIP assays showed that n3-PUFA enhanced the binding of GABPα to the −202/−29 bp sequence. Furthermore, both EPA and DHA induced nuclear accumulation of GABPα. In conclusion, our findings indicate that the upregulation of CACT by n3-PUFA in hepatic cells is independent from PPARα and could be mediated by GABP activation. Full article
(This article belongs to the Special Issue New Advances in Mitochondria Biology)
Show Figures

Figure 1

Back to TopTop