Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = trace carbonyl compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1239 KiB  
Review
Advancing Stable Isotope Analysis for Alcoholic Beverages’ Authenticity: Novel Approaches in Fraud Detection and Traceability
by Yiqian Ma, Yalan Li, Feilong Shao, Yuanyu Lu, Wangni Meng, Karyne M. Rogers, Di Sun, Hao Wu and Xiaodong Peng
Foods 2025, 14(6), 943; https://doi.org/10.3390/foods14060943 - 10 Mar 2025
Cited by 1 | Viewed by 1892
Abstract
Background: Alcoholic beverages have been popular for thousands of years due to their unique flavors and cultural significance. However, the industry’s high profit margins have led to increasingly sophisticated counterfeiting practices. Stable isotope analysis has emerged as one of the most promising techniques [...] Read more.
Background: Alcoholic beverages have been popular for thousands of years due to their unique flavors and cultural significance. However, the industry’s high profit margins have led to increasingly sophisticated counterfeiting practices. Stable isotope analysis has emerged as one of the most promising techniques for addressing authenticity and traceability challenges in alcoholic beverages. Scope and approach: This review presents a comprehensive summary of the principles and recent advancements in the application of stable isotope techniques for authenticity assessment. It examines their use in detecting fraud (e.g., identifying edible alcohol, exogenous water, carbonylation, and trace compounds), vintage identification, and geographical origin determination across various alcoholic beverages, with a particular focus on wine, Chinese baijiu, and beer. Conclusions: Stable isotope analysis is a powerful tool for verifying the authenticity of alcoholic beverages, offering effective solutions to combat counterfeiting, mislabeling, and adulteration. Future studies should focus on understanding the ecological, biological, and hydrometeorological factors influencing isotope signatures and develop advanced multi-isotope and chemometric approaches to improve reliability. Expanding global databases and integrating emerging technologies such as artificial intelligence (AI) and machine learning will further enhance the effectiveness and accessibility of stable isotope techniques, ensuring safer and higher-quality alcoholic beverages for consumers worldwide. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

20 pages, 3981 KiB  
Article
Functionalizing Thiosemicarbazones for Covalent Conjugation
by Johannes Hohnsen, Lukas Rryci, Diana Obretenova, Joshua Friedel, Shahab Jouchaghani and Axel Klein
Molecules 2024, 29(15), 3680; https://doi.org/10.3390/molecules29153680 - 3 Aug 2024
Cited by 2 | Viewed by 1902
Abstract
Thiosemicarbazones (TSCs) with their modular character (thiosemicarbazides + carbonyl compound) allow broad variation of up to four substituents on the main R1R2C=N(1)–NH–C(S)–N(4)R3R4 core and are thus interesting tools for the formation of conjugates or the functionalization [...] Read more.
Thiosemicarbazones (TSCs) with their modular character (thiosemicarbazides + carbonyl compound) allow broad variation of up to four substituents on the main R1R2C=N(1)–NH–C(S)–N(4)R3R4 core and are thus interesting tools for the formation of conjugates or the functionalization of nanoparticles (NPs). In this work, di-2-pyridyl ketone was introduced for the coordination of metals and 9-anthraldehyde for luminescence as R1 and R2 to TSCs. R3 and R4 substituents were varied for the formation of conjugates. Amino acids were introduced at the N4 position to produce [R1R2TSC–spacer–amino acid] conjugates. Further, functions such as phosphonic acid (R–P(O)(OH)2), D-glucose, o-hydroquinone, OH, and thiol (SH) were introduced at the N4 position producing [R1R2TSC–spacer–anchor group] conjugates for direct NP anchoring. Phenyl, cyclohexyl, benzyl, ethyl and methyl were used as spacer units. Both phenyl phosphonic acid TSC derivatives were bound on TiO2 NPs as a first example of direct NP anchoring. [R1R2TSC–spacer–end group] conjugates including OH, S–Bn (Bn = benzyl), NH–Boc (Boc = tert-butyloxycarbonyl), COOtBu, C≡CH, or N3 end groups were synthesized for potential covalent binding to functional molecules or functionalized NPs through amide, ester, or triazole functions. The synthesis of the thiosemicarbazides H2NNH–C(S)–NR3R4 starting from amines, including amino acids, SCCl2 or CS2, and hydrazine and their condensation with dipyridyl ketone and anthraldehyde led to 34 new TSC derivatives. They were synthesized in up to six steps with overall yields ranging from 10 to 85% and were characterized by a combination of nuclear magnetic resonance spectroscopy and mass spectrometry. UV-vis absorption and photoluminescence spectroscopy allowed us to easily trace the dipyridyl imine and anthracene chromophores. Full article
Show Figures

Figure 1

33 pages, 6716 KiB  
Review
Asymmetric Dual Enamine Catalysis/Hydrogen Bonding Activation
by Efraím Reyes, Liher Prieto, Uxue Uria, Luisa Carrillo and Jose L. Vicario
Catalysts 2023, 13(7), 1091; https://doi.org/10.3390/catal13071091 - 11 Jul 2023
Cited by 2 | Viewed by 3185
Abstract
Asymmetric enamine base activation of carbonyl compounds is a well-known and widely used strategy for providing functionalization of organic compounds in an efficient way. The use of solely organic substances, which in most cases are commercially available primary or secondary amines that are [...] Read more.
Asymmetric enamine base activation of carbonyl compounds is a well-known and widely used strategy for providing functionalization of organic compounds in an efficient way. The use of solely organic substances, which in most cases are commercially available primary or secondary amines that are easy to obtain, avoids the use of hazardous substances or metal traces, making this type of catalysis a highly convenient methodology from a sustainable point of view. In many cases, the reactivity or the stereoselectivity obtained is far from being a practical and advantageous strategy; this can be improved by using a hydrogen bonding co-catalyst that can help during the activation of one species or by using a bifunctional catalyst that can direct the approximation of reagents during the reaction outcome. In this review, we describe the most efficient methodologies that make use of a dual activation of reagents for performing α-functionalization (enamine activation) or remote functionalization (such as dienamine or trienamine activation) of carbonyl compounds. Full article
(This article belongs to the Special Issue New Trends in Asymmetric Catalysis: Green and Sustainable Catalysts)
Show Figures

Figure 1

11 pages, 2138 KiB  
Letter
Effect of Thiol Molecular Structure on the Sensitivity of Gold Nanoparticle-Based Chemiresistors toward Carbonyl Compounds
by Zhenzhen Xie, Mandapati V. Ramakrishnam Raju, Prasadanie K. Adhihetty, Xiao-An Fu and Michael H. Nantz
Sensors 2020, 20(24), 7024; https://doi.org/10.3390/s20247024 - 8 Dec 2020
Cited by 5 | Viewed by 3557
Abstract
Increasing both the sensitivity and selectivity of thiol-functionalized gold nanoparticle chemiresistors remains a challenging issue in the quest to develop real-time gas sensors. The effects of thiol molecular structure on such sensor properties are not well understood. This study investigates the effects of [...] Read more.
Increasing both the sensitivity and selectivity of thiol-functionalized gold nanoparticle chemiresistors remains a challenging issue in the quest to develop real-time gas sensors. The effects of thiol molecular structure on such sensor properties are not well understood. This study investigates the effects of steric as well as electronic effects in a panel of substituted thiol-urea compounds on the sensing properties of thiolate monolayer-protected gold nanoparticle chemiresistors. Three series of urea-substituted thiols with different peripheral end groups were synthesized for the study and used to prepare gold nanoparticle-based chemiresistors. The responses of the prepared sensors to trace volatile analytes were significantly affected by the urea functional motifs. The largest response for sensing acetone among the three series was observed for the thiol-urea sensor featuring a tert-butyl end group. Furthermore, the ligands fitted with N, N’-dialkyl urea moieties exhibit a much larger response to carbonyl analytes than the more acidic urea series containing N-alkoxy-N’-alkyl urea and N, N’-dialkoxy urea groups with the same peripheral end groups. The results show that the peripheral molecular structure of thiolate-coated gold nanoparticles plays a critical role in sensing target analytes. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

14 pages, 6140 KiB  
Article
Microfluidic Preconcentration Chip with Self-Assembled Chemical Modified Surface for Trace Carbonyl Compounds Detection
by Jie Cheng, Jianwei Shao, Yifei Ye, Yang Zhao, Chengjun Huang, Li Wang and Mingxiao Li
Sensors 2018, 18(12), 4402; https://doi.org/10.3390/s18124402 - 13 Dec 2018
Cited by 5 | Viewed by 3499
Abstract
Carbonyl compounds in water sources are typical characteristic pollutants, which are important indicators in the health risk assessment of water quality. Commonly used analytical chemistry methods face issues such as complex operations, low sensitivity, and long analysis times. Here, we report a silicon [...] Read more.
Carbonyl compounds in water sources are typical characteristic pollutants, which are important indicators in the health risk assessment of water quality. Commonly used analytical chemistry methods face issues such as complex operations, low sensitivity, and long analysis times. Here, we report a silicon microfluidic device based on click chemical surface modification that was engineered to achieve rapid, convenient and efficient capture of trace level carbonyl compounds in liquid solvent. The micro pillar arrays of the chip and microfluidic channels were designed under the basis of finite element (FEM) analysis and fabricated by the microelectromechanical systems (MEMS) technique. The surface of the micropillars was sputtered with precious metal silver and functionalized with the organic substance amino-oxy dodecane thiol (ADT) by self-assembly for capturing trace carbonyl compounds. The detection of ppb level fluorescent carbonyl compounds demonstrates that the strategy proposed in this work shows great potential for rapid water quality testing and for other samples with trace carbonyl compounds. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

18 pages, 2610 KiB  
Article
Oxidation of Benzylic Alcohols and Lignin Model Compounds with Layered Double Hydroxide Catalysts
by Justin K. Mobley, John A. Jennings, Tonya Morgan, Axel Kiefer and Mark Crocker
Inorganics 2018, 6(3), 75; https://doi.org/10.3390/inorganics6030075 - 31 Jul 2018
Cited by 4 | Viewed by 4731
Abstract
Alcohol oxidation to carbonyl compounds is one of the most commonly used reactions in synthetic chemistry. Herein, we report the use of base metal layered double hydroxide (LDH) catalysts for the oxidation of benzylic alcohols in polar solvents. These catalysts are ideal reagents [...] Read more.
Alcohol oxidation to carbonyl compounds is one of the most commonly used reactions in synthetic chemistry. Herein, we report the use of base metal layered double hydroxide (LDH) catalysts for the oxidation of benzylic alcohols in polar solvents. These catalysts are ideal reagents for alcohol oxidations due to their ease of synthesis, tunability, and ease of separation from the reaction medium. LDHs synthesized in this study were fully characterized by means of X-ray diffraction, NH3-temperature programmed desorption (TPD), pulsed CO2 chemisorption, N2 physisorption, electron microscopy, and elemental analysis. LDHs were found to effectively oxidize benzylic alcohols to their corresponding carbonyl compounds in diphenyl ether, using O2 as the terminal oxidant. LDH catalysts were also applied to the oxidation of lignin β-O-4 model compounds. Typically, for all catalysts, only trace amounts of the ketone formed from benzylic alcohol oxidation were observed, the main products comprising benzoic acids and phenols arising from β-aryl ether cleavage. This observation is consistent with the higher reactivity of the ketones, resulting from weakening of the Cβ–O4 bond that was shown to be aerobically cleaved at 180 °C in the absence of a catalyst. Full article
(This article belongs to the Special Issue Recent Breakthroughs with Layered Double Hydroxides)
Show Figures

Graphical abstract

19 pages, 453 KiB  
Article
An Assessment of Indoor Air Quality before, during and after Unrestricted Use of E-Cigarettes in a Small Room
by Grant O'Connell, Stéphane Colard, Xavier Cahours and John D. Pritchard
Int. J. Environ. Res. Public Health 2015, 12(5), 4889-4907; https://doi.org/10.3390/ijerph120504889 - 6 May 2015
Cited by 49 | Viewed by 36343
Abstract
Airborne chemicals in the indoor environment arise from a wide variety of sources such as burning fuels and cooking, construction materials and furniture, environmental tobacco smoke as well as outdoor sources. To understand the contribution of exhaled e-cigarette aerosol to the pre-existing chemicals [...] Read more.
Airborne chemicals in the indoor environment arise from a wide variety of sources such as burning fuels and cooking, construction materials and furniture, environmental tobacco smoke as well as outdoor sources. To understand the contribution of exhaled e-cigarette aerosol to the pre-existing chemicals in the ambient air, an indoor air quality study was conducted to measure volatile organic compounds (including nicotine and low molecular weight carbonyls), polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines and trace metal levels in the air before, during and after e-cigarette use in a typical small office meeting room. Measurements were compared with human Health Criteria Values, such as indoor air quality guidelines or workplace exposure limits where established, to provide a context for potential bystander exposures. In this study, the data suggest that any additional chemicals present in indoor air from the exhaled e-cigarette aerosol, are unlikely to present an air quality issue to bystanders at the levels measured when compared to the regulatory standards that are used for workplaces or general indoor air quality. Full article
Show Figures

Graphical abstract

Back to TopTop