Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = towing equipment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6757 KiB  
Article
Design and Testing of a Pneumatic Jujube Harvester
by Huaming Hou, Wei Niu, Qixian Wen, Hairui Yang, Jianming Zhang, Rui Zhang, Bing Xv and Qingliang Cui
Agronomy 2025, 15(8), 1881; https://doi.org/10.3390/agronomy15081881 - 3 Aug 2025
Viewed by 111
Abstract
Jujubes have a beautiful taste, and high nutritional and economic value. The planting area of dwarf and densely planted jujubes is large and shows an increasing trend; however, the mechanization level and efficiency of fresh jujube harvesting are low. For this reason, our [...] Read more.
Jujubes have a beautiful taste, and high nutritional and economic value. The planting area of dwarf and densely planted jujubes is large and shows an increasing trend; however, the mechanization level and efficiency of fresh jujube harvesting are low. For this reason, our research group conducted a study on mechanical harvesting technology for fresh jujubes. A pneumatic jujube harvester was designed. This harvester is composed of a self-regulating picking mechanism, a telescopic conveying pipe, a negative pressure generator, a cleaning mechanism, a double-chamber collection box, a single-door shell, a control assembly, a generator, a towing mobile chassis, etc. During the harvest, the fresh jujubes on the branches are picked under the combined effect of the flexible squeezing of the picking roller and the suction force of the negative pressure air flow. They then enter the cleaning mechanism through the telescopic conveying pipe. Under the combined effect of the upper and lower baffles of the cleaning mechanism and the negative-pressure air flow, the fresh jujubes are separated from impurities such as jujube leaves and branches. The clean fresh jujubes fall into the collection box. We considered the damage rate of fresh jujubes, impurity rate, leakage rate, and harvesting efficiency as the indexes, and the negative-pressure suction wind speed, picking roller rotational speed, and the inclination angle of the upper and lower baffles of the cleaning and selection machinery as the test factors, and carried out the harvesting test of fresh jujubes. The test results show that when the negative-pressure suction wind speed was 25 m/s, the picking roller rotational speed was 31 r/min, and the inclination angles of the upper and lower baffle plates for cleaning and selecting were −19° and 19.5°, respectively, the breakage rate of fresh jujube harvesting was 0.90%, the rate of impurity was 1.54%, the rate of leakage was 2.59%, and the efficiency of harvesting was 73.37 kg/h, realizing the high-efficiency and low-loss harvesting of fresh jujubes. This study provides a reference for the research and development of fresh jujube mechanical harvesting technology and equipment. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

27 pages, 5743 KiB  
Article
In-Field Load Acquisitions on a Variable Chamber Round Baler Using Instrumented Hub Carriers and a Dynamometric Towing Pin
by Filippo Coppola, Andrea Ruffin and Giovanni Meneghetti
Appl. Sci. 2025, 15(15), 8579; https://doi.org/10.3390/app15158579 (registering DOI) - 1 Aug 2025
Viewed by 112
Abstract
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately [...] Read more.
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately calibrated strain gauge bridges. Similarly, the baler was equipped with a dynamometric towing pin, instrumented with strain gauge sensors and calibrated in the laboratory, which replaced the original pin connecting the baler and the tractor during the in-field load acquisitions. In both cases, the calibration tests returned the relationship between applied forces and output signals of the strain gauge bridges. Multiple in-field load acquisitions were carried out under typical maneuvers and operating conditions. The synchronous acquisition of a video via an onboard camera and Global Positioning System (GPS) signal allowed to observe the behaviour of the baler in correspondence of particular trends of the vertical and horizontal loads and to point out the most demanding maneuver in view of the fatigue resistance of the baler. Finally, through the application of a rainflow cycle counting algorithm according to ASTM E1049-85, the load spectrum for each maneuver was derived. Full article
(This article belongs to the Section Mechanical Engineering)
27 pages, 3471 KiB  
Article
Control of a Dumper Vehicle with a Trailer Using Partial Feedback Linearization
by Jaume Franch, Jose-Manuel Rodriguez-Fortun and Rafael Herguedas
Electronics 2025, 14(11), 2293; https://doi.org/10.3390/electronics14112293 - 4 Jun 2025
Viewed by 444
Abstract
The control of vehicles towing trailers is of significant interest to industry due to their wide-ranging applications across various sectors. Trailers play essential roles in logistics, mining, and other fields. This study focuses on the control of a dumper with a trailer specifically [...] Read more.
The control of vehicles towing trailers is of significant interest to industry due to their wide-ranging applications across various sectors. Trailers play essential roles in logistics, mining, and other fields. This study focuses on the control of a dumper with a trailer specifically used for the monitoring of terrain stability in mining operations. The trailer is equipped with a radar system for detecting potential ground shifts that could jeopardize fieldwork safety. While numerous studies have addressed the control of Ackerman vehicles and trailers, this dumper presents a unique challenge due to its rear-axle steering mechanism. Due to this configuration, which has not been extensively studied in the literature, although the differential flatness of the system is proven, computation of the flat outputs leads to a system of partial differential equations that cannot be solved analytically. For this reason, this paper examines partial feedback linearization to facilitate control and proposes a solution for trajectory tracking that also stabilizes jack-knifing tendencies between the vehicle and trailer. The designed control system was successfully validated in a virtual environment. Full article
(This article belongs to the Special Issue Control and Design of Intelligent Robots)
Show Figures

Figure 1

17 pages, 6370 KiB  
Article
Derivation of the Controllable Region for Attitude Control of Towfish and Verification Through Water Tank Test
by Jihyeong Lee and Min-Kyu Kim
J. Mar. Sci. Eng. 2025, 13(5), 834; https://doi.org/10.3390/jmse13050834 - 23 Apr 2025
Viewed by 336
Abstract
We investigated the attitude control of a towfish to enhance the image quality of its sound navigation ranging system. The target towfish is equipped with two elevators on the horizontal tail wing, and attitude control is performed using these actuators. In particular, when [...] Read more.
We investigated the attitude control of a towfish to enhance the image quality of its sound navigation ranging system. The target towfish is equipped with two elevators on the horizontal tail wing, and attitude control is performed using these actuators. In particular, when a high-resolution sonar system is mounted on the towfish, any irregular movement can cause defocusing; thus, attitude control of the towfish is essential. Because the towfish has no thrust of its own and moves by being connected to a mother vessel via a cable, its attitude must be controlled by comprehensively analyzing its towing force and equation of motion. Herein, we propose a method for calculating the region where the attitude of the towfish can be controlled based on changes in the center of gravity, towing speed, and towing point. We conducted a water tank test to verify this method and confirmed that the attitude of the towfish could be controlled in controllable areas but not in uncontrollable regions. Full article
(This article belongs to the Special Issue Models and Simulations of Ship Manoeuvring)
Show Figures

Figure 1

19 pages, 6420 KiB  
Article
Stationary Type-Approval Test of the Tractor Pneumatic Braking System for Towed Vehicle Control
by Zbigniew Kamiński and Jarosław Czaban
Machines 2025, 13(3), 217; https://doi.org/10.3390/machines13030217 - 7 Mar 2025
Viewed by 772
Abstract
Agricultural tractors are equipped with air braking systems to supply and control the braking systems of towed vehicles. This system’s functional and operational characteristics significantly impact the compatibility and speed of the braking system of the tractor–trailer combination and are therefore checked during [...] Read more.
Agricultural tractors are equipped with air braking systems to supply and control the braking systems of towed vehicles. This system’s functional and operational characteristics significantly impact the compatibility and speed of the braking system of the tractor–trailer combination and are therefore checked during approval tests. This paper presents a test methodology and a description of the instrumentation and apparatus used to test the air braking systems of tractors under stationary conditions, as required by EU Regulation 2015/68. Sample test results of the trailer air supply system are included, such as checking the system for leaks, checking the pressure at the coupling heads, checking the compressor flow rate and air reservoir capacity, and checking the response time of the tractor control line. Approval authorities and tractor manufacturers can use the work results for quality control or product qualification tests. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

22 pages, 574 KiB  
Review
Fire Hazards Caused by Equipment Used in Offshore Oil and Gas Operations: Prescriptive vs. Goal-Oriented Legislation
by Dejan Brkić
Fire 2025, 8(1), 29; https://doi.org/10.3390/fire8010029 - 16 Jan 2025
Cited by 1 | Viewed by 2244
Abstract
This article offers a concise overview of the best practices for safety in offshore oil and gas operations, focusing on the risks associated with various types of equipment, particularly on the risk of fire. It identifies specific machinery and systems that could pose [...] Read more.
This article offers a concise overview of the best practices for safety in offshore oil and gas operations, focusing on the risks associated with various types of equipment, particularly on the risk of fire. It identifies specific machinery and systems that could pose hazards, assesses their potential impact on safety, and explores conditions that may lead to accidents. Some of the largest accidents were analyzed for their associations with fire hazards and specific equipment. Two primary regulatory approaches to offshore safety are examined: the prescriptive approach in the United States (US) and the goal-oriented approach in Europe. The prescriptive approach mandates strict compliance with specific regulations, while in the goal-oriented approach a failure to adhere to recognized best practices can result in legal accountability for negligence, especially concerning human life and environmental protection. This article also reviews achievements in safety through the efforts of regulatory authorities, industry collaborations, technical standards, and risk assessments, with particular attention given to the status of Mobile Offshore Drilling Units (MODUs). Contrary to common belief, the most frequent types of accidents are not those involving a fire/explosion caused by the failure of the Blowout Preventer (BOP) after a well problem has already started. Following analysis, it can be concluded that the most frequent type of accident typically occurs without fire and is due to material fatigue. This can result in the collapse of the facility, capsizing of the platform, and loss of buoyancy of mobile units, particularly in bad weather or during towing operations. It cannot be concluded that accidents can be more efficiently prevented under a specific type of safety regime, whether prescriptive or goal-oriented. Full article
(This article belongs to the Special Issue Fire Safety Management and Risk Assessment)
Show Figures

Figure 1

19 pages, 994 KiB  
Article
Adaptive Coverage Path Planning for Underwater Sonar Scans in Environments with Changing Currents
by Jonghoek Kim
J. Mar. Sci. Eng. 2025, 13(1), 118; https://doi.org/10.3390/jmse13010118 - 10 Jan 2025
Cited by 1 | Viewed by 836
Abstract
This article considers underwater sonar scans that utilize a sonar-equipped Autonomous Marine Ship (AMS). The AMS finds an underwater object by towing a tow fish, having active sonars for imaging the sea bottom. This paper tackles the autonomous generation of the AMS’s coverage [...] Read more.
This article considers underwater sonar scans that utilize a sonar-equipped Autonomous Marine Ship (AMS). The AMS finds an underwater object by towing a tow fish, having active sonars for imaging the sea bottom. This paper tackles the autonomous generation of the AMS’s coverage path, such that the AMS scans the entire survey region once it moves along the generated path. The presence of currents introduces undesired vehicle motion that can greatly complicate sonar data collection, especially when sonar data are to be processed into high-resolution SAS imagery. If the tow fish moves opposite to the current’s direction, then the tow fish can move straight along its intended course without using crabbing motions. In this situation, one can derive a clear sonar image appropriate for finding underwater objects. We planned the AMS’s coverage path so that the tow fish’s heading is opposite to the current’s changing direction, while covering the entire workspace. As far as we know, this paper is novel in planning the AMS’s coverage path adaptively, such that the tow fish’s heading is opposite to the current’s changing direction. Using computer-based simulations, we verify the outperformance of the proposed adaptive path planner by comparing it with a case where varying sea current was not considered by the path planners. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 11416 KiB  
Article
Research into the Possibilities of Improving the Adhesion Properties of a Locomotive
by Vadym Ishchuk, Kateryna Kravchenko, Miroslav Blatnický, Alyona Lovska and Ján Dižo
Machines 2025, 13(1), 44; https://doi.org/10.3390/machines13010044 - 10 Jan 2025
Viewed by 838
Abstract
Locomotives are important vehicles, which serve for towing wagons, i.e., trains. Many factors influence the safe and cost-effective operation of locomotives and trains in general. One of these factors is adhesion at the wheel/rail contact. The adhesion determines how much power the locomotive [...] Read more.
Locomotives are important vehicles, which serve for towing wagons, i.e., trains. Many factors influence the safe and cost-effective operation of locomotives and trains in general. One of these factors is adhesion at the wheel/rail contact. The adhesion determines how much power the locomotive can deliver and how the braking system will ensure that the train stops. The main way to improve adhesion is to use sand at the wheel/rail contact point. The aim of this study is to improve the efficiency of the sand system of the locomotive. For this purpose, a new sand system nozzle mounting design was proposed. The newly proposed sanding system is equipped with a nozzle mounted to the axlebox unlike the original one, which uses the nozzle attached to the bogie frame. To compare the proposed and existing design, simulation calculations were performed in Simpack software 2024.3. For the simulation computation of the locomotive bogie, two types of railway tracks were chosen. A straight track section with two angular frequencies and three amplitudes of track irregularities was created, and a real track section corresponding to several kilometers of track was modeled in the Simpack software. During the simulations, it was determined that the proposed nozzle mounting design has a smaller amplitude of motion, compared to the existing one; therefore, there is a more accurate and efficient operation of the sand system. This in turn has a favorable effect on the adhesion of the wheel with the rail. It was found out that the newly designed sanding system has a significant positive economic effect regarding saving sand. There is no sand loss during sandblasting compared with the original sanding system. This directly relates to saving costs during locomotive operation. Full article
(This article belongs to the Special Issue Research and Application of Rail Vehicle Technology)
Show Figures

Figure 1

20 pages, 13371 KiB  
Article
Experimental Study on the Drag Resistance of Tunnel Towing Navigation Facilitating Upstream and Downstream Connectivity in Mountainous River Bends
by Jun Wu, Jingke Zeng, Hao Tang and Wei Wang
Appl. Sci. 2024, 14(24), 11560; https://doi.org/10.3390/app142411560 - 11 Dec 2024
Viewed by 860
Abstract
Navigable tunnels serve as an effective method to connect upstream and downstream navigation structures in mountainous regions with sharp bends. The towing resistance of ships in navigable tunnels, a key technical indicator for towing equipment development, demands focused research. Utilizing the innovative top [...] Read more.
Navigable tunnels serve as an effective method to connect upstream and downstream navigation structures in mountainous regions with sharp bends. The towing resistance of ships in navigable tunnels, a key technical indicator for towing equipment development, demands focused research. Utilizing the innovative top towing method for tunnels, this study develops a physical model for towed navigable tunnels, conducts ship model tests, and measures and calculates the total resistance of ships towing through navigation under various conditions. Through resistance test results, it analyzes factors influencing the total resistance of ship navigation. The findings reveal: (1) regarding towing speed, at speeds exceeding 1.5 m/s, resistance spikes by 100 kN to 560 kN; (2) concerning water depth, at depths lower than 5.5 m, the impact on a ship navigation’s total resistance is pronounced, reaching 5 to 13 times that of calm water; (3) in terms of flow velocity, at velocities over 2 m/s, the impact on a ship navigation’s total resistance is substantial, amounting to 1.5 to 2 times the resistance at a flow velocity of 1.5 m/s; (4) in comparative analyses, the total resistance of ships towing through navigation in narrow tunnels is significantly higher than calculations based on existing formulas, increasing by 7 to 138 times. Full article
Show Figures

Figure 1

19 pages, 9532 KiB  
Article
Floater Assembly and Turbine Integration Strategy for Floating Offshore Wind Energy: Considerations and Recommendations
by Glib Ivanov and Kai-Tung Ma
Wind 2024, 4(4), 376-394; https://doi.org/10.3390/wind4040019 - 21 Nov 2024
Cited by 3 | Viewed by 2240
Abstract
The increasing demand for cost-effective floating offshore wind turbines (FOWTs) necessitates streamlined mass production and efficient assembly strategies. This research investigates the assembly and integration of 15 MW FOWT floaters, utilising a semi-submersible floater equipped with a 15 MW wind turbine. The infrastructure [...] Read more.
The increasing demand for cost-effective floating offshore wind turbines (FOWTs) necessitates streamlined mass production and efficient assembly strategies. This research investigates the assembly and integration of 15 MW FOWT floaters, utilising a semi-submersible floater equipped with a 15 MW wind turbine. The infrastructure and existing port facilities of Taiwan are used as an example. The effectiveness of various assembly and integration strategies has been evaluated. The study outlines equipment and infrastructure requirements for on-quay floater and turbine assembly, comparing on-quay assembly to construction at remote locations and subsequent towing. Detailed analyses of port operations, crane specifications, and assembly procedures are presented, emphasising the critical role of crane selection and configuration. The findings indicate that on-quay assembly at one major port is feasible and cost-effective, provided that port infrastructure and operational logistics are optimised. This research offers insights and recommendations for implementing large-scale FOWT projects, contributing to advancing offshore wind energy deployment. Full article
Show Figures

Graphical abstract

17 pages, 887 KiB  
Article
Control Based on Nonlinear Estimators of Parametric Uncertainties Applied to an Agricultural Tractor Equipped with a Towed Implement System
by Cuauhtémoc Acosta Lúa, Claudia Verónica Vera Vaca, Joel Hinojosa-Dávalos and Claudia Carolina Vaca García
AgriEngineering 2024, 6(4), 3618-3634; https://doi.org/10.3390/agriengineering6040206 - 1 Oct 2024
Viewed by 991
Abstract
This article presents a nonlinear control strategy designed to address parametric uncertainties in an agricultural tractor system coupled to a towed implement. The controller ensures accurate tracking of lateral and yaw velocities relative to desired reference trajectories, even under the presence of parametric [...] Read more.
This article presents a nonlinear control strategy designed to address parametric uncertainties in an agricultural tractor system coupled to a towed implement. The controller ensures accurate tracking of lateral and yaw velocities relative to desired reference trajectories, even under the presence of parametric variations and external disturbances. The reference trajectories are derived from an “ideal” tractor model, excluding the effects of the towed implement. A High-Order Sliding Mode (HOSM) estimator is employed to provide an estimation of disturbances, which are subsequently mitigated by the controller to maintain system stability and precision. The effectiveness of the proposed control strategy is validated through Matlab-Simulink simulations, which include a double-step steer maneuver. This maneuver tests the system’s ability to handle abrupt steering changes, providing insight into the controller’s robustness and its capacity to ensure accurate trajectory tracking in demanding conditions. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

21 pages, 4634 KiB  
Article
Development of Mathematical Model for Coupled Dynamics of Small-Scale Ocean Current Turbine and Generator to Optimize Hydrokinetic Energy Harvesting Applications
by Shahab Rouhi, Setare Sadeqi, Nikolaos I. Xiros, Erdem Aktosun, Lothar Birk and Juliette Ioup
Appl. Sci. 2024, 14(16), 7164; https://doi.org/10.3390/app14167164 - 15 Aug 2024
Cited by 1 | Viewed by 1769
Abstract
The primary goal of this study is to develop and test a small-scale horizontal-axis underwater Ocean Current Turbine (OCT) by creating a mathematical model for coupled dynamics aided by a Blade Element Momentum (BEM) simulation-integrated experimental approach. This research is motivated by the [...] Read more.
The primary goal of this study is to develop and test a small-scale horizontal-axis underwater Ocean Current Turbine (OCT) by creating a mathematical model for coupled dynamics aided by a Blade Element Momentum (BEM) simulation-integrated experimental approach. This research is motivated by the urgent need for sustainable energy sources and the vast potential of ocean currents. By integrating mathematical modeling with the experimental testing of scaled model OCTs, this study aims to evaluate performance accurately. The experimental setup involves encapsulating a 3D-printed turbine model within a watertight nacelle which is equipped with sensors for comprehensive data recording during towing tank tests. Through these experiments, we seek to establish correlations between the generated power, force, and rotational speed of the turbine’s Permanent Magnet DC (PMDC) motor, which determines the turbine’s capability to extract dynamic energy inflow. Moreover, this research aims to provide valuable insights into the accuracy and applicability of theoretical predictions in real-world scenarios by comparing the experimental results with BEM simulations. This combined approach not only advances our understanding of hydrokinetic energy conversion, but also contributes to the development of reliable and efficient renewable energy technologies that address global energy challenges while mitigating environmental impacts. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

23 pages, 1778 KiB  
Article
Optimization of Berth-Tug Co-Scheduling in Container Terminals under Dual-Carbon Contexts
by Yan Wang and Tianyu Zou
J. Mar. Sci. Eng. 2024, 12(4), 684; https://doi.org/10.3390/jmse12040684 - 21 Apr 2024
Cited by 3 | Viewed by 2213
Abstract
In order to address the dynamic changes in vessel preferences for berth lines caused by the deployment of shore-based power equipment in major ports and the collaborative scheduling problem of berthing and towing assistance, this paper quantifies the environmental costs of pollutants from [...] Read more.
In order to address the dynamic changes in vessel preferences for berth lines caused by the deployment of shore-based power equipment in major ports and the collaborative scheduling problem of berthing and towing assistance, this paper quantifies the environmental costs of pollutants from the main engines of tugs and auxiliary engines of container ships using an environmental tax. Additionally, considering the economic costs such as vessel delay and shore power cable connection, a two-layer mixed-integer linear programming model is constructed using the task sequence mapping method. This model integrates the allocation of continuous berths at container terminals with coordinated towing scheduling for shore power selection. A solution approach is designed by combining the commercial solver (CPLEX) and the immune particle swarm optimization algorithm (IAPSO). The proposed scheme is validated using the example of the Nansha Phase IV Terminal at the Port of Guangzhou. The results show that compared to the traditional first-come-first-served and adjacent scheduling schemes, the collaborative scheduling scheme proposed in this paper reduces the total cost by 21.73%. By effectively utilizing berth resources and shore power equipment while densely arranging collaborative tasks and appropriately increasing the number of tugs, the port can convert the economic cost of leasing a small number of tugs (increased by 10.63%) into environmental benefits (decreased by 33.88%). This approach provides a reference for addressing nearshore pollution emissions in ports. Full article
(This article belongs to the Special Issue Smart Seaport and Maritime Transport Management)
Show Figures

Figure 1

16 pages, 7551 KiB  
Article
Experimental and Numerical Study on Influence of Wheel Attachments on Resistance Performance of Amphibious Vessel for Marine Debris Collection
by Won-June Jeong, Seol Nam, Jong-Chun Park and Hyeon Kyu Yoon
J. Mar. Sci. Eng. 2024, 12(4), 570; https://doi.org/10.3390/jmse12040570 - 27 Mar 2024
Cited by 1 | Viewed by 1445
Abstract
This study aims to investigate the influence of wheel configurations on hydrodynamic resistance of an amphibious vessel through experiments and simulations. To evaluate the resistance performance associated with wheel attachments, three configurations were examined: vessel without attachments, with caterpillars, and with both caterpillars [...] Read more.
This study aims to investigate the influence of wheel configurations on hydrodynamic resistance of an amphibious vessel through experiments and simulations. To evaluate the resistance performance associated with wheel attachments, three configurations were examined: vessel without attachments, with caterpillars, and with both caterpillars and shoe−paddles. A comprehensive series of computational fluid dynamics (CFD) simulations were conducted for these attachment types, complemented by experimental validations. The Volume-of-Fluid (VOF) model was employed in CFD simulations to capture the free surface movement, and the Dynamic Fluid–Body Interaction (DFBI) model was adopted to represent the two-degree-of-freedom motion of the vessel, specifically trim and sinkage. The total resistance derived from CFD simulations was calculated across a range of Froude numbers (Fns), including the design speed of the target vessel, and validated through model tests conducted in a wave basin equipped with a towing facility. The analysis indicated a general increase in resistance when attachments were added to the amphibious vessel. Remarkably, at the design speed (Fn = 0.27), the total resistance with both caterpillars and shoe−paddles exceeded that of the configuration without any attachments by more than 75.7%. These results provide crucial insights for the preliminary design stage of amphibious vessels, particularly those intended for marine debris collection in hard-to-reach areas. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 7667 KiB  
Article
Altimeter Calibrations in the Preliminary Four Years’ Operation of Wanshan Calibration Site
by Wanlin Zhai, Jianhua Zhu, Hailong Peng, Chuntao Chen, Longhao Yan, He Wang, Xiaoqi Huang, Wu Zhou, Hai Guo and Yufei Zhang
Remote Sens. 2024, 16(6), 1087; https://doi.org/10.3390/rs16061087 - 20 Mar 2024
Viewed by 1608
Abstract
In order to accomplish the calibration and validation (Cal/Val) of altimeters, the Wanshan calibration site (WSCS) has been used as a calibration site for satellite altimeters since its completion in August 2019. In this paper, we introduced the WSCS and the dedicated equipment [...] Read more.
In order to accomplish the calibration and validation (Cal/Val) of altimeters, the Wanshan calibration site (WSCS) has been used as a calibration site for satellite altimeters since its completion in August 2019. In this paper, we introduced the WSCS and the dedicated equipment including permanent GNSS reference stations (PGSs), acoustic tide gauges (ATGs), and dedicated GNSS buoys (DGB), etc. placed on Zhi’wan, Wai’ling’ding, Dan’gan, and Miao’Wan islands of the WSCS. The PGSs data of Zhi’wan and Wai’ling’ding islands were processed and analyzed using the GAMIT/GLOBK (Version 10.7) and Hector (Version 1.9) software to define the datum for Cal/Val of altimeters in WSCS. The DGB was used to transfer the datum from the PGSs to the ATGs of Zhi’wan, Wai’ling’ding, and Dan’gan islands. Separately, the tidal and mean sea surface (MSS) corrections are needed in the Cal/Val of altimeters. We evaluated the global/regional tide models of FES2014, HAMTIDE12, DTU16, NAO99jb, GOT4.10, and EOT20 using the three in situ tide gauge data of WSCS and Hong Kong tide gauge data (No. B329) derived from the Global Sea Level Observing System. The HAMTIDE12 tide model was chosen to be the most accurate one to maintain the tidal difference between the locations of the ATGs and the altimeter footprints. To establish the sea surface connections between the ATGs and the altimeter footprints, a GPS towing body and a highly accurate ship-based SSH measurement system (HASMS) were used to measure the sea surface of this area in 2018 and 2022, respectively. The global/regional mean sea surface (MSS) models of DTU 2021, EGM 2008 (mean dynamic topography minus by CLS_MDT_2018), and CLS2015 were accurately evaluated using the in situ measured data and HY-2A altimeter, and the CLS2015 MSS model was used for Cal/Val of altimeters in WSCS. The data collected by the equipment of WSCS, related auxiliary models mentioned above, and the sea level data of the hydrological station placed on Dan’gan island were used to accomplish the Cal/Val of HY-2B, HY-2C, Jason-3, and Sentinel-3A (S3A) altimeters. The bias of HY-2B (Pass No. 375) was −16.7 ± 45.2 mm, with a drift of 0.5 mm/year. The HY-2C biases were −18.9 ± 48.0 mm with drifts of 0.0 mm/year and −5.6 ± 49.3 mm with −0.3 mm/year drifts for Pass No. 170 and 185, respectively. The Jason-3 bias was −4.1 ± 78.7 mm for Pass No. 153 and −25.8 ± 85.5 mm for Pass No. 012 after it has changed its orbits since April 2022, respectively. The biases of S3A were determined to be −16.5 ± 46.3 mm with a drift of −0.6 mm/year and −9.8 ± 30.1 mm with a drift of 0.5 mm/year for Pass No. 260 and 309, respectively. The calibration results show that the WSCS can commercialize the satellite altimeter calibration. We also discussed the calibration potential for a wide swath satellite altimeter of WSCS. Full article
Show Figures

Figure 1

Back to TopTop