Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = total phase-change entropy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1516 KB  
Article
How to Recognize and Measure the Driving Forces of Tourism Ecological Security: A Case Study from Zhangjiajie Scenic Area in China
by Quanjin Li, Yuhuan Geng, Shu Fu, Yaping Zhang and Jianjun Zhang
Land 2025, 14(9), 1733; https://doi.org/10.3390/land14091733 - 27 Aug 2025
Viewed by 385
Abstract
Rapid regional development and intensified human activities increasingly disturb ecosystems, posing substantial threats to the integrity of large-scale ecological zones. As a World Natural Heritage site and a crucial national ecological zone, the Zhangjiajie Scenic Area plays a pivotal role in China’s environmental [...] Read more.
Rapid regional development and intensified human activities increasingly disturb ecosystems, posing substantial threats to the integrity of large-scale ecological zones. As a World Natural Heritage site and a crucial national ecological zone, the Zhangjiajie Scenic Area plays a pivotal role in China’s environmental conservation efforts. To comprehensively assess tourism ecological security in the Scenic Area and strengthen the scientific basis for resource management and policymaking, this study developed a multi-dimensional ecological security evaluation system covering 2010–2024, incorporating dynamic changes in perturbation, reaction, and governance. Using entropy weight–TOPSIS and coupling coordination models, combined with obstacle degree analysis, we examined the temporal trajectory of ecological security and analyzed its underlying driving mechanisms. The study also examined factors influencing the sustainable development of the ecosystem. The results indicate the following: (1) Tourism ecological security in the Scenic Area followed a V-shaped trajectory of “rapid degradation—steady recovery—impact and rebound.” It declined sharply to an unsafe level between 2010 and 2014, steadily recovered from 2015 to 2019, briefly dropped in 2020, and then rebounded, reaching a peak evaluation value of 0.519 in 2024. (2) The co-evolution of perturbation, reaction, and governance subsystems has matured: their coupling coordination degree has increased annually and has remained at the level of “intermediate coordination” since 2020. The reaction subsystem plays a central role, serving as a bridge between perturbation and governance. (3) The driving factors exhibit a phased evolutionary pattern of “elements—facilities—structure—function.” Cultivated land area, total road mileage, and artificial afforestation area constitute the main long-term constraints. This research provides important insights for strengthening ecological security and sustainability in the Scenic Area while advancing regional ecosystem development. It also offers valuable guidance for ecological security management and policymaking in similar nature reserves. Full article
Show Figures

Figure 1

14 pages, 3602 KB  
Article
Quantitative Spatial Analysis on Radiographic Features of Rotator Cuff Calcifications: An Exploratory Study
by Ju-Hyeon Kim, Dahae Yang and Jae-Hyun Lee
Biomedicines 2025, 13(3), 551; https://doi.org/10.3390/biomedicines13030551 - 21 Feb 2025
Viewed by 641
Abstract
Background/Objectives: Plain radiography is the primary diagnostic tool for calcific tendinitis of the shoulder. Several qualitative grading methods have been proposed to represent the pathophysiologic phase and guide treatment decisions. However, these methods have demonstrated low reliability, complicating their effectiveness for such [...] Read more.
Background/Objectives: Plain radiography is the primary diagnostic tool for calcific tendinitis of the shoulder. Several qualitative grading methods have been proposed to represent the pathophysiologic phase and guide treatment decisions. However, these methods have demonstrated low reliability, complicating their effectiveness for such purposes. This study aims to perform the first quantitative analysis of calcific lesions using radiographic imaging and explore their correlation with ultrasonographic parameters to enhance their diagnostic utility. Methods: A total of 57 shoulders presenting with painful calcific tendinitis in either the supraspinatus or subscapularis tendon were reviewed. The calcific deposits and tendon regions of interest were meticulously identified and annotated. Image brightness was reduced to 256 grayscale levels, and descriptive and heterogeneity parameters, including skewness, kurtosis, complexity, and entropy, were quantified and analyzed. Results: In the region of calcification, the average grayscale values were 21.69 units higher than those of tendon tissue. All spatial heterogeneity parameters, except for skewness, demonstrated statistically significant differences when compared with the adjacent tendon. Notably, entropy and complexity were the most distinctive features, with an area under the curve of 0.93 and cut-off values of 4.62 and 4.18, respectively. Significant correlations were observed between the heterogeneity parameters and ultrasonographic findings, such as bursal contact and peri-calcific hypoattenuation. Conclusions: Calcific deposits demonstrated not only increased brightness in grayscale levels but also distinct spatial heterogeneity. The correlation with ultrasonographic findings indicates that these heterogeneity parameters may reflect underlying pathophysiological characteristics. Future prospective research could explore the whole temporal changes of calcifications more thoroughly. Full article
Show Figures

Figure 1

14 pages, 3776 KB  
Article
Magnetocaloric Properties and Microstructures of HoB2 and Nb-Substituted HoB2
by Mahboobeh Shahbazi, Ali Dehghan Manshadi, Kiran Shinde and Ian D. R. Mackinnon
Materials 2025, 18(4), 866; https://doi.org/10.3390/ma18040866 - 17 Feb 2025
Cited by 1 | Viewed by 735
Abstract
We report on the arc melt syntheses of HoB2 and Nb-substituted HoB2 polycrystalline ingots and their magnetocaloric and microstructural properties. XRD data and microstructural analysis reveal that a nominal 10% Nb addition during synthesis results in changes to unit cell parameters [...] Read more.
We report on the arc melt syntheses of HoB2 and Nb-substituted HoB2 polycrystalline ingots and their magnetocaloric and microstructural properties. XRD data and microstructural analysis reveal that a nominal 10% Nb addition during synthesis results in changes to unit cell parameters and grain morphology. Interpretation of the refined cell parameters using Vegard’s law shows that Nb substitutes into HoB2 with stoichiometry Ho0.93Nb0.07B2. Arc-melted products are polycrystalline bulk samples containing minor phases such as Ho2O3, Ho, and HoB4. Nb substitution results in a smaller grain size (~sub-micron) and a higher Curie temperature, TC, compared to HoB2. With a 10 T applied field, the maximum magnetic entropy, ΔSM, for HoB2 and for Ho0.93Nb0.07B2, is 46.8 Jkg−1K−1 and 38.2 Jkg−1K−1 at 18 K and 21 K, respectively. Both samples show second-order phase transitions. Despite high totals of minor phases (e.g., ~10 wt.% and ~25 wt.%), the calculated relative cooling powers are greater than 1300 Jkg−1 and 600 Jkg−1 at 10 T and 5 T, respectively. The magnetocaloric properties of both samples are consistent with Holmium boride compounds prepared via alternative methods. Full article
Show Figures

Figure 1

14 pages, 566 KB  
Article
Quasi-Equilibrium States and Phase Transitions in Biological Evolution
by Artem Romanenko and Vitaly Vanchurin
Entropy 2024, 26(3), 201; https://doi.org/10.3390/e26030201 - 27 Feb 2024
Cited by 1 | Viewed by 2076
Abstract
We developed a macroscopic description of the evolutionary dynamics by following the temporal dynamics of the total Shannon entropy of sequences, denoted by S, and the average Hamming distance between them, denoted by H. We argue that a biological system can [...] Read more.
We developed a macroscopic description of the evolutionary dynamics by following the temporal dynamics of the total Shannon entropy of sequences, denoted by S, and the average Hamming distance between them, denoted by H. We argue that a biological system can persist in the so-called quasi-equilibrium state for an extended period, characterized by strong correlations between S and H, before undergoing a phase transition to another quasi-equilibrium state. To demonstrate the results, we conducted a statistical analysis of SARS-CoV-2 data from the United Kingdom during the period between March 2020 and December 2023. From a purely theoretical perspective, this allowed us to systematically study various types of phase transitions described by a discontinuous change in the thermodynamic parameters. From a more-practical point of view, the analysis can be used, for example, as an early warning system for pandemics. Full article
(This article belongs to the Special Issue Entropy, Time and Evolution II)
Show Figures

Figure 1

25 pages, 7708 KB  
Article
Thermodynamic Investigation and Economic Evaluation of a High-Temperature Triple Organic Rankine Cycle System
by Pengcheng Li, Chengxing Shu, Jing Li, Yandong Wang, Yanxin Chen, Xiao Ren, Desuan Jie and Xunfen Liu
Energies 2023, 16(23), 7818; https://doi.org/10.3390/en16237818 - 28 Nov 2023
Cited by 2 | Viewed by 1311
Abstract
Triple organic Rankine cycle (TORC) is gradually gaining interest, but the maximum thermal efficiencies (around 30%) are restricted by low critical temperatures of common working fluids (<320 °C). This paper proposes a high-temperature (up to 400 °C) TORC system to ramp up efficiency. [...] Read more.
Triple organic Rankine cycle (TORC) is gradually gaining interest, but the maximum thermal efficiencies (around 30%) are restricted by low critical temperatures of common working fluids (<320 °C). This paper proposes a high-temperature (up to 400 °C) TORC system to ramp up efficiency. A near-azeotropic mixture biphenyl/diphenyl oxide (BDO), which has a stellar track record in the high-temperature ORC applications, is innovatively adopted as the top and middle ORC fluid simultaneously. Four conventional organic fluids are chosen for the bottom ORC. A mixing heat exchanger connects the top and middle ORCs to reduce irreversible loss. Thermodynamic analysis hints that the optimal performance is achieved on the use of benzene as the bottom fluid. The maximum thermal and exergy efficiencies are respectively 40.86% and 74.14%. The largest exergy destruction occurs inside the heat exchanger coupling the middle and bottom ORCs, accounting for above 30% of the total entropy generation. The levelized energy cost (LEC) is 0.0368 USD/kWh. Given the same heat source condition, the TORC system can boost the efficiency by 1.02% and drive down LEC by 0.0032 USD/kWh compared with a BDO mixture-based cascade ORC. The proposed system is promising in solar thermal power generation and Carnot battery applications using phase change materials for storage. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

24 pages, 8568 KB  
Article
A Detailed Comparative Analysis of the Structural Stability and Electron-Phonon Properties of ZrO2: Mechanisms of Water Adsorption on t-ZrO2 (101) and t-YSZ (101) Surfaces
by Dilshod D. Nematov, Amondulloi S. Burhonzoda, Kholmirzo T. Kholmurodov, Andriy I. Lyubchyk and Sergiy I. Lyubchyk
Nanomaterials 2023, 13(19), 2657; https://doi.org/10.3390/nano13192657 - 27 Sep 2023
Cited by 15 | Viewed by 3530
Abstract
In this study, we considered the structural stability, electronic properties, and phonon dispersion of the cubic (c-ZrO2), tetragonal (t-ZrO2), and monoclinic (m-ZrO2) phases of ZrO2. We found that the monoclinic phase of zirconium dioxide is [...] Read more.
In this study, we considered the structural stability, electronic properties, and phonon dispersion of the cubic (c-ZrO2), tetragonal (t-ZrO2), and monoclinic (m-ZrO2) phases of ZrO2. We found that the monoclinic phase of zirconium dioxide is the most stable among the three phases in terms of total energy, lowest enthalpy, highest entropy, and other thermodynamic properties. The smallest negative modes were found for m-ZrO2. Our analysis of the electronic properties showed that during the m–t phase transformation of ZrO2, the Fermi level first shifts by 0.125 eV toward higher energies, and then decreases by 0.08 eV in the t–c cross-section. The band gaps for c-ZrO2, t-ZrO2, and m-ZrO2 are 5.140 eV, 5.898 eV, and 5.288 eV, respectively. Calculations based on the analysis of the influence of doping 3.23, 6.67, 10.35, and 16.15 mol. %Y2O3 onto the m-ZrO2 structure showed that the enthalpy of m-YSZ decreases linearly, which accompanies the further stabilization of monoclinic ZrO2 and an increase in its defectiveness. A doping-induced and concentration-dependent phase transition in ZrO2 under the influence of Y2O3 was discovered, due to which the position of the Fermi level changes and the energy gap decreases. It has been established that the main contribution to the formation of the conduction band is made by the p-states of electrons, not only for pure systems, but also those doped with Y2O3. The t-ZrO2 (101) and t-YSZ (101) surface models were selected as optimal surfaces for water adsorption based on a comparison of their surface energies. An analysis of the mechanism of water adsorption on the surface of t-ZrO2 (101) and t-YSZ (101) showed that H2O on unstabilized t-ZrO2 (101) is adsorbed dissociatively with an energy of −1.22 eV, as well as by the method of molecular chemisorption with an energy of −0.69 eV and the formation of a hydrogen bond with a bond length of 1.01 Å. In the case of t-YSZ (101), water is molecularly adsorbed onto the surface with an energy of −1.84 eV. Dissociative adsorption of water occurs at an energy of −1.23 eV, near the yttrium atom. The results show that ab initio approaches are able to describe the mechanism of doping-induced phase transitions in (ZrO2+Y2O3)-like systems, based on which it can be assumed that DFT calculations can also flawlessly evaluate other physical and chemical properties of YSZ, which have not yet been studied quantum chemical research. The obtained results complement the database of research works carried out in the field of the application of biocompatible zirconium dioxide crystals and ceramics in green energy generation, and can be used in designing humidity-to-electricity converters and in creating solid oxide fuel cells based on ZrO2. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

13 pages, 59490 KB  
Article
Thermal Stability and Hot Corrosion Performance of the AlCoCrFeNi2.1 High-Entropy Alloy Coating by Laser Cladding
by Li Zhang, Yan Ji and Bin Yang
Materials 2023, 16(17), 5747; https://doi.org/10.3390/ma16175747 - 22 Aug 2023
Cited by 6 | Viewed by 1928
Abstract
Both crack-free AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) and Y and Hf co-doping AlCoCrFeNi2.1 EHEA (YHf-EHEA) coatings were prepared by laser cladding. The solidification microstructure, thermal stability, and hot corrosion performance of the coatings at 900 °C under 75% Na2SO [...] Read more.
Both crack-free AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) and Y and Hf co-doping AlCoCrFeNi2.1 EHEA (YHf-EHEA) coatings were prepared by laser cladding. The solidification microstructure, thermal stability, and hot corrosion performance of the coatings at 900 °C under 75% Na2SO4 + 25% NaCl molten salts were investigated. The experimental results showed that the structure of the as-deposited coatings consisted of FCC and BCC/B2 phases. After heat treatment, an Al-rich L12 phase was precipitated in the FCC phase of all coatings. The grain sizes of the EHEA and YHf-EHEA coatings after heat treatment at 900 °C for 10 h increased by 27.5% and 15.7%, respectively, compared to the as-deposited coatings. Meanwhile, after hot corrosion, the spallation areas of the YHf-EHEA and EHEA coatings accounted for 14.98% and 5.67% of the total surface area, respectively. In this study, the Y and Hf co-doping did not change the microstructure morphology and phase structure of the coatings but did improve the thermal stability and resistance of the hot corrosion oxide scale spallation, providing a certain amount of data and theoretical support for the application of EHEA coatings as high-temperature protective coatings. Full article
(This article belongs to the Special Issue Innovations and Thermal Stability of High-Entropy Alloys)
Show Figures

Figure 1

13 pages, 3456 KB  
Article
The Value of Stress-Gated Blood Pool SPECT in Predicting Early Postoperative Period Complications in Ischemic Cardiomyopathy Patients: Focus on Mechanical Dyssynchrony
by Vladimir V. Shipulin, Sergey Andreev, Kristina Kopeva, Vladimir M. Shipulin and Konstantin Zavadovsky
J. Clin. Med. 2023, 12(16), 5328; https://doi.org/10.3390/jcm12165328 - 16 Aug 2023
Cited by 1 | Viewed by 1432
Abstract
(1) Objective: The objective of this study was to assess the prognostic value of stress-gated blood pool SPECT (GBPS) estimates in patients with ischemic cardiomyopathy (ICM) in the early postoperative period. (2) Methods: A total of 57 patients (age 59.7 ± 6.6, 47 [...] Read more.
(1) Objective: The objective of this study was to assess the prognostic value of stress-gated blood pool SPECT (GBPS) estimates in patients with ischemic cardiomyopathy (ICM) in the early postoperative period. (2) Methods: A total of 57 patients (age 59.7 ± 6.6, 47 men) with ICM and LV ejection fraction (30 [27.5; 35]%) were enrolled in the study. Before surgical treatment, all patients underwent GBPS (rest–stress, dobutamine doses of 5/10/15 µg/kg/min). Stress-induced changes in left ventricular (LV) ejection fraction, peak ejection rate, volumes, and mechanical dyssynchrony (phase histogram standard deviation, phase entropy (PE), and phase histogram bandwidth) were estimated. Two-dimensional transthoracic echocardiography was performed baseline. Serum levels of NT-proBNP were analyzed with enzyme-linked immunoassay. (3) Results: After surgical treatment, patients were divided into two groups, one, with death, the need for an intra-aortic balloon pump (IABP) or/and inotropic support with a stay in the intensive care unit for more than two days and two, without complications in the early postoperative period (EPOP). Complicated EPOP (CEPOP) was observed in 17 (30%) patients (death—2, IABP—4, extra inotropic support in intensive care unit—11), and 40 patients had no complications (NCEPOP). GBPS showed differences in LV EDV (mL) (321 [268; 358] vs. 268 [242; 313], p = 0.02), LV ESV (mL) (242 [201; 282] vs. 196 [170; 230], p = 0.005), and stress-induced changes in PE (1 (−2; 3) vs. −2 (−4; 0), p = 0.02). Aortic cross-clamp time and stress-induced changes in PE between rest and dobutamine dose of 10 µg/kg/min were the only independent predictors of CEPOP. An increase in LV entropy ≥ 1 on the dobutamine dose of 10µg/kg/min in comparison to rest investigation showed AUC = 0.853 (sensitivity = 62%, specificity = 90%, PPV = 71%; NPV = 85%; p < 0.0001). Conclusion: Stress-induced changes in PE obtained during low-dose dobutamine GBPS are associated with a complicated course of the early postoperative period after surgical treatment for ICM. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

20 pages, 3959 KB  
Article
Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties
by Mohamed Adel Sayed, Jamaan S. Ajarem, Ahmed A. Allam, Mostafa R. Abukhadra, Jianmin Luo, Chuanyi Wang and Stefano Bellucci
Catalysts 2023, 13(3), 462; https://doi.org/10.3390/catal13030462 - 22 Feb 2023
Cited by 4 | Viewed by 2573
Abstract
The mineral raw Egyptian kaolinite was used as a precursor in the synthesis of two sodalite phases (sodium sodalite (Na.SD) and potassium sodalite (K.SD)) according to the low alkali fusion technique. The synthesized Na.SD phase demonstrates enhanced total basicity (6.3 mmol OH/g), surface [...] Read more.
The mineral raw Egyptian kaolinite was used as a precursor in the synthesis of two sodalite phases (sodium sodalite (Na.SD) and potassium sodalite (K.SD)) according to the low alkali fusion technique. The synthesized Na.SD phase demonstrates enhanced total basicity (6.3 mmol OH/g), surface area (232.4 m2/g), and ion exchange capacity (126.4 meq/100 g) compared to the K.SD phase (217.6 m2/g (surface area), 96.8 meq/100 g (ion exchange capacity), 5.4 mmol OH/g (total basicity). The catalytic performance of the two sodalite phases validates the higher activity of the sodium phase (Na.SD) than the potassium phase (K.SD). The application of Na.SD resulted in biodiesel yields of 97.3% and 96.4% after 90 min and 60 min, respectively, while the maximum yield using K.SD (95.7%) was detected after 75 min. Robust base-catalyzed reactions using Na.SD and K.SD as catalysts were suggested as part of an operated transesterification mechanism. Moreover, these reactions exhibit pseudo-first order kinetics, and the rate constant values were estimated with consideration of the change in temperature. The estimated activation energies of Na.SD (27.9 kJ.mol−1) and K.SD (28.27 kJ.mol−1) reflected the suitability of these catalysts to be applied effectively under mild conditions. The essential thermodynamic functions, such as Gibb’s free energy (65.16 kJ.mol−1 (Na.SD) and 65.26 kJ.mol−1 (K.SD)), enthalpy (25.23 kJ.mol−1 (Na.SD) and 25.55 kJ.mol−1 (K.SD)), and entropy (−197.7 J.K−1.mol−1 (Na.SD) and −197.8 J.K−1.mol−1 (K.SD)), display the endothermic and spontaneous nature of the two transesterification systems. Full article
Show Figures

Figure 1

11 pages, 3919 KB  
Article
Martensitic Transformation, Magnetic and Mechanical Characteristics in Unidirectional Ni–Mn–Sn Heusler Alloy
by Haodong Sun, Chao Jing, Hui Zeng, Yuan Su, Siyuan Yang, Yuanlei Zhang, Tarek Bachagha, Ting Zhou, Long Hou and Wei Ren
Magnetochemistry 2022, 8(10), 136; https://doi.org/10.3390/magnetochemistry8100136 - 21 Oct 2022
Cited by 8 | Viewed by 2871
Abstract
A textured structure of Ni–Mn–Sn Heusler alloy with [001] preferred orientation has been grown by the directional solidification method. The crystal exhibits a single austenite phase L21 cubic structure (a = 5.997 Å) at room temperature. Magnetization and electronic transport [...] Read more.
A textured structure of Ni–Mn–Sn Heusler alloy with [001] preferred orientation has been grown by the directional solidification method. The crystal exhibits a single austenite phase L21 cubic structure (a = 5.997 Å) at room temperature. Magnetization and electronic transport measurements reveal the phase transformation characteristics. The maximum values of magnetic entropy change determined by Maxwell’s thermodynamic relation during the structural and magnetic phase transformations are 3.5 J/kg·K and −4.1 J/kg·K, and the total effective refrigerant capacity reaches about 314 J/kg (5 T). The evident reduction in hysteresis loss and broad operating temperature window provide a greater prospect for improving the cyclic stability of refrigeration and optimizing the application of such a magnetic refrigeration material. Both magnetoresistance (−18%, 5 T) and exchange bias field (302 Oe, 2 K) have also been investigated to understand the nature of phase transformations and exchange interactions. Furthermore, as the material exhibits excellent mechanical properties (1068 MPa, 9.0%), our experimental results provide a new reference for the application of Ni–Mn–Sn Heusler alloys. Full article
(This article belongs to the Special Issue Magnetism: Energy, Recycling, Novel Materials)
Show Figures

Figure 1

26 pages, 32205 KB  
Article
Heat Transfer Enhancement of Phase Change Material in Triple-Tube Latent Heat Thermal Energy Storage Units: Operating Modes and Fin Configurations
by Junting Wu, Yingjin Zhang, Kanglong Sun and Qicheng Chen
Energies 2022, 15(15), 5653; https://doi.org/10.3390/en15155653 - 4 Aug 2022
Cited by 6 | Viewed by 2017
Abstract
The inherent low thermal conductivity of phase change materials (PCMs) serious limits the thermal performance of latent heat thermal energy storage (LHTES) systems. In this study, the author proposed two operating modes (inside heating/outside cooling and inside cooling/outside heating)and designed seven fin configurations [...] Read more.
The inherent low thermal conductivity of phase change materials (PCMs) serious limits the thermal performance of latent heat thermal energy storage (LHTES) systems. In this study, the author proposed two operating modes (inside heating/outside cooling and inside cooling/outside heating)and designed seven fin configurations to improve the thermal performance and flexibility of the triple-tube LHTES unit. A transient two-dimensional numerical model was established to study the energy storage, release and simultaneous storage and release processes, and local and global entropy generation was analyzed. A comprehensive evaluation was used to propose the optimal combination of operating mode and fin configuration. Considering various performances, the combination of the operation mode of inside cooling/outside heating and the staggered fin configuration shortened the total time by 66.6% and increased the heat transfer rate by 5.6%, providing the best performance in both the continuous and simultaneous storage and release process. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

18 pages, 2780 KB  
Article
Entropy Generation Analysis of the Flow Boiling in Microgravity Field
by Zijian Sun, Haochun Zhang, Qi Wang and Wenbo Sun
Entropy 2022, 24(4), 569; https://doi.org/10.3390/e24040569 - 18 Apr 2022
Cited by 2 | Viewed by 2936
Abstract
Entropy generation analysis of the flow boiling in microgravity field is conducted in this paper. A new entropy generation model based on the flow pattern and the phase change process is developed in this study. The velocity ranges from 1 m/s to 4 [...] Read more.
Entropy generation analysis of the flow boiling in microgravity field is conducted in this paper. A new entropy generation model based on the flow pattern and the phase change process is developed in this study. The velocity ranges from 1 m/s to 4 m/s, and the heat flux ranges from 10,000 W/m2 to 50,000 W/m2, so as to investigate their influence on irreversibility during flow boiling in the tunnel. A phase–change model verified by the Stefan problem is employed in this paper to simulate the phase–change process in boiling. The numerical simulations are carried out on ANSYS-FLUENT. The entropy generation produced by the heat transfer, viscous dissipation, turbulent dissipation, and phase change are observed at different working conditions. Moreover, the Be number and a new evaluation number, EP, are introduced in this paper to investigate the performance of the boiling phenomenon. The following conclusions are obtained: (1) a high local entropy generation will be obtained when only heat conduction in vapor occurs near the hot wall, whereas a low local entropy generation will be obtained when heat conduction in water or evaporation occurs near the hot wall; (2) the entropy generation and the Be number are positively correlated with the heat flux, which indicates that the heat transfer entropy generation becomes the major contributor of the total entropy generation with the increase of the heat flux; (3) the transition of the boiling status shows different trends at different velocities, which affects the irreversibility in the tunnel; (4) the critical heat flux (CHF) is the optimal choice under the comprehensive consideration of the first law and the second law of the thermodynamics. Full article
(This article belongs to the Special Issue Entropy in Computational Fluid Dynamics III)
Show Figures

Figure 1

23 pages, 389 KB  
Article
The Law of Entropy Increase and the Meissner Effect
by Alexey Nikulov
Entropy 2022, 24(1), 83; https://doi.org/10.3390/e24010083 - 3 Jan 2022
Cited by 15 | Viewed by 5872
Abstract
The law of entropy increase postulates the existence of irreversible processes in physics: the total entropy of an isolated system can increase, but cannot decrease. The annihilation of an electric current in normal metal with the generation of Joule heat because of a [...] Read more.
The law of entropy increase postulates the existence of irreversible processes in physics: the total entropy of an isolated system can increase, but cannot decrease. The annihilation of an electric current in normal metal with the generation of Joule heat because of a non-zero resistance is a well-known example of an irreversible process. The persistent current, an undamped electric current observed in a superconductor, annihilates after the transition into the normal state. Therefore, this transition was considered as an irreversible thermodynamic process before 1933. However, if this transition is irreversible, then the Meissner effect discovered in 1933 is experimental evidence of a process reverse to the irreversible process. Belief in the law of entropy increase forced physicists to change their understanding of the superconducting transition, which is considered a phase transition after 1933. This change has resulted to the internal inconsistency of the conventional theory of superconductivity, which is created within the framework of reversible thermodynamics, but predicts Joule heating. The persistent current annihilates after the transition into the normal state with the generation of Joule heat and reappears during the return to the superconducting state according to this theory and contrary to the law of entropy increase. The success of the conventional theory of superconductivity forces us to consider the validity of belief in the law of entropy increase. Full article
(This article belongs to the Section Thermodynamics)
24 pages, 86585 KB  
Article
A Numerical Analysis of the Influence of Nozzle Geometric Structure on Spontaneous Steam Condensation and Irreversibility in the Steam Ejector Nozzle
by He Li, Xiaodong Wang, Hailong Huang, Jiuxin Ning and Jiyuan Tu
Appl. Sci. 2021, 11(24), 11954; https://doi.org/10.3390/app112411954 - 15 Dec 2021
Cited by 6 | Viewed by 3487
Abstract
The spontaneous condensation of wet steam often occurs in the steam ejector nozzle, this deteriorates the performance of the steam ejector. In this paper, we take changing the geometric parameters of the nozzle as the focus of our research and construct an internal [...] Read more.
The spontaneous condensation of wet steam often occurs in the steam ejector nozzle, this deteriorates the performance of the steam ejector. In this paper, we take changing the geometric parameters of the nozzle as the focus of our research and construct an internal connection between steam’s condensation behavior and the nozzle’s throat radius, the nozzle’s divergent section expansion angle, and the nozzle’s divergent section length. Our numerical simulation results indicate that an increase in the throat diameter and reduction of the divergent section’s expansion angle can inhibit steam condensation behavior, to a certain extent. In particular, the steam condensation behavior will disappear at a 0° expansion angle, but it is not affected by the change in the divergent section’s length. In addition, the irreversibility that is seen under different changes to the nozzle’s structure parameters was investigated and the results show that the entropy generation that is caused by a phase change accounts for a much higher proportion of the total entropy generation than heat transport and viscous dissipation do. This indicates that steam’s condensation behavior makes a large amount of irreversible energy, resulting in energy waste and reducing the performance of the nozzle. Therefore, this study can provide a theoretical reference for suppressing the spontaneous condensation behavior of steam by changing the nozzle’s geometry. Full article
(This article belongs to the Special Issue Flow and Heat Transfer Research in Multiphase Flow and Porous Media)
Show Figures

Figure 1

17 pages, 1212 KB  
Article
Topology and Phase Transitions: A First Analytical Step towards the Definition of Sufficient Conditions
by Loris Di Cairano, Matteo Gori and Marco Pettini
Entropy 2021, 23(11), 1414; https://doi.org/10.3390/e23111414 - 27 Oct 2021
Cited by 6 | Viewed by 2818
Abstract
Different arguments led to supposing that the deep origin of phase transitions has to be identified with suitable topological changes of potential related submanifolds of configuration space of a physical system. An important step forward for this approach was achieved with two theorems [...] Read more.
Different arguments led to supposing that the deep origin of phase transitions has to be identified with suitable topological changes of potential related submanifolds of configuration space of a physical system. An important step forward for this approach was achieved with two theorems stating that, for a wide class of physical systems, phase transitions should necessarily stem from topological changes of energy level submanifolds of the phase space. However, the sufficiency conditions are still a wide open question. In this study, a first important step forward was performed in this direction; in fact, a differential equation was worked out which describes how entropy varies as a function of total energy, and this variation is driven by the total energy dependence of a topology-related quantity of the relevant submanifolds of the phase space. Hence, general conditions can be in principle defined for topology-driven loss of differentiability of the entropy. Full article
(This article belongs to the Special Issue The Ubiquity of Entropy II)
Show Figures

Figure 1

Back to TopTop