Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (307)

Search Parameters:
Keywords = total absorbed energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2806 KiB  
Review
Interfacial Solar Evaporation for Treating High-Salinity Wastewater: Chance and Necessity
by Shunjian Ji, Zhihong Zhang, Meijie Zhang, Zexin Yang, Yaguang Fan, Juan Zhang, Yingping Pang and Lin Cui
Processes 2025, 13(9), 2679; https://doi.org/10.3390/pr13092679 - 22 Aug 2025
Abstract
The tension in the relationship between water and energy seriously restricts the harmonious coexistence between man and the ecological environment. The solar-powered interface evaporation technology emerging in recent years has shown good application prospects in high-salt wastewater treatment for achieving the zero-discharge treatment [...] Read more.
The tension in the relationship between water and energy seriously restricts the harmonious coexistence between man and the ecological environment. The solar-powered interface evaporation technology emerging in recent years has shown good application prospects in high-salt wastewater treatment for achieving the zero-discharge treatment of wastewater. In this review, advanced solar-driven interfacial evaporation is primarily focused on its mechanisms, photothermal materials optimization, and the structure of solar evaporators for salt removal. The high wide-spectrum solar absorption rate of photothermal materials determines the total energy that can be utilized in the evaporation system. The light-to-heat conversion capacity of photothermal materials directly affects the efficiency and performance of solar interface evaporators. We highlight the microstructures enabled by the nanophotonic designs of photothermal material-based solar absorbers, which can achieve highly efficient light harvesting across the entire solar irradiance spectral range with weighted solar absorptivity. Finally, based on current research, existing problems, and future development directions for high-salt wastewater evaporation research are proposed. The review provides insights into the effective treatment of high-salt wastewater. Full article
(This article belongs to the Special Issue Clean Combustion and Emission Control Technologies)
Show Figures

Figure 1

19 pages, 2516 KiB  
Article
CO2 Capture Performance and Preliminary Mechanistic Analysis of a Phase Change Absorbent
by Chuanyong Zhu, Yucai Zhang, Baoyue Zhang, Chongqing Xu, Guihuan Yan and Na Yang
Molecules 2025, 30(16), 3404; https://doi.org/10.3390/molecules30163404 - 18 Aug 2025
Viewed by 338
Abstract
Phase change absorbents are deemed a promising alternative for CO2 capture due to their excellent CO2 absorption performance, good stability, and low renewable energy consumption. To address the issues of insufficient loading capacity, low regeneration efficiency, and high energy consumption during [...] Read more.
Phase change absorbents are deemed a promising alternative for CO2 capture due to their excellent CO2 absorption performance, good stability, and low renewable energy consumption. To address the issues of insufficient loading capacity, low regeneration efficiency, and high energy consumption during regeneration in current chemical absorbents, a novel phase change absorbent was developed. As an amino acid ionic liquid phase change absorbent with tetraethylenepentamine as the cation, imidazole as the anion, and n-propanol as the phase separation agent, this absorbent offers a potential solution. The highest absorption capacity of the [TEPAH][Im]/NPA/H2O system at the optimal n-propanol-H2O ratio (1:1) reaches 1.34 mol·mol−1, and the viscosity of the CO2-rich phase amounts to a mere 3.58 mPa·s. Additionally, the desorption efficiency reached 91.1% at 363.15 K, while the loading capacity in the fifth cycle remained over 1.16 mol·mol−1. As n-propanol is present in the [TEPAH][Im]/NPA/H2O system, the rich phase makes up roughly 30% of the total volume. The energy consumption for regeneration of the [TEPAH][Im]/NPA/H2O phase change absorption system is 2.20 GJ·t−1 CO2. Under identical regeneration conditions, the system can reduce the regeneration energy consumption by 41.6%. Full article
Show Figures

Graphical abstract

24 pages, 8188 KiB  
Article
Top of the Atmosphere Reflected Shortwave Radiative Fluxes from ABI on GOES-18
by Yingtao Ma, Rachel T. Pinker, Wen Chen, Istvan Laszlo, Hye-Yun Kim, Hongqing Liu and Jaime Daniels
Atmosphere 2025, 16(8), 979; https://doi.org/10.3390/atmos16080979 - 17 Aug 2025
Viewed by 217
Abstract
In this study, we describe the derivation and evaluation of Top of the Atmosphere (TOA) Shortwave Radiative (SWR) Fluxes from the Advanced Baseline Imager (ABI) sensor on the GOES-18 satellite. The TOA estimates use narrowband observations from ABI that are transformed to broadband [...] Read more.
In this study, we describe the derivation and evaluation of Top of the Atmosphere (TOA) Shortwave Radiative (SWR) Fluxes from the Advanced Baseline Imager (ABI) sensor on the GOES-18 satellite. The TOA estimates use narrowband observations from ABI that are transformed to broadband (NTB), based on simulations and adjusted to total fluxes using Angular Distribution Models (ADMs). Subsequently, the GOES-18 estimates are evaluated against the Clouds and the Earth’s Radiant Energy System (CERES) data, the only observed SWR broadband flux dataset. The importance of agreement at the TOA is that most methodologies to derive surface SWR start with the satellite observation at the TOA. Moreover, information needed to compute radiative fluxes at both boundaries (TOA and surface) is needed for estimating the energy absorbed by the atmosphere. The methodology described was comprehensively evaluated, and possible sources of errors were identified. The results of the evaluation for the four seasonal months indicate that by using the best available auxiliary data, the accuracy achieved in estimating TOA SWR at the instantaneous scale ranges between 0.55 and 17.14 W m−2 for the bias and 22.21 to 30.64 W m−2 for the standard deviation of biases (differences are ABI minus CERES). It is believed that the high bias of 17.14 for July is related to the predominantly cloudless sky conditions, when the used ADMs do not perform as well as for cloudy conditions. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

10 pages, 701 KiB  
Article
Beyond Wave-Nature Signatures: h-Independent Transport in Strongly-Scattering Quasi-2D Quantum Channels
by Er’el Granot
Condens. Matter 2025, 10(3), 46; https://doi.org/10.3390/condmat10030046 - 14 Aug 2025
Viewed by 181
Abstract
The Landauer-Büttiker formalism provides a fundamental framework for mesoscopic transport, typically expressing conductance in units of the quantum of conductance, e2/h. Here, we present a theoretical study of electron transport in a quasi two-dimensional (2D) quantum wire. This system [...] Read more.
The Landauer-Büttiker formalism provides a fundamental framework for mesoscopic transport, typically expressing conductance in units of the quantum of conductance, e2/h. Here, we present a theoretical study of electron transport in a quasi two-dimensional (2D) quantum wire. This system features a wide transverse confinement and a longitudinal, high-energy, narrow potential barrier. The derivation, performed within the Landauer framework, yields an analytical expression for the total conductance that is explicitly independent of Planck’s constant (h). Instead, the conductance is found to depend solely on the Fermi energy, the electron effective mass, the wire width, and the effective barrier strength. We interpret this as an emergent phenomenon where the explicit signature of the electron’s wave-like nature, commonly manifest through Planck’s constant (h) in the overall scaling of conductance, is effectively absorbed within the energy- and geometry-dependent sum of transmission probabilities. This allows the conductance to be primarily governed by the Fermi energy, representing a ‘state-counting’ quantum parameter rather than more wave-like characteristic. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

25 pages, 4591 KiB  
Article
Dynamic Response Analysis of a New Combined Concept of a Spar Wind Turbine and Multi-Section Wave Energy Converter Under Operational Conditions
by Jiahao Xu, Ling Wan, Guochun Xu, Jianjian Xin, Wei Shi, Kai Wang and Constantine Michalides
J. Mar. Sci. Eng. 2025, 13(8), 1538; https://doi.org/10.3390/jmse13081538 - 11 Aug 2025
Viewed by 339
Abstract
To achieve the ‘zero carbon’ target, offshore renewable energy exploration plays a key role in many countries. Offshore wind energy and wave energy are both important offshore renewable energies. With the target to reduce the cost of energy, a new combined wind and [...] Read more.
To achieve the ‘zero carbon’ target, offshore renewable energy exploration plays a key role in many countries. Offshore wind energy and wave energy are both important offshore renewable energies. With the target to reduce the cost of energy, a new combined wind and wave energy converter is proposed in this work. The new concept consists of a spar-type floating wind turbine and a multi-section pitch-type wave energy converter (WEC). The WEC is attached to the spar column and consists of multiple sections with different lengths to absorb wave energy at different wave frequencies, i.e., multi-band absorption. Through multi-band wave energy absorption, the total power is expected to increase. In addition, through synergetic design, the dynamic motions of the platform are expected to decrease. In this paper, a fully coupled numerical model of the concept is established, based on the hybrid time–frequency-domain simulation framework. The frequency-domain hydrodynamic properties were transferred to the time domain. Then, the dynamic performance of the combined concept under wind–wave conditions was studied, especially under operational conditions. Mechanical couplings among multiple floating bodies were taken into account. To demonstrate the WEC effects on the floating wind turbine, the dynamic performance of the combined wind–wave energy converter concept was compared with the segregated floating wind turbine, with a focus on motions and output power. It was expected that the average overall output power of the multi-section WEC could be above 160 kW. The advantages of the combined concept are demonstrated. Full article
(This article belongs to the Special Issue Optimized Design of Offshore Wind Turbines)
Show Figures

Figure 1

27 pages, 14919 KiB  
Article
A Super-Twisting Sliding-Mode Control Strategy for a Heaving Point Absorber Wave Energy Converter
by Zhongfeng Li, Lixian Wang, Lidong Wang, Xiaoping Liu, Zhongyi Wang and Lei Liu
J. Mar. Sci. Eng. 2025, 13(7), 1214; https://doi.org/10.3390/jmse13071214 - 23 Jun 2025
Viewed by 366
Abstract
This paper proposes a super-twisting sliding-mode control (STSMC) strategy to enhance the efficiency and stability of a heaving point absorber wave energy converter (PAWEC) system equipped with a permanent magnet synchronous generator (PMSG). In particular, the STSMC is designed to address both generator-side [...] Read more.
This paper proposes a super-twisting sliding-mode control (STSMC) strategy to enhance the efficiency and stability of a heaving point absorber wave energy converter (PAWEC) system equipped with a permanent magnet synchronous generator (PMSG). In particular, the STSMC is designed to address both generator-side and grid-side control challenges by ensuring precise regulation under varying wave conditions. A dynamical model of the PAWEC is developed to describe system responses, while the power take-off (PTO) mechanism is tailored to maintain consistent generator speed and efficient energy conversion. Lyapunov stability theory is employed to verify the stability of the proposed controller. Simulation studies and tests on a small-scale experimental setup with a 500 W PAWEC model under regular and irregular waves demonstrate that STSMC improves generator speed regulation and power output by more than 30% compared to field-oriented control (FOC), nonlinear adaptive backstepping (NAB), and first-order sliding-mode control (FOSMC). The proposed approach also manages grid-side total harmonic distortion (THD) effectively, keeping it below 5%. These results indicate that STSMC can substantially improve the dynamic performance and energy efficiency of wave energy systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 11218 KiB  
Article
Transient Temperature Evaluation and Thermal Management Optimization Strategy for Aero-Engine Across the Entire Flight Envelope
by Weilong Gou, Shiyu Yang, Kehan Liu, Yuanfang Lin, Xingang Liang and Bo Shi
Aerospace 2025, 12(6), 562; https://doi.org/10.3390/aerospace12060562 - 19 Jun 2025
Viewed by 723
Abstract
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering [...] Read more.
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering fluid–solid coupling heat transfer on both the main flow path and fuel systems. Firstly, the impact of heat transfer on the acceleration and deceleration performance of a low-bypass-ratio turbofan engine was analyzed. The results indicate that, compared to the conventional adiabatic model, the improved model predicts metal components absorb 4.5% of the total combustor energy during cold-state acceleration, leading to a maximum reduction of 1.42 kN in net thrust and an increase in specific fuel consumption by 1.18 g/(kN·s). Subsequently, a systematic evaluation of engine thermal management performance throughout the complete flight mission was conducted, revealing the limitations of the existing thermal management design and proposing targeted optimization strategies, including employing Cooled Cooling Air technology to improve high-pressure turbine blade cooling efficiency, dynamically adjusting low-pressure turbine bleed air to minimize unnecessary losses, optimizing fuel heat sink utilization for enhanced cooling performance, and replacing mechanical pumps with motor pumps for precise fuel supply control. Full article
(This article belongs to the Special Issue Aircraft Thermal Management Technologies)
Show Figures

Figure 1

34 pages, 4318 KiB  
Review
Towards an Integrated Socio-Ecological Approach in Green Building Transitions: A Systematic Literature Review
by Jingqing Hong, Isabelle Chan and Pei Ma
Sustainability 2025, 17(12), 5491; https://doi.org/10.3390/su17125491 - 14 Jun 2025
Viewed by 566
Abstract
In view of the growing interest in green building transitions (GBTs) over the past decade, various GBT frameworks have been developed. Concurrently, a comprehensive systematic review of GBT research is yet to be conducted, leaving ambiguity surrounding the evolution and adoption of diverse [...] Read more.
In view of the growing interest in green building transitions (GBTs) over the past decade, various GBT frameworks have been developed. Concurrently, a comprehensive systematic review of GBT research is yet to be conducted, leaving ambiguity surrounding the evolution and adoption of diverse models in this field. In general, existing frameworks mainly adopt socio-technical or socio-institutional approaches. Focusing on different individual practices, these studies have resulted in fragmented results. There is a lack of an integrative understanding of the socio-ecology of the GBT system. Hence, this study aims to consolidate existing research works conducted in the GBT fields and develop an integrative GBT framework towards a socio-ecological approach. A mixed-methods approach was employed, combining qualitative content analysis with quantitative bibliometric methods. The findings indicated that qualitative approaches (constituting 47%, encompassing 34 articles) and modeling techniques (comprising 37%, amounting to 27 articles) emerged as the predominant research methodologies employed. Evolutionary game theory and the multi-level perspective stood out as the most prevalent theoretical frameworks utilized in studies of GBT. Noteworthy contributions to the field were observed from China (with 29 articles) and the UK (with 17 articles). Notable keywords such as “barriers” (frequency = 16) and “energy” (frequency = 11) were identified as pivotal in the analysis. Furthermore, a total of ten co-occurrence clusters were identified to classify related keywords, enhancing content relevance and pinpointing key thematic groupings. The findings highlighted the need for a new direction in future GBT research, specifically focusing on the socio-ecological perspective. This perspective not only focuses on the human dimension of technical and institutional factors but also on the exchange between the ecosystem and society. It also emphasizes the resilience and adaptability to absorb disruptions and progress towards a more desired system state. This study offers valuable contributions to the existing body of GBT literature and has implications for researchers and research institutions in this field. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

19 pages, 3303 KiB  
Article
Microstructure and Hydrogen Sorption Kinetics of Ball-Milled Mg60Ni25Cu10Ce5 Nanocrystalline Powders
by Ádám Révész, Richárd Nagy, Zoltán Dankházi, Stanislava Todorova and Tony Spassov
Energies 2025, 18(11), 2925; https://doi.org/10.3390/en18112925 - 3 Jun 2025
Viewed by 445
Abstract
High-energy ball milling for different durations was used to synthesize nanocrystalline Mg60Ni25Cu10Ce5 powders. The morphology and microstructure of the milled powders were investigated by scanning electron microscopy and X-ray diffraction, respectively. It was found that different [...] Read more.
High-energy ball milling for different durations was used to synthesize nanocrystalline Mg60Ni25Cu10Ce5 powders. The morphology and microstructure of the milled powders were investigated by scanning electron microscopy and X-ray diffraction, respectively. It was found that different milling times result in considerably different phase composition. The powder milled for 1 h is characterized by elemental Mg, Ni, Cu and Ce with some minor content of intermetallics. In total, 3 h milling promotes the intensive formation of intermetallic compounds, while 10 h of powder processing results in a partially amorphous state coupled with compound phases. Isothermal hydrogenation and dehydrogenation experiments were conducted in a Sieverts’-type apparatus. It was found that all powders absorb H2 reversibly, while the shortest milling time provides the best overall capacity. Excellent kinetics without any activation cycle were obtained for the 3 h milled composite, releasing and absorbing 50% of the total hydrogen content within 120 s. Each kinetic measurement has satisfactorily been fitted by the Johnson–Mehl–Avrami function. X-ray diffraction analysis on the dehydrided powders confirmed the complete desorption. Full article
Show Figures

Figure 1

21 pages, 914 KiB  
Article
Dynamic Spillover Effects Among China’s Energy, Real Estate, and Stock Markets: Evidence from Extreme Events
by Fusheng Xie, Jingbo Wang and Chunzi Wang
Int. J. Financial Stud. 2025, 13(2), 97; https://doi.org/10.3390/ijfs13020097 - 1 Jun 2025
Viewed by 870
Abstract
This paper employs a Time-Varying Parameter Vector Autoregression Directional–Spillover (TVP-VAR-DY) model to investigate the dynamic spillover effects among China’s energy, real estate, and stock markets from 2013 to 2023, with a focus on the impact of extreme events. The findings show that the [...] Read more.
This paper employs a Time-Varying Parameter Vector Autoregression Directional–Spillover (TVP-VAR-DY) model to investigate the dynamic spillover effects among China’s energy, real estate, and stock markets from 2013 to 2023, with a focus on the impact of extreme events. The findings show that the total conditional spillover index (TCI) typically remains below 40% in the absence of extreme events, but significantly increases during such events, reaching 51.09% during the 2015 stock market crisis and nearing 60% during the COVID-19 pandemic in 2020. Specifically, the oil and gas market exhibited a net spillover index of 4.61%, emerging as a major source of risk transmission. In contrast, the real estate market, which had a net spillover index of −9.38%, became a net risk absorber. The net spillover index indicates that the risk transmission role of different markets towards other markets is dynamically changing over time and is closely related to significant global or domestic economic events. These results indicate that extreme events not only directly impact specific markets but also rapidly propagate risks through complex inter-market linkages, exacerbating systemic risks. Therefore, it is recommended to enhance market monitoring, improve transparency, and optimize risk management strategies to cope with uncertainties in the global economy and financial markets. Full article
(This article belongs to the Special Issue Risks and Uncertainties in Financial Markets)
Show Figures

Figure 1

20 pages, 5068 KiB  
Article
Energy-Absorbing Countermeasures for Subway-to-Pedestrian Collisions: A Combined Experimental and Multibody Modelling Approach
by Daniel Hall, Logan Zentz, Patrick Lynch and Ciaran Simms
Appl. Sci. 2025, 15(11), 6219; https://doi.org/10.3390/app15116219 - 31 May 2025
Viewed by 441
Abstract
Epidemiological analysis has revealed key insights into the frequency, severity, and circumstances surrounding subway-to-pedestrian incidents; however, there remains a lack of available impact test data specific to this impact type that can be used in modelling and countermeasure design studies. To address this [...] Read more.
Epidemiological analysis has revealed key insights into the frequency, severity, and circumstances surrounding subway-to-pedestrian incidents; however, there remains a lack of available impact test data specific to this impact type that can be used in modelling and countermeasure design studies. To address this gap, nine controlled impact tests were conducted using a cylindrical headform to derive force–penetration relationships for foam, as well as foam encased in 1 mm aluminium or 3 mm ABS shells. These relationships were validated in MADYMO multibody simulations. Building on a previous multibody computational study of subway-to-pedestrian collisions this research evaluates three passive countermeasure designs using a reduced simulation test matrix: three impact velocities (8, 10, and 12 m/s) and a trough depth of 0.75 m. In subway collisions, due to the essential rigidity of a subway front relative to a pedestrian, it is the pedestrian stiffness characteristics that primarily dictate the contact dynamics, as opposed to a combined effective stiffness. However, the introduction of energy-absorbing countermeasures alters this interaction. Results indicate that modular energy-absorbing panels attached to the train front significantly reduced the Head Injury Criterion (HIC) (by 90%) in the primary impact and pedestrian-to-wheel contact risk (by 58%), with greater effectiveness when a larger frontal area was covered. However, reducing primary impact severity alone did not substantially lower total fatal injury risk. A rail-guard design, used in combination with frontal panels, reduced secondary impact severity and led to the largest overall reduction in fatal injuries. This improvement came with an expected increase in hospitalisation-level outcomes, such as limb trauma, reflecting a shift from fatal to survivable injuries. These findings demonstrate that meaningful reductions in fatalities are achievable, even with just 0.5 m of available space on the train front. While further development is needed, this study supports the conclusion that subway-to-pedestrian fatalities are preventable. Full article
Show Figures

Figure 1

27 pages, 2118 KiB  
Article
Optimal and Sustainable Scheduling of Integrated Energy System Coupled with CCS-P2G and Waste-to-Energy Under the “Green-Carbon” Offset Mechanism
by Xin Huang, Junjie Zhong, Maner Xiao, Yuhui Zhu, Haojie Zheng and Bensheng Zheng
Sustainability 2025, 17(11), 4873; https://doi.org/10.3390/su17114873 - 26 May 2025
Viewed by 598
Abstract
Waste-to-energy (WTE) is considered the most promising method for municipal solid waste treatment. An integrated energy system (IES) with carbon capture systems (CCS) and power-to-gas (P2G) can reduce carbon emissions. The incorporation of a “green-carbon” offset mechanism further enhances renewable energy consumption. Therefore, [...] Read more.
Waste-to-energy (WTE) is considered the most promising method for municipal solid waste treatment. An integrated energy system (IES) with carbon capture systems (CCS) and power-to-gas (P2G) can reduce carbon emissions. The incorporation of a “green-carbon” offset mechanism further enhances renewable energy consumption. Therefore, this study constructs a WTE-IES hybrid system, which conducts multi-dimensional integration of IES-WTP, CCS-P2G, photovoltaic (PV), wind turbine (WT), multiple energy storage technologies, and the “green-carbon” offset mechanism. It breaks through the limitations of traditional single-technology optimization and achieves the coordinated improvement of energy, environmental, and economic triple benefits. First, waste incineration power generation is coupled into the IES. A mathematical model is then established for the waste incineration and CCS-P2G IES. The CO2 produced by waste incineration is absorbed and reused. Finally, the “green-carbon” offset mechanism is introduced to convert tradable green certificates (TGCs) into carbon emission rights. This approach ensures energy demand satisfaction while minimizing carbon emissions. Economic incentives are also provided for the carbon capture and conversion processes. A case study of an industrial park is conducted for validation. The industrial park has achieved a reduction in carbon emissions of approximately 72.1% and a reduction in the total cost of approximately 33.5%. The results demonstrate that the proposed method significantly reduces carbon emissions. The energy utilization efficiency and system economic performance are also improved. This study provides theoretical and technical support for the low-carbon development of future IES. Full article
Show Figures

Figure 1

27 pages, 3894 KiB  
Article
The Effects of Increasing Ambient Temperature and Sea Surface Temperature Due to Global Warming on Combined Cycle Power Plant
by Asiye Aslan and Ali Osman Büyükköse
Sustainability 2025, 17(10), 4605; https://doi.org/10.3390/su17104605 - 17 May 2025
Viewed by 2059
Abstract
The critical consequence of climate change resulting from global warming is the increase in temperature. In combined cycle power plants (CCPPs), the Electric Power Output (PE) is affected by changes in both Ambient Temperature (AT) and Sea Surface Temperature (SST), particularly in plants [...] Read more.
The critical consequence of climate change resulting from global warming is the increase in temperature. In combined cycle power plants (CCPPs), the Electric Power Output (PE) is affected by changes in both Ambient Temperature (AT) and Sea Surface Temperature (SST), particularly in plants utilizing seawater cooling systems. As AT increases, air density decreases, leading to a reduction in the mass of air absorbed by the gas turbine. This change alters the fuel–air mixture in the combustion chamber, resulting in decreased turbine power. Similarly, as SST increases, cooling efficiency declines, causing a loss of vacuum in the condenser. A lower vacuum reduces the steam expansion ratio, thereby decreasing the Steam Turbine Power Output. In this study, the effects of increases in these two parameters (AT and SST) due to global warming on the PE of CCPPs are investigated using various regression analysis techniques, Artificial Neural Networks (ANNs) and a hybrid model. The target variables are condenser vacuum (V), Steam Turbine Power Output (ST Power Output), and PE. The relationship of V with three input variables—SST, AT, and ST Power Output—was examined. ST Power Output was analyzed with four input variables: V, SST, AT, and relative humidity (RH). PE was analyzed with five input variables: V, SST, AT, RH, and atmospheric pressure (AP) using regression methods on an hourly basis. These models were compared based on the Coefficient of Determination (R2), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Square Error (MSE), and Root Mean Square Error (RMSE). The best results for V, ST Power Output, and PE were obtained using the hybrid (LightGBM + DNN) model, with MAE values of 0.00051, 1.0490, and 2.1942, respectively. As a result, a 1 °C increase in AT leads to a decrease of 4.04681 MWh in the total electricity production of the plant. Furthermore, it was determined that a 1 °C increase in SST leads to a vacuum loss of up to 0.001836 bara. Due to this vacuum loss, the steam turbine experiences a power loss of 0.6426 MWh. Considering other associated losses (such as generator efficiency loss due to cooling), the decreases in ST Power Output and PE are calculated as 0.7269 MWh and 0.7642 MWh, respectively. Consequently, the combined effect of a 1 °C increase in both AT and SST results in a 4.8110 MWh production loss in the CCPP. As a result of a 1 °C increase in both AT and SST due to global warming, if the lost energy is to be compensated by an average-efficiency natural gas power plant, an imported coal power plant, or a lignite power plant, then an additional 610 tCO2e, 11,184 tCO2e, and 19,913 tCO2e of greenhouse gases, respectively, would be released into the atmosphere. Full article
Show Figures

Figure 1

28 pages, 1216 KiB  
Article
Mathematical Model to Improve Energy Efficiency in Hammer Mills and Its Use in the Feed Industry: Analysis and Validation in a Case Study in Cuba
by Yoisdel Castillo Alvarez, Reinier Jiménez Borges, José Pedro Monteagudo Yanes, Berlan Rodríguez Pérez, Carlos Diego Patiño Vidal and Roberto Pfuyo Muñoz
Processes 2025, 13(5), 1523; https://doi.org/10.3390/pr13051523 - 15 May 2025
Cited by 1 | Viewed by 1406
Abstract
The feed industry is characterized by high energy consumption during the grinding stage, where hammer mills can account for up to 50% of total electricity usage; furthermore, efficiency analyses are based only on the classical equations reported in the literature. In this context, [...] Read more.
The feed industry is characterized by high energy consumption during the grinding stage, where hammer mills can account for up to 50% of total electricity usage; furthermore, efficiency analyses are based only on the classical equations reported in the literature. In this context, the present theoretical-applied research aimed to improve the efficiency of a plant operating below its nominal capacity. To achieve this, a comprehensive mathematical model was developed, integrating power and grain disintegration equations while overcoming the limitations of classical comminution theories. The model incorporates key factors such as feed rate, moisture content, absorbed power and hammer wear. Additionally, specific correction factors for temperature (Kt) and mechanical degradation (Kd) were introduced to accurately represent real operating conditions. The study was based on extensive measurements of electrical current, power factor, energy consumption, particle size distribution and thermal variations under different load conditions. The statistical analysis, which included ANOVA, ANCOVA and multiple regressions, demonstrated a predictive accuracy of 98% (R2) and a pseudo-R2 of 89%. This high correlation allowed for an 18% reduction in energy consumption equivalent to 4 kWh/t and up to a 30% improvement in particle size uniformity, surpassing typical factory performance. The findings highlight that integrating operational, thermodynamic and wear-related factors enhances the robustness of the model, promoting more reliable energy-management practices in hammer mills. Consequently, the results confirm that the developed model serves as a scientifically robust, efficient and applicable tool for improving energy efficiency and reducing environmental impacts in the agri-food industry. Full article
(This article belongs to the Special Issue Research and Optimization of Food Processing Technology)
Show Figures

Figure 1

19 pages, 3724 KiB  
Article
Computational Fluid Dynamics–Discrete Element Method Numerical Simulation of Hydrothermal Liquefaction of Sewage Sludge in a Tube Reactor as a Linear Fresnel Solar Collector
by Artur Wodołażski
Solar 2025, 5(2), 16; https://doi.org/10.3390/solar5020016 - 28 Apr 2025
Viewed by 1789
Abstract
This paper discusses the thermal and exergy efficiency analysis of the hydrothermal liquefaction (HTL) process, which converts sewage sludge into biocrude oil in a continuous plug–flow reactor using a linear Fresnel solar collector. The investigation focuses on the influence of key operational parameters, [...] Read more.
This paper discusses the thermal and exergy efficiency analysis of the hydrothermal liquefaction (HTL) process, which converts sewage sludge into biocrude oil in a continuous plug–flow reactor using a linear Fresnel solar collector. The investigation focuses on the influence of key operational parameters, including slurry flow rate, temperature, pressure, residence time, and the external heat transfer coefficient, on the overall efficiency of biocrude oil production. A detailed thermodynamic evaluation was conducted using process simulation principles and a kinetic model to assess mass and energy balances within the HTL reaction, considering heat and mass momentum exchange in a multiphase system using UDF. The reactor’s receiver, a copper absorber tube, has a total length of 20 m and is designed in a coiled configuration from the base to enhance heat absorption efficiency. To optimize the thermal performance of biomass conversion in the HTL process, a Computational Fluid Dynamics–Discrete Element Method (CFD-DEM) coupling numerical method approach was employed to investigate improved thermal performance by obtaining a heat source solely through solar energy. This numerical modeling approach allows for an in-depth assessment of heat transfer mechanisms and fluid-particle interactions, ensuring efficient energy utilization and sustainable process development. The findings contribute to advancing solar-driven HTL technologies by maximizing thermal efficiency and minimizing external energy requirements. Full article
Show Figures

Graphical abstract

Back to TopTop