Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = tolerogenic dendritic cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2205 KiB  
Article
Lupeol Attenuates Oxysterol-Induced Dendritic Cell Activation Through NRF2-Mediated Antioxidant and Anti-Inflammatory Effects
by Sarmistha Saha, Antonella Capozzi, Elisabetta Profumo, Cristiano Alessandri, Maurizio Sorice, Luciano Saso and Brigitta Buttari
Int. J. Mol. Sci. 2025, 26(15), 7179; https://doi.org/10.3390/ijms26157179 - 25 Jul 2025
Viewed by 177
Abstract
Oxysterols such as 7-ketocholesterol (7KCh) contribute to the pathogenesis of autoimmune and chronic inflammatory diseases by inducing oxidative stress and promoting pro-inflammatory immune cell activation. Dendritic cells (DCs) play a central role in maintaining immune tolerance, and their dysregulation is a key driver [...] Read more.
Oxysterols such as 7-ketocholesterol (7KCh) contribute to the pathogenesis of autoimmune and chronic inflammatory diseases by inducing oxidative stress and promoting pro-inflammatory immune cell activation. Dendritic cells (DCs) play a central role in maintaining immune tolerance, and their dysregulation is a key driver of autoimmunity. Targeting DCs by using natural compounds offers a promising strategy to restore redox balance and suppress aberrant immune responses. This study investigated the immunomodulatory and antioxidant properties of Lupeol, a natural triterpenoid, in human monocyte-derived DCs exposed to 7KCh. Flow cytometry and cytokine profiling demonstrated that Lupeol preserved the immature, tolerogenic phenotype of DCs by promoting a dose-dependent increase in the anti-inflammatory cytokine IL-10. Lupeol also inhibited the 7KCh-induced upregulation of maturation markers (CD83, CD86) and suppressed the release of pro-inflammatory cytokines IL-1β and IL-12p70. Functionally, Lupeol-treated DCs directed T cell polarization toward an anti-inflammatory and regulatory profile while dampening the inflammatory responses triggered by 7KCh. This immunoregulatory effect was further supported by the decreased secretion of the pro-inflammatory cytokines IL-1β and IL-12p70 in DC culture supernatants. Mechanistic analyses using immunofluorescence showed that Lupeol alone significantly increased nuclear NRF2 levels and upregulated HO-1 expression. Western blot analysis further confirmed Lupeol’s ability to activate the KEAP1-NRF2 signaling pathway, as evidenced by increased expression of NRF2 and its downstream target, NQO1. The use of ML385, a selective NRF2 inhibitor, in ROS and cytokine assays supported the involvement of NRF2 in mediating the Lupeol antioxidant and anti-inflammatory effects in DCs. Notably, the oxidative burden induced by 7KCh limited the full activation of NRF2 signaling triggered by Lupeol. Furthermore, docking and MM/PBSA analyses revealed the specific interactions of Lupeol with the kelch domain of KEAP1. These findings suggest that Lupeol may serve as a promising orally available immunomodulatory agent capable of promoting tolerogenic DCs, offering potential applications in autoimmune and other chronic inflammatory diseases. Full article
(This article belongs to the Special Issue Updates on Synthetic and Natural Antioxidants)
Show Figures

Figure 1

23 pages, 3048 KiB  
Article
Ivy Leaf Dry Extract EA 575® Is a Potent Immunomodulator Acting on Dendritic Cells
by Miodrag Čolić, Sergej Tomić, Marina Bekić, Anđela Dubovina, Hanns Häberlein, André Rademaekers, Srđan Mašić and Dejan Bokonjić
Pharmaceutics 2025, 17(6), 773; https://doi.org/10.3390/pharmaceutics17060773 - 12 Jun 2025
Cited by 1 | Viewed by 725
Abstract
Background/Objectives: Ivy leaf extract has been shown to alleviate bronchial infection symptoms through various mechanisms, including anti-inflammatory effects. However, its impact on adaptive immunity, particularly dendritic cell (DC)/T-cell interactions, remains unexplored. This study investigated the immunomodulatory potential of ivy leaf extract (EA [...] Read more.
Background/Objectives: Ivy leaf extract has been shown to alleviate bronchial infection symptoms through various mechanisms, including anti-inflammatory effects. However, its impact on adaptive immunity, particularly dendritic cell (DC)/T-cell interactions, remains unexplored. This study investigated the immunomodulatory potential of ivy leaf extract (EA 575®) using human monocyte-derived DCs (MoDCs). Methods: Immature MoDCs (imMoDCs) were differentiated with IL-4/GM-CSF and matured with LPS/IFN-γ (mMoDCs). MoDCs, treated with EA 575® during differentiation, were co-cultured with purified T cells. Results: EA 575® (non-cytotoxic up to 100 µg/mL) inhibited MoDC differentiation and maturation by reducing the expression of CD1a, CD83, CD40, CD86, HLA-DR, Dectin-1, CD206, CD209, HIF-1α, and proinflammatory cytokines (IL-12, IL-23, IL-27, IL-1β, IL-6, TNF-α). EA 575®-treated mMoDCs suppressed allogeneic T-cell proliferation and reduced Th1 (IFN-γ), Th17 (IL-17A, IL-22), Th9 (IL-9), Th21 (IL-21), TNF-α, and IL-6 responses. Effects were dose-dependent, with higher concentrations (100 µg/mL) showing stronger inhibition. At lower concentrations (20 µg/mL), EA 575® increased Th2 (IL-4, IL-5) and IL-10 responses, and the frequencies of CD4+ T cells with Treg properties, such as CD25hiFoxp3+, Tr1 (IL-10+Foxp3−), and IL-35+ Foxp3+ cells. Immunoregulatory mechanisms mediated by EA 575®-treated mMoDCs correlated with the upregulation of tolerogenic markers (PD-L1, ILT3, ILT4, IDO1) on mMoDCs and the increased frequency of exhausted CD4+ T cells (PD-1+CD69+) and cytotoxic T cells (Granzyme B+PD-1+). Conclusions: EA 575® induces tolerogenic DCs with significant anti-inflammatory and immunoregulatory properties, a previously undescribed phenomenon. Lower concentrations primarily enhance immunoregulatory responses, while higher concentrations exert more pronounced anti-inflammatory effects. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

21 pages, 1498 KiB  
Article
Physiological Oxygen Levels in the Microenvironment Program Ex Vivo-Generated Conventional Dendritic Cells Toward a Tolerogenic Phenotype
by Antonia Peter, Morgane Vermeulen, Mats Van Delen, Amber Dams, Stefanie Peeters, Hans De Reu, Waleed F. A. Marei, Zwi N. Berneman and Nathalie Cools
Cells 2025, 14(10), 736; https://doi.org/10.3390/cells14100736 - 18 May 2025
Viewed by 711
Abstract
Dendritic cells (DCs) are critical regulators of immune homeostasis, balancing tolerance and immunity through antigen presentation and T cell modulation. While the influence of hypoxia (<2% O2) on DC function in pathological settings is well-documented, the impact of physiological O2 [...] Read more.
Dendritic cells (DCs) are critical regulators of immune homeostasis, balancing tolerance and immunity through antigen presentation and T cell modulation. While the influence of hypoxia (<2% O2) on DC function in pathological settings is well-documented, the impact of physiological O2 levels remains underexplored. This study investigates the role of physioxia (4% O2) in programming mature DCs toward a tolerogenic phenotype compared to atmospheric conditions (21% O2) typically present in in vitro assays. DC cultures generated under 4% O2 exhibited a reduced monocyte-to-DC transformation rate, increased lactate production, a semi-mature surface marker profile, and increased surface expression of the tolerance-associated marker ILT4. T cell priming was altered only when atmospheric DCs were co-cultured under physioxia, suggesting an O2-dependent threshold for immunostimulatory capacity. These findings highlight the complexity of O2-dependent mechanisms in DC-T cell interactions, revealing a delicate balance between tolerance and immunogenicity. Our results underscore the need for physiologically relevant O2 conditions in DC research to better reflect in vivo behavior and inform immunotherapy design. Overall, this study advances understanding of how microenvironmental cues shape DC biology, with implications for immune tolerance, autoimmunity, and cancer immunotherapy. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Immune Regulation)
Show Figures

Figure 1

20 pages, 16827 KiB  
Article
Selenium-Binding Protein 1-Deficient Dendritic Cells Protect Mice from Sepsis by Increased Treg/Th17
by Xin Zhang, Shuang Han, Zhu Zeng, Jie Dai and Yi Jia
Antioxidants 2025, 14(4), 468; https://doi.org/10.3390/antiox14040468 - 14 Apr 2025
Viewed by 777
Abstract
Selenium-binding protein 1 (SELENBP1) has been implicated in cancer development, neurological disorders, tissue injury, metabolic regulation, and cell differentiation. Sepsis is characterized prominently by immunological dysregulation and severe organ damage. However, whether SELENBP1 improves sepsis by regulating immune cell activity remains unknown. Here, [...] Read more.
Selenium-binding protein 1 (SELENBP1) has been implicated in cancer development, neurological disorders, tissue injury, metabolic regulation, and cell differentiation. Sepsis is characterized prominently by immunological dysregulation and severe organ damage. However, whether SELENBP1 improves sepsis by regulating immune cell activity remains unknown. Here, we detected an elevation of SELENBP1 levels in the blood of sepsis patients and in the livers of septic mice. Significantly, SELENBP1 knockout (KO) prolonged survival in septic mice. This phenomenon was accompanied by decreased liver damage, reduced inflammation levels, and an increased regulatory T cell/T helper 17 cell (Treg/Th17) ratio in the spleen. Additionally, SELENBP1 deficiency induced a redox imbalance and inhibited dendritic cell (DC) maturation, resulting in a tolerogenic DC (tolDC) phenotype and an increase in the Treg/Th17 ratio. Furthermore, SELENBP1-KO mature DCs (mDCs) alleviated liver injury by increasing the Treg/Th17 ratio in the spleen, thus improving the survival of septic mice. These findings indicate that SELENBP1 is involved in sepsis by regulating DC immune activity, which might provide a potential way for sepsis treatment. Full article
(This article belongs to the Special Issue Exploring Biomarkers of Oxidative Stress in Health and Disease)
Show Figures

Figure 1

13 pages, 409 KiB  
Review
Ultraviolet Radiation-Induced Tolerogenic Dendritic Cells in Skin: Insights and Mechanisms
by Gelare Ghajar-Rahimi, Nabiha Yusuf and Hui Xu
Cells 2025, 14(4), 308; https://doi.org/10.3390/cells14040308 - 18 Feb 2025
Viewed by 1538
Abstract
Ultraviolet (UV) radiation has profound effects on the immune system, including the induction of tolerogenic dendritic cells (DCs), which contribute to immune suppression and tolerance. This review explores the roles of conventional CD11c⁺ DCs, as well as cutaneous Langerhans cells and CD11b⁺ myeloid [...] Read more.
Ultraviolet (UV) radiation has profound effects on the immune system, including the induction of tolerogenic dendritic cells (DCs), which contribute to immune suppression and tolerance. This review explores the roles of conventional CD11c⁺ DCs, as well as cutaneous Langerhans cells and CD11b⁺ myeloid cells, in UV-induced immune modulation. Two key mechanisms underlying the immunosuppressive relationship between UV and DCs are discussed: the inactivation of DCs and the induction of tolerogenic DCs. DCs serve as a critical link between the innate and adaptive immune systems, serving as professional antigen-presenting cells. In this context, we explore how UV-induced DCs influence the activity of specific T cell subsets, including regulatory T lymphocytes and T helper cells, and shape immune outcomes. Finally, we highlight the implications of UV-induced tolerogenic DCs in select dermatologic pathologies, including cutaneous lupus, polymorphic light eruption, and skin cancer. Understanding the mechanisms by which UV radiation alters DC function offers insights into the complex interplay between environmental factors and immune regulation, providing potential avenues for preventive and therapeutic intervention in UV-induced skin diseases. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Immune Regulation)
Show Figures

Graphical abstract

10 pages, 1763 KiB  
Article
Bridging the Gap Between Tolerogenic Dendritic Cells In Vitro and In Vivo: Analysis of Siglec Genes and Pathways Associated with Immune Modulation and Evasion
by Diahann T. S. L. Jansen, Tatjana Nikolic, Nicoline H. M. den Hollander, Jaap Jan Zwaginga and Bart O. Roep
Genes 2024, 15(11), 1427; https://doi.org/10.3390/genes15111427 - 31 Oct 2024
Cited by 1 | Viewed by 1597
Abstract
Background/Objectives: Dendritic cells (DCs) are master regulators of the adaptive immune response. Inflammatory DCs (inflamDCs) can prime inflammatory T cells in, for instance, cancer and infection. In contrast, tolerogenic DCs (tolDCs) can suppress the immune system through a plethora of regulatory mechanisms in [...] Read more.
Background/Objectives: Dendritic cells (DCs) are master regulators of the adaptive immune response. Inflammatory DCs (inflamDCs) can prime inflammatory T cells in, for instance, cancer and infection. In contrast, tolerogenic DCs (tolDCs) can suppress the immune system through a plethora of regulatory mechanisms in the context of autoimmunity. We successfully generated tolDCs in vitro to durably restore immune tolerance to an islet autoantigen in type 1 diabetes patients in a clinical trial. However, cancers can induce inhibitory DCs in vivo that impair anti-tumor immunity through Siglec signaling. Methods: To connect in vivo and in vitro tolDC properties, we tested whether tolDCs generated in vitro may also employ the Siglec pathway to regulate autoimmunity by comparing the transcriptomes and protein expression of immature and mature inflamDCs and tolDCs, generated from monocytes. Results: Both immature DC types expressed most Siglec genes. The expression of these genes declined significantly in mature inflamDCs compared to mature tolDCs. Surface expression of Siglec proteins by DCs followed the same pattern. The majority of genes involved in the different Siglec pathways were differentially expressed by mature tolDCs, as opposed to inflamDCs, and in inhibitory pathways in particular. Conclusions: Our results show that tolDCs generated in vitro mimic tumor-resident inhibitory DCs in vivo regarding Siglec expression. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 531 KiB  
Review
The Potential of Anti-Inflammatory DC Immunotherapy in Improving Proteinuria in Type 2 Diabetes Mellitus
by Jonny Jonny, Enda Cindylosa Sitepu, I Nyoman Ehrich Lister, Linda Chiuman and Terawan Agus Putranto
Vaccines 2024, 12(9), 972; https://doi.org/10.3390/vaccines12090972 - 27 Aug 2024
Cited by 8 | Viewed by 2122
Abstract
A typical consequence of type 2 diabetes mellitus, diabetic kidney disease (DKD) is a significant risk factor for end-stage renal disease. The pathophysiology of diabetic kidney disease (DKD) is mainly associated with the immune system, which involves adhesion molecules and growth factors disruption, [...] Read more.
A typical consequence of type 2 diabetes mellitus, diabetic kidney disease (DKD) is a significant risk factor for end-stage renal disease. The pathophysiology of diabetic kidney disease (DKD) is mainly associated with the immune system, which involves adhesion molecules and growth factors disruption, excessive expression of inflammatory mediators, decreased levels of anti-inflammatory mediators, and immune cell infiltration in the kidney. Dendritic cells are professional antigen-presenting cells acting as a bridge connecting innate and adaptive immune responses. The anti-inflammatory subset of DCs is also capable of modulating inflammation. Autologous anti-inflammatory dendritic cells can be made by in vitro differentiation of peripheral blood monocytes and utilized as a cell-based therapy. Treatment with anti-inflammatory cytokines, immunosuppressants, and substances derived from pathogens can induce tolerogenic or anti-inflammatory features in ex vivo–generated DCs. It has been established that targeting inflammation can alleviate the progression of DKD. Recent studies have focused on the potential of dendritic cell–based therapies to modulate immune responses favorably. By inducing a tolerogenic phenotype in dendritic cells, it is possible to decrease the inflammatory response and subsequent kidney damage. This article highlights the possibility of using anti-inflammatory DCs as a cell-based therapy for DKD through its role in controlling inflammation. Full article
Show Figures

Figure 1

14 pages, 1267 KiB  
Article
Sensing of an HIV-1–Derived Single-Stranded RNA-Oligonucleotide Induces Arginase 1-Mediated Tolerance
by Chiara Suvieri, Giada Mondanelli, Ciriana Orabona, Maria Teresa Pallotta, Eleonora Panfili, Sofia Rossini, Claudia Volpi and Maria Laura Belladonna
Cells 2024, 13(13), 1088; https://doi.org/10.3390/cells13131088 - 23 Jun 2024
Viewed by 1377
Abstract
Small synthetic oligodeoxynucleotides (ODNs) can mimic microbial nucleic acids by interacting with receptor systems and promoting immunostimulatory activities. Nevertheless, some ODNs can act differently on the plasmacytoid dendritic cell (pDC) subset, shaping their immunoregulatory properties and rendering them suitable immunotherapeutic tools in several [...] Read more.
Small synthetic oligodeoxynucleotides (ODNs) can mimic microbial nucleic acids by interacting with receptor systems and promoting immunostimulatory activities. Nevertheless, some ODNs can act differently on the plasmacytoid dendritic cell (pDC) subset, shaping their immunoregulatory properties and rendering them suitable immunotherapeutic tools in several clinical settings for treating overwhelming immune responses. We designed HIV–1–derived, DNA- and RNA-based oligonucleotides (gag, pol, and U5 regions) and assessed their activity in conferring a tolerogenic phenotype to pDCs in skin test experiments. RNA-but not DNA-oligonucleotides are capable of inducing tolerogenic features in pDCs. Interestingly, sensing the HIV–1–derived single-stranded RNA-gag oligonucleotide (RNA-gag) requires both TLR3 and TLR7 and the engagement of the TRIF adaptor molecule. Moreover, the induction of a suppressive phenotype in pDCs by RNA-gag is contingent upon the induction and activation of the immunosuppressive enzyme Arginase 1. Thus, our data suggest that sensing of the synthetic RNA-gag oligonucleotide in pDCs can induce a suppressive phenotype in pDCs, a property rendering RNA-gag a potential tool for therapeutic strategies in allergies and autoimmune diseases. Full article
(This article belongs to the Collection Feature Papers in ‘Cellular Immunology’)
Show Figures

Graphical abstract

12 pages, 2828 KiB  
Article
NRF2 Plays a Crucial Role in the Tolerogenic Effect of Ethyl Pyruvate on Dendritic Cells
by Suzana Stanisavljević, Goran Stegnjaić, Bojan Jevtić, Mirjana Dimitrijević, Đorđe Miljković, Irena Lavrnja and Neda Nikolovski
Int. J. Mol. Sci. 2024, 25(11), 6195; https://doi.org/10.3390/ijms25116195 - 4 Jun 2024
Viewed by 1655
Abstract
Ethyl pyruvate (EP) is a redox-active compound that has been previously shown to be effective in restraining immune hyperactivity in animal models of various autoimmune and chronic inflammatory diseases. Importantly, EP has also been proven to have a potent tolerogenic effect on dendritic [...] Read more.
Ethyl pyruvate (EP) is a redox-active compound that has been previously shown to be effective in restraining immune hyperactivity in animal models of various autoimmune and chronic inflammatory diseases. Importantly, EP has also been proven to have a potent tolerogenic effect on dendritic cells (DCs). Here, the influence of EP on the signaling pathways in DCs relevant for their tolerogenicity, including anti-inflammatory NRF2 and pro-inflammatory NF-κB, was explored. Specifically, the effects of EP on DCs obtained by GM-CSF-directed differentiation of murine bone marrow precursor cells and matured under the influence of lipopolysaccharide (LPS) were examined via immunocytochemistry and RT-PCR. EP counteracted LPS-imposed morphological changes and down-regulated the LPS-induced expression of pro-inflammatory mediators in DCs. While it reduced the activation of NF-κB, EP potentiated NRF2 and downstream antioxidative molecules, thus implying the regulation of NRF2 signaling pathways as the major reason for the tolerizing effects of EP on DCs. Full article
(This article belongs to the Special Issue Advances in Molecular Research on Autoimmune Diseases, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 3469 KiB  
Article
Myelin Oligodendrocyte Glycoprotein (MOG)35–55 Mannan Conjugate Induces Human T-Cell Tolerance and Can Be Used as a Personalized Therapy for Multiple Sclerosis
by Maria Rodi, Anne-Lise de Lastic, Ioannis Panagoulias, Ioanna Aggeletopoulou, Kostas Kelaidonis, John Matsoukas, Vasso Apostolopoulos and Athanasia Mouzaki
Int. J. Mol. Sci. 2024, 25(11), 6092; https://doi.org/10.3390/ijms25116092 - 31 May 2024
Cited by 1 | Viewed by 2265
Abstract
We have previously performed preclinical studies with the oxidized mannan-conjugated peptide MOG35–55 (OM-MOG35–55) in vivo (EAE mouse model) and in vitro (human peripheral blood) and demonstrated that OM-MOG35–55 suppresses antigen-specific T cell responses associated with autoimmune demyelination. Based on these results, we developed [...] Read more.
We have previously performed preclinical studies with the oxidized mannan-conjugated peptide MOG35–55 (OM-MOG35–55) in vivo (EAE mouse model) and in vitro (human peripheral blood) and demonstrated that OM-MOG35–55 suppresses antigen-specific T cell responses associated with autoimmune demyelination. Based on these results, we developed different types of dendritic cells (DCs) from the peripheral blood monocytes of patients with multiple sclerosis (MS) or healthy controls presenting OM-MOG35–55 or MOG-35–55 to autologous T cells to investigate the tolerogenic potential of OM-MOG35–55 for its possible use in MS therapy. To this end, monocytes were differentiated into different DC types in the presence of IL-4+GM-CSF ± dexamethasone (DEXA) ± vitamin D3 (VITD3). At the end of their differentiation, the DCs were loaded with peptides and co-cultured with T cells +IL-2 for 4 antigen presentation cycles. The phenotypes of the DC and T cell populations were analyzed using flow cytometry and the secreted cytokines using flow cytometry or ELISA. On day 8, the monocytes had converted into DCs expressing the typical markers of mature or immature phenotypes. Co-culture of T cells with all DC types for 4 antigen presentation cycles resulted in an increase in memory CD4+ T cells compared to memory CD8+ T cells and a suppressive shift in secreted cytokines, mainly due to increased TGF-β1 levels. The best tolerogenic effect was obtained when patient CD4+ T cells were co-cultured with VITD3-DCs presenting OM-MOG35–55, resulting in the highest levels of CD4+PD-1+ T cells and CD4+CD25+Foxp3+ Τ cells. In conclusion, the tolerance induction protocols presented in this work demonstrate that OM-MOG35–55 could form the basis for the development of personalized therapeutic vaccines or immunomodulatory treatments for MS. Full article
Show Figures

Figure 1

15 pages, 2828 KiB  
Article
Reduced Tolerogenic Program Death-Ligand 1-Expressing Conventional Type 1 Dendritic Cells Are Associated with Rapid Decline in Chronic Obstructive Pulmonary Disease
by Kuan-Yuan Chen, Wei-Lun Sun, Sheng-Ming Wu, Po-Hao Feng, Chiou-Feng Lin, Tzu-Tao Chen, Yueh-Hsun Lu, Shu-Chuan Ho, Yueh-Hsi Chen and Kang-Yun Lee
Cells 2024, 13(10), 878; https://doi.org/10.3390/cells13100878 - 20 May 2024
Cited by 1 | Viewed by 1838
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is characterized, at least in part, by autoimmunity through amplified T helper 1 and 17 (Th1 and Th17) immune responses. The loss of immune tolerance controlled by programmed death-ligand 1 (PD-L1) may contribute to this. Objectives: We [...] Read more.
Background: Chronic obstructive pulmonary disease (COPD) is characterized, at least in part, by autoimmunity through amplified T helper 1 and 17 (Th1 and Th17) immune responses. The loss of immune tolerance controlled by programmed death-ligand 1 (PD-L1) may contribute to this. Objectives: We studied the tolerogenic role of PD-L1+ dendritic cells (DCs) and their subtypes in relation to specific T cell immunity and the clinical phenotypes of COPD. Methods: We used flow cytometry to analyze PD-L1 expression by the DCs and their subtypes in the peripheral blood mononuclear cells (PBMCs) from normal participants and those with COPD. T cell proliferation and the signature cytokines of T cell subtypes stimulated with elastin as autoantigens were measured using flow cytometry and enzyme-linked immunosorbent assays (ELISA), respectively. Measurement and main results: A total of 83 participants were enrolled (normal, n = 29; COPD, n = 54). A reduced PD-L1+ conventional dendritic cell 1 (cDC1) ratio in the PBMCs of the patients with COPD was shown (13.7 ± 13.7%, p = 0.03). The decrease in the PD-L1+ cDC1 ratio was associated with a rapid decline in COPD (p = 0.02) and correlated with the CD4+ T cells (r = −0.33, p = 0.02). This is supported by the NCBI GEO database accession number GSE56766, the researchers of which found that the gene expressions of PD-L1 and CD4, but not CD8 were negatively correlated from PBMC in COPD patients (r = −0.43, p = 0.002). Functionally, the PD-L1 blockade enhanced CD4+ T cell proliferation stimulated by CD3/elastin (31.2 ± 22.3%, p = 0.04) and interleukin (IL)-17A production stimulated by both CD3 (156.3 ± 54.7, p = 0.03) and CD3/elastin (148 ± 64.9, p = 0.03) from the normal PBMCs. The PD-L1 blockade failed to increase IL-17A production in the cDC1-depleted PBMCs. By contrast, there was no significant change in interferon (IFN)-γ, IL-4, or IL-10 after the PD-L1 blockade. Again, these findings were supported by the NCBI GEO database accession number GSE56766, the researchers of which found that only the expression of RORC, a master transcription factor driving the Th17 cells, was significantly negatively correlated to PD-L1 (r = −0.33, p = 0.02). Conclusions: Circulating PD-L1+ cDC1 was reduced in the patients with COPD, and the tolerogenic role was suppressed with susceptibility to self-antigens and linked to rapid decline caused by Th17-skewed chronic inflammation. Full article
(This article belongs to the Special Issue Dendritic Cells in Health and Disease)
Show Figures

Figure 1

14 pages, 3076 KiB  
Review
Ex Vivo-Generated Tolerogenic Dendritic Cells: Hope for a Definitive Therapy of Autoimmune Diseases
by Jonny, Enda Cindylosa Sitepu, Chairul A. Nidom, Soetojo Wirjopranoto, I. Ketut Sudiana, Arif N. M. Ansori and Terawan Agus Putranto
Curr. Issues Mol. Biol. 2024, 46(5), 4035-4048; https://doi.org/10.3390/cimb46050249 - 28 Apr 2024
Cited by 8 | Viewed by 3747
Abstract
Current therapies for autoimmune diseases are immunosuppressant agents, which have many debilitating side effects. However, dendritic cells (DCs) can induce antigen-specific tolerance. Tolerance restoration mediated by ex vivo-generated DCs can be a therapeutic approach. Therefore, in this review, we summarize the conceptual framework [...] Read more.
Current therapies for autoimmune diseases are immunosuppressant agents, which have many debilitating side effects. However, dendritic cells (DCs) can induce antigen-specific tolerance. Tolerance restoration mediated by ex vivo-generated DCs can be a therapeutic approach. Therefore, in this review, we summarize the conceptual framework for developing ex vivo-generated DC strategies for autoimmune diseases. First, we will discuss the role of DCs in developing immune tolerance as a foundation for developing dendritic cell-based immunotherapy for autoimmune diseases. Then, we also discuss relevant findings from pre-clinical and clinical studies of ex vivo-generated DCs for therapy of autoimmune diseases. Finally, we discuss problems and challenges in dendritic cell therapy in autoimmune diseases. Throughout the article, we discuss autoimmune diseases, emphasizing SLE. Full article
(This article belongs to the Collection Molecular Mechanisms in Human Diseases)
Show Figures

Graphical abstract

14 pages, 6073 KiB  
Article
Immunological Characteristics of Hepatic Dendritic Cells in Patients and Mouse Model with Liver Echinococcus multilocularis Infection
by Hui Wang, Yinshi Li, Qian Yu, Mingkun Wang, Abidan Ainiwaer, Na Tang, Xuran Zheng, Adilai Duolikun, Bingqing Deng, Jing Li, Yujuan Shen and Chuanshan Zhang
Trop. Med. Infect. Dis. 2024, 9(5), 95; https://doi.org/10.3390/tropicalmed9050095 - 25 Apr 2024
Cited by 2 | Viewed by 1868
Abstract
The cestode Echinococcus multilocularis, which mainly dwells in the liver, leads to a serious parasitic liver disease called alveolar echinococcosis (AE). Despite the increased attention drawn to the immunosuppressive microenvironment formed by hepatic AE tissue, the immunological characteristics of hepatic dendritic cells (DCs) [...] Read more.
The cestode Echinococcus multilocularis, which mainly dwells in the liver, leads to a serious parasitic liver disease called alveolar echinococcosis (AE). Despite the increased attention drawn to the immunosuppressive microenvironment formed by hepatic AE tissue, the immunological characteristics of hepatic dendritic cells (DCs) in the AE liver microenvironment have not been fully elucidated. Here, we profiled the immunophenotypic characteristics of hepatic DC subsets in both clinical AE patients and a mouse model. Single-cell RNA sequencing (scRNA-Seq) analysis of four AE patient specimens revealed that greater DC numbers were present within perilesional liver tissues and that the distributions of cDC and pDC subsets in the liver and periphery were different. cDCs highly expressed the costimulatory molecule CD86, the immune checkpoint molecule CD244, LAG3, CTLA4, and the checkpoint ligand CD48, while pDCs expressed these genes at low frequencies. Flow cytometric analysis of hepatic DC subsets in an E. multilocularis infection mouse model demonstrated that the number of cDCs significantly increased after parasite infection, and a tolerogenic phenotype characterized by a decrease in CD40 and CD80 expression levels was observed at an early stage, whereas an activated phenotype characterized by an increase in CD86 expression levels was observed at a late stage. Moreover, the expression profiles of major immune checkpoint molecules (CD244 and LAG3) and ligands (CD48) on hepatic DC subsets in a mouse model exhibited the same pattern as those in AE patients. Notably, the cDC and pDC subsets in the E. multilocularis infection group exhibited higher expression levels of PD-L1 and CD155 than those in the control group, suggesting the potential of these subsets to impair T cell function. These findings may provide valuable information for investigating the role of hepatic DC subsets in the AE microenvironment and guiding DC targeting treatments for AE. Full article
(This article belongs to the Special Issue Echinococcosis: From Parasite–Host Interaction to Rapid Detection)
Show Figures

Figure 1

25 pages, 17475 KiB  
Article
Small Spleen Peptides (SSPs) Shape Dendritic Cell Differentiation through Modulation of Extracellular ATP Synthesis Profile
by Viktor Wixler, Rafael Leite Dantas, Georg Varga, Yvonne Boergeling and Stephan Ludwig
Biomolecules 2024, 14(4), 469; https://doi.org/10.3390/biom14040469 - 11 Apr 2024
Cited by 3 | Viewed by 2485
Abstract
Restoring peripheral immune tolerance is crucial for addressing autoimmune diseases. An ancient mechanism in maintaining the balance between inflammation and tolerance is the ratio of extracellular ATP (exATP) and adenosine. Our previous research demonstrated the effectiveness of small spleen peptides (SSPs) in inhibiting [...] Read more.
Restoring peripheral immune tolerance is crucial for addressing autoimmune diseases. An ancient mechanism in maintaining the balance between inflammation and tolerance is the ratio of extracellular ATP (exATP) and adenosine. Our previous research demonstrated the effectiveness of small spleen peptides (SSPs) in inhibiting psoriatic arthritis progression, even in the presence of the pro-inflammatory cytokine TNFα, by transforming dendritic cells (DCs) into tolerogenic cells and fostering regulatory Foxp3+ Treg cells. Here, we identified thymosins as the primary constituents of SSPs, but recombinant thymosin peptides were less efficient in inhibiting arthritis than SSPs. Since Tβ4 is an ecto-ATPase-binding protein, we hypothesized that SSPs regulate exATP profiles. Real-time investigation of exATP levels in DCs revealed that tolerogenic stimulation led to robust de novo exATP synthesis followed by significant degradation, while immunogenic stimulation resulted in a less pronounced increase in exATP and less effective degradation. These contrasting exATP profiles were crucial in determining whether DCs entered an inflammatory or tolerogenic state, highlighting the significance of SSPs as natural regulators of peripheral immunological tolerance, with potential therapeutic benefits for autoimmune diseases. Finally, we demonstrated that the tolerogenic phenotype of SSPs is mainly influenced by adenosine receptors, and in vivo administration of SSPs inhibits psoriatic skin inflammation. Full article
(This article belongs to the Special Issue Diet and Immune Response)
Show Figures

Figure 1

16 pages, 1041 KiB  
Review
Vitamin D in Cutaneous T-Cell Lymphoma
by August-Witte Feentved Ødum and Carsten Geisler
Cells 2024, 13(6), 503; https://doi.org/10.3390/cells13060503 - 13 Mar 2024
Cited by 5 | Viewed by 3306
Abstract
Cutaneous T-cell lymphoma (CTCL) is characterized by the proliferation of malignant T cells in inflamed skin lesions. Mycosis fungoides (MF)—the most common variant of CTCL—often presents with skin lesions around the abdomen and buttocks (“bathing suit” distribution), i.e., in skin areas devoid of [...] Read more.
Cutaneous T-cell lymphoma (CTCL) is characterized by the proliferation of malignant T cells in inflamed skin lesions. Mycosis fungoides (MF)—the most common variant of CTCL—often presents with skin lesions around the abdomen and buttocks (“bathing suit” distribution), i.e., in skin areas devoid of sun-induced vitamin D. For decades, sunlight and vitamin D have been connected to CTCL. Thus, vitamin D induces apoptosis and inhibits the expression of cytokines in malignant T cells. Furthermore, CTCL patients often display vitamin D deficiency, whereas phototherapy induces vitamin D and has beneficial effects in CTCL, suggesting that light and vitamin D have beneficial/protective effects in CTCL. Inversely, vitamin D promotes T helper 2 (Th2) cell specific cytokine production, regulatory T cells, tolerogenic dendritic cells, as well as the expression of immune checkpoint molecules, all of which may have disease-promoting effects by stimulating malignant T-cell proliferation and inhibiting anticancer immunity. Studies on vitamin D treatment in CTCL patients showed conflicting results. Some studies found positive effects, others negative effects, while the largest study showed no apparent clinical effect. Taken together, vitamin D may have both pro- and anticancer effects in CTCL. The balance between the opposing effects of vitamin D in CTCL is likely influenced by treatment and may change during the disease course. Therefore, it remains to be discovered whether and how the effect of vitamin D can be tilted toward an anticancer response in CTCL. Full article
Show Figures

Figure 1

Back to TopTop