Ultraviolet Radiation-Induced Tolerogenic Dendritic Cells in Skin: Insights and Mechanisms
Abstract
:1. Introduction
2. Various Cutaneous Immune Cells Implicated in UV-Induced Immune Suppression
2.1. Langerhans Cells
2.2. Conventional Dendritic Cells (cDCs)
2.3. CD11b+ Myeloid Cells
3. Mechanisms for UV-Induced Regulation of DC Activity
3.1. Inactivation of DCs
3.2. Tolerogenic DCs
3.3. DCs and the Development of T Lymphocyte Populations in the Context of UV-Induced Immune Suppression
3.3.1. CD4+ Treg Cells
3.3.2. CD4+ T Helper Cells
4. The Role of DCs in UV-Induced Skin Diseases
4.1. Cutaneous Lupus Erythematous (CLE)
4.2. Polymorphic Light Eruption (PLE)
4.3. Skin Cancer
5. Conclusions
6. Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
APC | Antigen-presenting cell |
BDCA | Blood DC antigen |
Bid | BH3-interacting death domain protein |
cDC | Conventional dendritic cell |
CPD | Cyclobutene pyrimidine dimer |
CHS | Contact hypersensitivity |
CLE | Cutaneous lupus erythematous |
DC | Dendritic cell |
DNFB | 2,4-dinitrofluorobenzene |
IFN | Interferon |
IL | Interleukin |
LC | Langerhans cell |
MHC | Major histocompatibility complex |
pDC | Plasmacytoid dendritic cell |
Th1 | T helper 1 |
Th2 | T helper 2 |
Th17 | T helper 17 |
Treg | Regulatory T cell |
UV | Ultraviolet |
UVB | Ultraviolet B |
References
- Koulu, L.; Jansen, C.T.; Viander, M. Effect of UVA and UVB irradiation on human epidermal Langerhans cell membrane markers defined by ATPase activity and monoclonal antibodies (OKT 6 and anti-Ia). Photodermatology 1985, 2, 339–346. [Google Scholar] [PubMed]
- Obata, M.; Tagami, H. Alteration in Murine Epidermal Langerhans Cell Population by Various UV Irradiations: Quantitative and Morphologic Studies on the Effects of Various Wavelengths of Monochromatic Radiation on Ia-Bearing Cells. J. Investig. Dermatol. 1985, 84, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Langerhans, P. Über die Nerven der menschlichen Haut. Arch. Pathol. Anat. Physiol. Klin. Med. 1868, 44, 325–337. [Google Scholar] [CrossRef]
- Stingl, G.; Katz, S.I.; Shevach, E.M.; Rosenthal, A.S.; Green, I. Analogous functions of macrophages and Langerhans cells in the initiation in the immune response. J. Investig. Dermatol. 1978, 71, 59–64. [Google Scholar] [CrossRef]
- Stingl, G.; Katz, S.I.; Clement, L.; Green, I.; Shevach, E.M. Immunologic functions of Ia-bearing epidermal Langerhans cells. J. Immunol. 1978, 121, 2005–2013. [Google Scholar] [CrossRef]
- Rowden, G.; Phillips, T.M.; Delovitch, T.L. Expression of ia antigens by murine keratinizing epithelial langerhans cells. Immunogenetics 1978, 7, 465–478. [Google Scholar] [CrossRef]
- Stingl, G.; Katz, S.I.; Shevach, E.M.; Wolff-Schreiner, E.; Green, I. Detection of Ia antigens on Langerhans cells in guinea pig skin. J. Immunol. 1978, 120, 570–578. [Google Scholar] [CrossRef]
- Toews, G.B.; Bergstresser, P.R.; Streilein, J.W. Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. J. Immunol. 1980, 124, 445–453. [Google Scholar] [CrossRef]
- Cruz, P.D., Jr.; Tigelaar, R.E.; Bergstresser, P.R. Langerhans cells that migrate to skin after intravenous infusion regulate the induction of contact hypersensitivity. J. Immunol. 1990, 144, 2486–2492. [Google Scholar] [CrossRef]
- Noonan, F.P.; Bucana, C.; Sauder, D.N.; De Fabo, E.C. Mechanism of systemic immune suppression by UV irradiation in vivo. II. The UV effects on number and morphology of epidermal Langerhans cells and the UV-induced suppression of contact hypersensitivity have different wavelength dependencies. J. Immunol. 1984, 132, 2408–2416. [Google Scholar] [CrossRef]
- Orita, M. Effects of ultraviolet irradiation on surface marker expression by epidermal immunocompetent cells and contact sensitization to dinitrofluorobenzene in mice. Br. J. Dermatol. 1987, 117, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Aberer, W.; Schuler, G.; Stingl, G.; Hönigsmann, H.; Wolff, K. Ultraviolet Light Depletes Surface Markers of Langerhans Cells. J. Investig. Dermatol. 1981, 76, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Jiang, A.; Veenstra, J.; Ozog, D.M.; Mi, Q.S. The Roles of Skin Langerhans Cells in Immune Tolerance and Cancer Immunity. Vaccines 2022, 10, 1380. [Google Scholar] [CrossRef]
- Nakagawa, S.; Koomen, C.W.; Bos, J.D.; Teunissen, M.B.M. Differential Modulation of Human Epidermal Langerhans Cell Maturation by Ultraviolet B Radiation. J. Immunol. 1999, 163, 5192–5200. [Google Scholar] [CrossRef]
- Ginhoux, F.; Collin, M.P.; Bogunovic, M.; Abel, M.; Leboeuf, M.; Helft, J.; Ochando, J.; Kissenpfennig, A.; Malissen, B.; Grisotto, M.; et al. Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J. Exp. Med. 2007, 204, 3133–3146. [Google Scholar] [CrossRef]
- Bursch, L.S.; Wang, L.; Igyarto, B.; Kissenpfennig, A.; Malissen, B.; Kaplan, D.H.; Hogquist, K.A. Identification of a novel population of Langerin+ dendritic cells. J. Exp. Med. 2007, 204, 3147–3156. [Google Scholar] [CrossRef]
- Poulin, L.F.; Henri, S.; de Bovis, B.; Devilard, E.; Kissenpfennig, A.; Malissen, B. The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J. Exp. Med. 2007, 204, 3119–3131. [Google Scholar] [CrossRef]
- Wang, L.; Jameson, S.C.; Hogquist, K.A. Epidermal Langerhans Cells Are Not Required for UV-Induced Immunosuppression. J. Immunol. 2009, 183, 5548–5553. [Google Scholar] [CrossRef]
- Schwarz, A.; Noordegraaf, M.; Maeda, A.; Torii, K.; Clausen, B.E.; Schwarz, T. Langerhans Cells Are Required for UVR-Induced Immunosuppression. J. Investig. Dermatol. 2010, 130, 1419–1427. [Google Scholar] [CrossRef]
- Kashem, S.W.; Haniffa, M.; Kaplan, D.H. Antigen-Presenting Cells in the Skin. Annu. Rev. Immunol. 2017, 35, 469–499. [Google Scholar] [CrossRef]
- Ng, R.L.X.; Bisley, J.L.; Gorman, S.; Norval, M.; Hart, P.H. Ultraviolet Irradiation of Mice Reduces the Competency of Bone Marrow-Derived CD11c+ Cells via an Indomethacin-Inhibitable Pathway. J. Immunol. 2010, 185, 7207–7215. [Google Scholar] [CrossRef] [PubMed]
- Ng, R.L.X.; Scott, N.M.; Strickland, D.H.; Gorman, S.; Grimbaldeston, M.A.; Norval, M.; Waithman, J.; Hart, P.H. Altered Immunity and Dendritic Cell Activity in the Periphery of Mice after Long-Term Engraftment with Bone Marrow from Ultraviolet-Irradiated Mice. J. Immunol. 2013, 190, 5471–5484. [Google Scholar] [CrossRef] [PubMed]
- Ng, R.L.; Scott, N.M.; Bisley, J.L.; Lambert, M.J.; Gorman, S.; Norval, M.; Hart, P.H. Characterization of regulatory dendritic cells differentiated from the bone marrow of UV-irradiated mice. Immunology 2013, 140, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Scott, N.M.; Ng, R.L.; Gorman, S.; Norval, M.; Waithman, J.; Hart, P.H. Prostaglandin E2 imprints a long-lasting effect on dendritic cell progenitors in the bone marrow. J. Leukoc. Biol. 2014, 95, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, D.A.; Owen-Schaub, L.; Ullrich, S.E. Effect of IL-12 on immune suppression and suppressor cell induction by ultraviolet radiation. J. Immunol. 1995, 154, 5114–5120. [Google Scholar] [CrossRef]
- Schwarz, A.; Grabbe, S.; Aragane, Y.; Sandkuhl, K.; Riemann, H.; Luger, T.A.; Kubin, M.; Trinchieri, G.; Schwarz, T. Interleukin-12 prevents ultraviolet B-induced local immunosuppression and overcomes UVB-induced tolerance. J. Investig. Dermatol. 1996, 106, 1187–1191. [Google Scholar] [CrossRef]
- Schwarz, A.; Grabbe, S.; Grosse-Heitmeyer, K.; Roters, B.; Riemann, H.; Luger, T.A.; Trinchieri, G.; Schwarz, T. Ultraviolet Light-Induced Immune Tolerance Is Mediated via the Fas/Fas-Ligand System. J. Immunol. 1998, 160, 4262–4270. [Google Scholar] [CrossRef]
- Thatcher, T.H.; Luzina, I.; Fishelevich, R.; Tomai, M.A.; Miller, R.L.; Gaspari, A.A. Topical Imiquimod Treatment Prevents UV-Light Induced Loss of Contact Hypersensitivity and Immune Tolerance. J. Investig. Dermatol. 2006, 126, 821–831. [Google Scholar] [CrossRef]
- Crispin, M.K.; Fuentes-Duculan, J.; Gulati, N.; Johnson-Huang, L.M.; Lentini, T.; Sullivan-Whalen, M.; Gilleaudeau, P.; Cueto, I.; Suárez-Fariñas, M.; Lowes, M.A.; et al. Gene profiling of narrow-band UVB-induced skin injury defines cellular and molecular innate immune responses. J. Investig. Dermatol. 2013, 133, 692–701. [Google Scholar] [CrossRef]
- Chu, C.-C.; Ali, N.; Karagiannis, P.; Di Meglio, P.; Skowera, A.; Napolitano, L.; Barinaga, G.; Grys, K.; Sharif-Paghaleh, E.; Karagiannis, S.N.; et al. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. J. Exp. Med. 2012, 209, 935–945. [Google Scholar] [CrossRef]
- Cooper, K.D.; Oberhelman, L.; Hamilton, T.A.; Baadsgaard, O.; Terhune, M.; LeVee, G.; Anderson, T.; Koren, H. UV exposure reduces immunization rates and promotes tolerance to epicutaneous antigens in humans: Relationship to dose, CD1a-DR+ epidermal macrophage induction, and Langerhans cell depletion. Proc. Natl. Acad. Sci. USA 1992, 89, 8497–8501. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Hammerberg, C.; Meunier, L.; Cooper, K.D. CD11b+ macrophages that infiltrate human epidermis after in vivo ultraviolet exposure potently produce IL-10 and represent the major secretory source of epidermal IL-10 protein. J. Immunol. 1994, 153, 5256–5264. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Kang, K.; Berger, M.; Chen, G.; Gilliam, A.C.; Moser, A.; Wu, L.; Hammerberg, C.; Cooper, K.D. Monocyte Induction of IL-10 and Down-Regulation of IL-12 by iC3b Deposited in Ultraviolet-Exposed Human Skin. J. Immunol. 1998, 161, 5873–5879. [Google Scholar] [CrossRef] [PubMed]
- Hammerberg, C.; Duraiswamy, N.; Cooper, K.D. Reversal of immunosuppression inducible through ultraviolet-exposed skin by in vivo anti-CD11b treatment. J. Immunol. 1996, 157, 5254–5261. [Google Scholar] [CrossRef]
- Hammerberg, C.; Katiyar, S.K.; Carroll, M.C.; Cooper, K.D. Activated Complement Component 3 (C3) Is Required for Ultraviolet Induction of Immunosuppression and Antigenic Tolerance. J. Exp. Med. 1998, 187, 1133–1138. [Google Scholar] [CrossRef]
- Vink, A.A.; Strickland, F.M.; Bucana, C.; Cox, P.A.; Roza, L.; Yarosh, D.B.; Kripke, M.L. Localization of DNA damage and its role in altered antigen-presenting cell function in ultraviolet-irradiated mice. J. Exp. Med. 1996, 183, 1491–1500. [Google Scholar] [CrossRef]
- Vink, A.A.; Moodycliffe, A.M.; Shreedhar, V.; Ullrich, S.E.; Roza, L.; Yarosh, D.B.; Kripke, M.L. The inhibition of antigen-presenting activity of dendritic cells resulting from UV irradiation of murine skin is restored by in vitro photorepair of cyclobutane pyrimidine dimers. Proc. Natl. Acad. Sci. USA 1997, 94, 5255–5260. [Google Scholar] [CrossRef]
- Sun, L.; Ding, F.; Zhou, L.; Wang, J.; Li, M.; Zhou, P.; Li, J.; Ding, C.; Wang, H.; Xu, Y. Apoptosis of Dendritic Cells and Autoimmune Disease. Front. Biosci. 2024, 29, 157. [Google Scholar] [CrossRef]
- Pradhan, S.; Kim, H.K.; Thrash, C.J.; Cox, M.A.; Mantena, S.K.; Wu, J.-H.; Athar, M.; Katiyar, S.K.; Elmets, C.A.; Timares, L. A Critical Role for the Proapoptotic Protein Bid in Ultraviolet-Induced Immune Suppression and Cutaneous Apoptosis. J. Immunol. 2008, 181, 3077–3088. [Google Scholar] [CrossRef]
- Rosenblum, M.D.; Olasz, E.; Woodliff, J.E.; Johnson, B.D.; Konkol, M.C.; Gerber, K.A.; Orentas, R.J.; Sandford, G.; Truitt, R.L. CD200 is a novel p53-target gene involved in apoptosis-associated immune tolerance. Blood 2004, 103, 2691–2698. [Google Scholar] [CrossRef]
- Wright, G.J.; Cherwinski, H.; Foster-Cuevas, M.; Brooke, G.; Puklavec, M.J.; Bigler, M.; Song, Y.; Jenmalm, M.; Gorman, D.; McClanahan, T.; et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J. Immunol. 2003, 171, 3034–3046. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.J.; Puklavec, M.J.; Willis, A.C.; Hoek, R.M.; Sedgwick, J.D.; Brown, M.H.; Barclay, A.N. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 2000, 13, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, R.A.; von Andrian, U.H. How tolerogenic dendritic cells induce regulatory T cells. Adv. Immunol. 2010, 108, 111–165. [Google Scholar] [PubMed]
- Wu, L.; Liu, Y.J. Development of dendritic-cell lineages. Immunity 2007, 26, 741–750. [Google Scholar] [CrossRef]
- Elmets, C.A.; Bergstresser, P.R.; Tigelaar, R.E.; Wood, P.J.; Streilein, J.W. Analysis of the mechanism of unresponsiveness produced by haptens painted on skin exposed to low dose ultraviolet radiation. J. Exp. Med. 1983, 158, 781–794. [Google Scholar] [CrossRef]
- Yagi, H.; Tokura, Y.; Wakita, H.; Furukawa, F.; Takigawa, M. TCRV beta 7+ Th2 cells mediate UVB-induced suppression of murine contact photosensitivity by releasing IL-10. J. Immunol. 1996, 156, 1824–1831. [Google Scholar] [CrossRef]
- Schwarz, A.; Maeda, A.; Wild, M.K.; Kernebeck, K.; Gross, N.; Aragane, Y.; Beissert, S.; Vestweber, D.; Schwarz, T. Ultraviolet Radiation-Induced Regulatory T Cells Not Only Inhibit the Induction but Can Suppress the Effector Phase of Contact Hypersensitivity. J. Immunol. 2004, 172, 1036–1043. [Google Scholar] [CrossRef]
- Freeman, G.J.; Borriello, F.; Hodes, R.J.; Reiser, H.; Hathcock, K.S.; Laszlo, G.; McKnight, A.J.; Kim, J.; Du, L.; Lombard, D.B.; et al. Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science 1993, 262, 907–909. [Google Scholar] [CrossRef]
- Schwarz, A.; Beissert, S.; Grosse-Heitmeyer, K.; Gunzer, M.; Bluestone, J.A.; Grabbe, S.; Schwarz, T. Evidence for Functional Relevance of CTLA-4 in Ultraviolet-Radiation-Induced Tolerance. J. Immunol. 2000, 165, 1824–1831. [Google Scholar] [CrossRef]
- Schwarz, T. Mechanisms of UV-induced immunosuppression. Keio J. Med. 2005, 54, 165–171. [Google Scholar] [CrossRef]
- Schwarz, A.; Stander, S.; Berneburg, M.; Bohm, M.; Kulms, D.; van Steeg, H.; Grosse-Heitmeyer, K.; Krutmann, J.; Schwarz, T. Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Nat. Cell Biol. 2002, 4, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Meeran, S.M.; Mantena, S.K.; Meleth, S.; Elmets, C.A.; Katiyar, S.K. Interleukin-12-deficient mice are at greater risk of UV radiation-induced skin tumors and malignant transformation of papillomas to carcinomas. Mol. Cancer Ther. 2006, 5, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T.R.; Coffman, R.L. TH1 and TH2 Cells: Different Patterns of Lymphokine Secretion Lead to Different Functional Properties. Annu. Rev. Immunol. 1989, 7, 145–173. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.T.; Hatton, R.D.; Mangan, P.R.; Harrington, L.E. IL-17 Family Cytokines and the Expanding Diversity of Effector T Cell Lineages. Annu. Rev. Immunol. 2007, 25, 821–852. [Google Scholar] [CrossRef]
- Berger, A. Th1 and Th2 responses: What are they? BMJ 2000, 321, 424. [Google Scholar] [CrossRef]
- Simon, J.C.; Mosmann, T.; Edelbaum, D.; Schopf, E.; Bergstresser, P.R.; Cruz, P.D., Jr. In vivo evidence that ultraviolet B-induced suppression of allergic contact sensitivity is associated with functional inactivation of Th1 cells. Photodermatol. Photoimmunol. Photomed. 1994, 10, 206–211. [Google Scholar]
- Araneo, B.A.; Dowell, T.; Moon, H.B.; Daynes, R.A. Regulation of murine lymphokine production in vivo. Ultraviolet radiation exposure depresses IL-2 and enhances IL-4 production by T cells through an IL-1-dependent mechanism. J. Immunol. 1989, 143, 1737–1744. [Google Scholar] [CrossRef]
- Simon, J.C.; Cruz, P.D., Jr.; Bergstresser, P.R.; Tigelaar, R.E. Low dose ultraviolet B-irradiated Langerhans cells preferentially activate CD4+ cells of the T helper 2 subset. J. Immunol. 1990, 145, 2087–2091. [Google Scholar] [CrossRef]
- Brown, E.L.; Rivas, J.M.; Ullrich, S.E.; Young, C.R.; Norris, S.J.; Kripke, M.L. Modulation of immunity to Borrelia burgdorferi by ultraviolet irradiation: Differential effect on Th1 and Th2 immune responses. Eur. J. Immunol. 1995, 25, 3017–3022. [Google Scholar] [CrossRef]
- Simon, J.C.; Tigelaar, R.E.; Bergstresser, P.R.; Edelbaum, D.; Cruz, P.D., Jr. Ultraviolet B radiation converts Langerhans cells from immunogenic to tolerogenic antigen-presenting cells. Induction of specific clonal anergy in CD4+ T helper 1 cells. J. Immunol. 1991, 146, 485–491. [Google Scholar] [CrossRef]
- Veldhoen, M. Interleukin 17 is a chief orchestrator of immunity. Nat. Immunol. 2017, 18, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Kolls, J.K.; Linden, A. Interleukin-17 family members and inflammation. Immunity 2004, 21, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Peiser, M. Role of Th17 Cells in Skin Inflammation of Allergic Contact Dermatitis. J. Immunol. Res. 2013, 2013, 261037. [Google Scholar] [CrossRef]
- He, D.; Wu, L.; Kim, H.K.; Li, H.; Elmets, C.A.; Xu, H. CD8+ IL-17-Producing T Cells Are Important in Effector Functions for the Elicitation of Contact Hypersensitivity Responses. J. Immunol. 2006, 177, 6852–6858. [Google Scholar] [CrossRef]
- He, D.; Wu, L.; Kim, H.K.; Li, H.; Elmets, C.A.; Xu, H. IL-17 and IFN-{gamma} Mediate the Elicitation of Contact Hypersensitivity Responses by Different Mechanisms and Both Are Required for Optimal Responses. J. Immunol. 2009, 183, 1463–1470. [Google Scholar] [CrossRef]
- MacLeod, A.S.; Rudolph, R.; Corriden, R.; Ye, I.; Garijo, O.; Havran, W.L. Skin-Resident T Cells Sense Ultraviolet Radiation–Induced Injury and Contribute to DNA Repair. J. Immunol. 2014, 192, 5695–5702. [Google Scholar] [CrossRef]
- Li, H.; Prasad, R.; Katiyar, S.K.; Yusuf, N.; Elmets, C.A.; Xu, H. Interleukin-17 Mediated Inflammatory Responses Are Required for Ultraviolet Radiation-Induced Immune Suppression. Photochem. Photobiol. 2015, 91, 235–241. [Google Scholar] [CrossRef]
- Crowson, A.N.; Magro, C. The cutaneous pathology of lupus erythematosus: A review. J. Cutan. Pathol. 2001, 28, 1–23. [Google Scholar] [CrossRef]
- Oh, E.H.; Kim, E.J.; Ro, Y.S.; Ko, J.Y. Ten-year retrospective clinicohistological study of cutaneous lupus erythematosus in Korea. J. Dermatol. 2018, 45, 436–443. [Google Scholar] [CrossRef]
- Jarukitsopa, S.; Hoganson, D.D.; Crowson, C.S.; Sokumbi, O.; Davis, M.D.; Michet, C.J., Jr.; Matteson, E.L.; Maradit Kremers, H.; Chowdhary, V.R. Epidemiology of systemic lupus erythematosus and cutaneous lupus erythematosus in a predominantly white population in the United States. Arthritis Care Res. 2015, 67, 817–828. [Google Scholar] [CrossRef]
- Patel, J.; Borucki, R.; Werth, V.P. An Update on the Pathogenesis of Cutaneous Lupus Erythematosus and Its Role in Clinical Practice. Curr. Rheumatol. Rep. 2020, 22, 69. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Xu, X.; Lin, Y.; Lv, J.; Zhao, L.; He, R. Ultraviolet B irradiation induces skin accumulation of plasmacytoid dendritic cells: A possible role for chemerin. Autoimmunity 2014, 47, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald-Bocarsly, P.; Dai, J.; Singh, S. Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history. Cytokine Growth Factor Rev. 2008, 19, 3–19. [Google Scholar] [CrossRef]
- Vermi, W.; Lonardi, S.; Morassi, M.; Rossini, C.; Tardanico, R.; Venturini, M.; Sala, R.; Tincani, A.; Poliani, P.L.; Calzavara-Pinton, P.G.; et al. Cutaneous distribution of plasmacytoid dendritic cells in lupus erythematosus. Selective tropism at the site of epithelial apoptotic damage. Immunobiology 2009, 214, 877–886. [Google Scholar] [CrossRef]
- Means, T.K.; Latz, E.; Hayashi, F.; Murali, M.R.; Golenbock, D.T.; Luster, A.D. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Investig. 2005, 115, 407–417. [Google Scholar] [CrossRef]
- Eloranta, M.L.; Lovgren, T.; Finke, D.; Mathsson, L.; Ronnelid, J.; Kastner, B.; Alm, G.V.; Ronnblom, L. Regulation of the interferon-alpha production induced by RNA-containing immune complexes in plasmacytoid dendritic cells. Arthritis Rheum. 2009, 60, 2418–2427. [Google Scholar] [CrossRef]
- Saadeh, D.; Kurban, M.; Abbas, O. Update on the role of plasmacytoid dendritic cells in inflammatory/autoimmune skin diseases. Exp. Dermatol. 2016, 25, 415–421. [Google Scholar] [CrossRef]
- Bave, U.; Alm, G.V.; Ronnblom, L. The combination of apoptotic U937 cells and lupus IgG is a potent IFN-alpha inducer. J. Immunol. 2000, 165, 3519–3526. [Google Scholar] [CrossRef]
- Lovgren, T.; Eloranta, M.L.; Bave, U.; Alm, G.V.; Ronnblom, L. Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 2004, 50, 1861–1872. [Google Scholar] [CrossRef]
- Chaichian, Y.; Wallace, D.J.; Weisman, M.H. A promising approach to targeting type 1 IFN in systemic lupus erythematosus. J. Clin. Investig. 2019, 129, 958–961. [Google Scholar] [CrossRef]
- Furie, R.; Werth, V.P.; Merola, J.F.; Stevenson, L.; Reynolds, T.L.; Naik, H.; Wang, W.; Christmann, R.; Gardet, A.; Pellerin, A.; et al. Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus. J. Clin. Investig. 2019, 129, 1359–1371. [Google Scholar] [CrossRef] [PubMed]
- Werth, V.P.; Barbey, C.; Franchimont, N. Anti-BDCA2 Antibody for Cutaneous Lupus Erythematosus. N. Engl. J. Med. 2022, 387, 1528–1529. [Google Scholar] [CrossRef] [PubMed]
- Werth, V.P.; Furie, R.A.; Romero-Diaz, J.; Navarra, S.; Kalunian, K.; van Vollenhoven, R.F.; Nyberg, F.; Kaffenberger, B.H.; Sheikh, S.Z.; Radunovic, G.; et al. Trial of Anti-BDCA2 Antibody Litifilimab for Cutaneous Lupus Erythematosus. N. Engl. J. Med. 2022, 387, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Biermann, M.H.; Veissi, S.; Maueroder, C.; Chaurio, R.; Berens, C.; Herrmann, M.; Munoz, L.E. The role of dead cell clearance in the etiology and pathogenesis of systemic lupus erythematosus: Dendritic cells as potential targets. Expert Rev. Clin. Immunol. 2014, 10, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Gruber-Wackernagel, A.; Byrne, S.N.; Wolf, P. Polymorphous Light Eruption: Clinic Aspects and Pathogenesis. Dermatol. Clin. 2014, 32, 315–334. [Google Scholar] [CrossRef]
- Burfield, L.; Rutter, K.J.; Thompson, B.; Marjanovic, E.J.; Neale, R.E.; Rhodes, L.E. Systematic review of the prevalence and incidence of the photodermatoses with meta-analysis of the prevalence of polymorphic light eruption. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 511–520. [Google Scholar] [CrossRef]
- Morison, W.L.; Stern, R.S. Polymorphous light eruption: A common reaction uncommonly recognized. Acta Derm. Venereol. 1982, 62, 237–240. [Google Scholar] [CrossRef]
- Honigsmann, H. Polymorphous light eruption. Photodermatol. Photoimmunol. Photomed. 2008, 24, 155–161. [Google Scholar] [CrossRef]
- Lembo, S.; Raimondo, A. Polymorphic Light Eruption: What’s New in Pathogenesis and Management. Front. Med. 2018, 5, 252. [Google Scholar] [CrossRef]
- Kolgen, W.; van Weelden, H.; Den Hengst, S.; Guikers, K.L.H.; Kiekens, R.C.M.; Knol, E.F.; Bruijnzeel-Koomen, C.A.F.M.; van Vloten, W.A.; de Gruijl, F.R. CD11b+ Cells and Ultraviolet-B-Resistant CD1a+ Cells in Skin of Patients with Polymorphous Light Eruption. J. Investig. Dermatol. 1999, 113, 4–10. [Google Scholar] [CrossRef]
- Kölgen, W.; van Meurs, M.; Jongsma, M.; van Weelden, H.; Bruijnzeel-Koomen, C.A.F.M.; Knol, E.F.; van Vloten, W.A.; Laman, J.; de Grui, F.R. Differential expression of cytokines in uv-b–exposed skin of patients with polymorphous light eruption: Correlation with langerhans cell migration and immunosuppression. Arch. Dermatol. 2004, 140, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Schornagel, I.J.; Sigurdsson, V.; Nijhuis, E.H.J.; Bruijnzeel-Koomen, C.A.F.M.; Knol, E.F. Decreased Neutrophil Skin Infiltration After UVB Exposure in Patients with Polymorphous Light Eruption. J. Investig. Dermatol. 2004, 123, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Kripke, M.L. Antigenicity of murine skin tumors induced by ultraviolet light. J. Natl. Cancer Inst. 1974, 53, 1333–1336. [Google Scholar] [CrossRef] [PubMed]
- Kripke, M.L.; Fisher, M.S. Immunologic parameters of ultraviolet carcinogenesis. J. Natl. Cancer Inst. 1976, 57, 211–215. [Google Scholar] [CrossRef]
- Alcalay, J.; Kripke, M.L. Antigen-presenting activity of draining lymph node cells from mice painted with a contact allergen during ultraviolet carcinogenesis. J. Immunol. 1991, 146, 1717–1721. [Google Scholar] [CrossRef]
- Lewis, J.M.; Bürgler, C.D.; Freudzon, M.; Golubets, K.; Gibson, J.F.; Filler, R.B.; Girardi, M. Langerhans Cells Facilitate UVB-induced Epidermal Carcinogenesis. J. Investig. Dermatol. 2015, 135, 2824–2833. [Google Scholar] [CrossRef]
Identification Method | Special Considerations | |
---|---|---|
LCs |
| |
cDCs |
|
|
CD11b+ |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghajar-Rahimi, G.; Yusuf, N.; Xu, H. Ultraviolet Radiation-Induced Tolerogenic Dendritic Cells in Skin: Insights and Mechanisms. Cells 2025, 14, 308. https://doi.org/10.3390/cells14040308
Ghajar-Rahimi G, Yusuf N, Xu H. Ultraviolet Radiation-Induced Tolerogenic Dendritic Cells in Skin: Insights and Mechanisms. Cells. 2025; 14(4):308. https://doi.org/10.3390/cells14040308
Chicago/Turabian StyleGhajar-Rahimi, Gelare, Nabiha Yusuf, and Hui Xu. 2025. "Ultraviolet Radiation-Induced Tolerogenic Dendritic Cells in Skin: Insights and Mechanisms" Cells 14, no. 4: 308. https://doi.org/10.3390/cells14040308
APA StyleGhajar-Rahimi, G., Yusuf, N., & Xu, H. (2025). Ultraviolet Radiation-Induced Tolerogenic Dendritic Cells in Skin: Insights and Mechanisms. Cells, 14(4), 308. https://doi.org/10.3390/cells14040308