Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = titanium aluminides alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5700 KiB  
Article
Simulation Study on Directional Solidification of Titanium–Aluminum Alloy Based on Liquid Metal Cooling Method
by Feng Li, Hong Huang, Xiao Zong, Kehan Wang, Han Liu, Xuejun Liu and Xianfei Ding
Metals 2025, 15(4), 366; https://doi.org/10.3390/met15040366 - 26 Mar 2025
Viewed by 529
Abstract
In this study, the ProCast software (version 2014) incorporating the CAFE model is applied to conduct numerical simulation analysis of the directional solidification process of titanium–aluminium alloy cylindrical rods at varying withdraw rates. According to the analytical results, the withdraw rate is a [...] Read more.
In this study, the ProCast software (version 2014) incorporating the CAFE model is applied to conduct numerical simulation analysis of the directional solidification process of titanium–aluminium alloy cylindrical rods at varying withdraw rates. According to the analytical results, the withdraw rate is a critical parameter that affects the morphology of the solid–liquid interface and the grain growth behavior during the directional solidification process. An increase in the drawing rate facilitates nucleation undercooling within the rod, inducing a shift in grain morphology from columnar to equiaxed. At a drawing rate of 1 mm/min, the solid–liquid interface exhibits the most stable morphology, as characterized by a flat interface. As indicated by further analysis, at this drawing rate, specific grain orientations are eliminated during competitive growth with an increase in solid fraction, culminating in the formation of columnar grain structures. Additionally, the impact of drawing rate on grain size and number is investigated, with an increase observed in grain number with drawing rate and a decrease found in grain size. The findings of this study contribute to a deeper understanding of mechanisms behind the grain morphology evolution of titanium aluminide, providing crucial theoretical support for optimizing directional solidification processes. Full article
(This article belongs to the Special Issue Solidification and Casting of Metals and Alloys (2nd Edition))
Show Figures

Figure 1

16 pages, 8305 KiB  
Article
Investigating Fracture Behavior in Titanium Aluminides: Surface Roughness as an Indicator of Fracture Mechanisms in Ti-48Al-2Cr-2Nb Alloys
by Alessia Serena Perna, Lorenzo Savio, Michele Coppola and Fabio Scherillo
Metals 2025, 15(1), 49; https://doi.org/10.3390/met15010049 - 7 Jan 2025
Cited by 1 | Viewed by 816
Abstract
Titanium aluminides, particularly the Ti-48Al-2Cr-2Nb alloy, have drawn significant attention for their potential in high-temperature aerospace and automotive applications due to their exceptional performances and reduced density compared to nickel-based superalloys. However, their intermetallic nature poses challenges such as limited room-temperature ductility and [...] Read more.
Titanium aluminides, particularly the Ti-48Al-2Cr-2Nb alloy, have drawn significant attention for their potential in high-temperature aerospace and automotive applications due to their exceptional performances and reduced density compared to nickel-based superalloys. However, their intermetallic nature poses challenges such as limited room-temperature ductility and fracture toughness, limiting their widespread application. Additive manufacturing, specifically Electron Beam Melting (EBM), has emerged as a promising method for producing complex-shaped components of titanium aluminides, overcoming challenges associated with conventional production methods. This work investigates the fracture behavior of Ti-48Al-2Cr-2Nb specimens with different microstructures, including duplex and equiaxed, under tensile and high-cycle fatigue at elevated temperatures. Fracture surfaces were analyzed to distinguish between static and dynamic fracture modes. A novel method, employing confocal microscopy acquisitions, is proposed to correlate surface roughness parameters with the causes of failure, offering new insights into the fracture mechanisms of titanium aluminides. The results reveal significant differences in roughness values between the propagation and fracture zones for all the temperatures and microstructure tested. At 650 °C, the crack propagation zone exhibits lower Sq values than the fracture zone, with the fracture zone showing more pronounced roughness, particularly for the equiaxed microstructure. However, at 760 °C, the difference in Sq values between the propagation and fracture zones becomes more pronounced, with a more substantial increase in Sq values in the fracture zone. These findings contribute to understanding fracture behavior in titanium aluminides and provide a predictive framework for assessing structural integrity based on surface characteristics. Full article
(This article belongs to the Special Issue Research on Fatigue Behavior of Additively Manufactured Materials)
Show Figures

Figure 1

18 pages, 5537 KiB  
Article
Aluminide Coatings by Means of Slurry Application: A Low Cost, Versatile and Simple Technology
by Alina Agüero, Pauline Audigié, Marcos Gutiérrez, Cristina Lorente, Julio Mora and Sergio Rodríguez
Coatings 2024, 14(10), 1243; https://doi.org/10.3390/coatings14101243 - 29 Sep 2024
Cited by 4 | Viewed by 1645
Abstract
The present study focused on demonstrating the versatility of the slurry deposition technique to produce aluminide coatings to protect components from high-temperature corrosion in a broad temperature range, from 400 to 1400 °C. This is a simpler and low-cost coating technology used as [...] Read more.
The present study focused on demonstrating the versatility of the slurry deposition technique to produce aluminide coatings to protect components from high-temperature corrosion in a broad temperature range, from 400 to 1400 °C. This is a simpler and low-cost coating technology used as an alternative to CVD and pack cementation, which also allows the coating of complex geometries and offers improved and simple repairability for a lot of industrial applications, along with avoiding the use of non-hazardous components. Slurry aluminide coatings from a proprietary water-based-Cr6+ free slurry were produced onto four different substrates: A516 carbon steel, 310H AC austenitic steel, Ti6246 Ti-based alloy and TZM, a Mo-based alloy. The resulting coatings were thoroughly characterised by FESEM and XRD, mainly so that the identification of microstructures and appropriate phases was reported for each coating. The importance of surface preparation and heat treatment as key parameters for the coating final microstructures was also evidenced, and how those parameters can be optimised to obtain stable intermetallic phases rich in Al to sustain the formation of a protective Al2O3 oxide scale. These coating systems have applications in diverse industrial environments in which high-temperature corrosion limits the lifetime of the components. Full article
Show Figures

Figure 1

21 pages, 534 KiB  
Review
A Review of the State of Art of Fabrication Technologies of Titanium Aluminide (Ti-Al) Based on US Patents
by Shawdon Huang, Yu-Chien Lin and Ren-Jei Chung
Metals 2024, 14(4), 418; https://doi.org/10.3390/met14040418 - 1 Apr 2024
Cited by 4 | Viewed by 3407
Abstract
This article evaluates the fabrication technologies of titanium aluminide (Ti-Al) and its practical applications by comparing it with the well-known Ti-Al binary phase diagram and US patents. Meanwhile, by analyzing and discussing the various patented Ti-Al fabrication technologies and applications, this article discusses [...] Read more.
This article evaluates the fabrication technologies of titanium aluminide (Ti-Al) and its practical applications by comparing it with the well-known Ti-Al binary phase diagram and US patents. Meanwhile, by analyzing and discussing the various patented Ti-Al fabrication technologies and applications, this article discusses the applications of Ti-Al-based alloys, mainly in the aircraft field. The improved fabrication processes and new application technologies are under patent protection. These technologies are classified into six categories: basic research on Ti-Al-based alloys, powder metallurgy of Ti-Al-based alloys, casting and melting of Ti-Al-based alloys, PM and AM manufacturing methods for aircraft applications, other fabrication technologies by Ti-Al-based alloys, and self-propagating high-temperature synthesis (SHS) of Ti-Al-based alloys. By comparing the principles and characteristics of the above techniques, the advantages, disadvantages, and application fields of each are analyzed and their developments are discussed. Based on the characteristics of Ti-Al, new fabrication and application technologies can be developed, which can overcome the existing disadvantages and be used to form new aircraft components. Full article
(This article belongs to the Special Issue Advances in Lightweight Alloys)
Show Figures

Figure 1

17 pages, 11245 KiB  
Article
Fabrication of Electron Beam Melted Titanium Aluminide: The Effects of Machining Parameters and Heat Treatment on Surface Roughness and Hardness
by Murat Isik, Mehmet Yildiz, Ragip Orkun Secer, Ceren Sen, Guney Mert Bilgin, Akin Orhangul, Guray Akbulut, Hamidreza Javidrad and Bahattin Koc
Metals 2023, 13(12), 1952; https://doi.org/10.3390/met13121952 - 28 Nov 2023
Cited by 2 | Viewed by 2180
Abstract
Titanium aluminide alloys have gained attention for their lightweight and high-performance properties, particularly in aerospace and automotive applications. Traditional manufacturing methods such as casting and forging have limitations on part size and complexity, but additive manufacturing (AM), specifically electron beam melting (EBM), has [...] Read more.
Titanium aluminide alloys have gained attention for their lightweight and high-performance properties, particularly in aerospace and automotive applications. Traditional manufacturing methods such as casting and forging have limitations on part size and complexity, but additive manufacturing (AM), specifically electron beam melting (EBM), has overcome these challenges. However, the surface quality of AM parts is not ideal for sensitive applications, so post-processing techniques such as machining are used to improve it. The combination of AM and machining is seen as a promising solution. However, research on optimizing machining parameters and their impact on surface quality characteristics is lacking. Limited studies exist on additively manufactured TiAl alloys, necessitating further investigation into surface roughness during EBM TiAl machining and its relationship to cutting speed. As-built and heat-treated TiAl samples undergo machining at different feed rates and surface speeds. Profilometer analysis reveals worsened surface roughness in both heat-treated and non-heat-treated specimens at certain machining conditions, with higher speeds exacerbating edge cracks and material pull-outs. The hardness of the machined surfaces remains consistent within the range of 32–33.1 HRC at condition 3C (45 SFM and 0.1 mm/tooth). As-built hardness remains unchanged with increasing spindle and cutting head speeds. Conversely, heat-treated condition 3C surfaces demonstrate greater hardness than condition 1A (15 SFM, and 0.04 mm/tooth), indicating increased hardness with varying feed and surface speeds. This suggests crack formation in the as-built condition is considered to be influenced by factors beyond hardness, such as deformation-related grain refinement/strain hardening, while hardness and the existence of the α2 phase play a more significant role in heat-treated surfaces. Full article
(This article belongs to the Special Issue Additive Manufacturing of Titanium Alloys 2022)
Show Figures

Figure 1

29 pages, 25766 KiB  
Review
A Review on the Analysis of Thermal and Thermodynamic Aspects of Grain Refinement of Aluminum-Silicon-Based Alloys
by Ehab Samuel, Agnes M. Samuel, Victor Songmene and Fawzy H. Samuel
Materials 2023, 16(16), 5639; https://doi.org/10.3390/ma16165639 - 15 Aug 2023
Cited by 15 | Viewed by 2140
Abstract
The present analysis addresses the solidification and thermodynamic parameters involved during the solidification of aluminum (Al)-based alloys as presented in the literature using different systems viz., binary aluminum-boron (Al-B) and aluminum-titanium (Al-Ti) systems, ternary aluminum-titanium-boron (Al-Ti-B) and aluminum-titanium-carbon (Al-Ti-C) systems, as well as [...] Read more.
The present analysis addresses the solidification and thermodynamic parameters involved during the solidification of aluminum (Al)-based alloys as presented in the literature using different systems viz., binary aluminum-boron (Al-B) and aluminum-titanium (Al-Ti) systems, ternary aluminum-titanium-boron (Al-Ti-B) and aluminum-titanium-carbon (Al-Ti-C) systems, as well as taking into consideration the silicon-titanium-aluminide (Si-TiAl3) interaction in Al-based alloys containing Si. The analysis is supported by recent metallographic evidence obtained by the authors on A356.2 alloys. The sections on thermodynamic aspects cover the different models proposed concerning nucleation and growth on a newly formed Al grain. The value of the recalescence parameter reduces gradually with the increase in the Ti added. At a level of 0.20 wt%, this parameter becomes zero. If the concentration of grain refiner exceeds a certain amount, the grain size becomes minimal. Another parameter to be considered is the interaction between the grain refiner and traces of other metals in the base alloy. For example, Al-4%B can react with traces of Ti that may exist in the base alloy, leading to the reaction between boron and titanium to form titanium diboride (TiB2). Grain refinement is achieved primarily with TiB2 rather than aluminum diboride (AlB2), or both, depending on the Ti content in the given alloy. Full article
Show Figures

Figure 1

13 pages, 3759 KiB  
Article
Tailoring the Microstructure of Laser-Additive-Manufactured Titanium Aluminide Alloys via In Situ Alloying and Parameter Variation
by Igor Polozov, Victoria Sokolova, Anna Gracheva and Anatoly Popovich
Metals 2023, 13(8), 1429; https://doi.org/10.3390/met13081429 - 9 Aug 2023
Cited by 2 | Viewed by 1893
Abstract
Titanium aluminide (TiAl) alloys have emerged as promising materials for high-temperature applications due to their unique combination of high-temperature strength, low density, and excellent oxidation resistance. However, the fabrication of TiAl alloys using conventional methods is challenging due to their high melting points [...] Read more.
Titanium aluminide (TiAl) alloys have emerged as promising materials for high-temperature applications due to their unique combination of high-temperature strength, low density, and excellent oxidation resistance. However, the fabrication of TiAl alloys using conventional methods is challenging due to their high melting points and limited ductility. Selective laser melting (SLM), an additive manufacturing technique, offers a viable solution for producing TiAl alloys with intricate geometries and the potential for tailoring their microstructure. This study investigates the effect of in situ copper alloying and multiple laser scans on the microstructure and mechanical properties of TiAl-based alloys fabricated using SLM. The results demonstrate that copper alloying enhances the formation of the α2-Ti3Al phase, refines the microstructure, and improves the mechanical properties of TiAl alloys. Multiple laser scans allow for the creation of distinct microstructural regions within a single component, enabling the tailoring of properties that are suitable for specific operating conditions. The findings provide valuable insights into the fabrication and optimization of TiAl intermetallic alloys with diverse applications. Full article
Show Figures

Figure 1

20 pages, 17781 KiB  
Article
Improving Forging Outcomes of Cast Titanium Aluminide Alloy via Cyclic Induction Heat Treatment
by Sean Peters, Aurik Andreu, Marcos Perez and Paul Blackwell
Metals 2023, 13(8), 1420; https://doi.org/10.3390/met13081420 - 8 Aug 2023
Cited by 1 | Viewed by 1736
Abstract
The objective of this research was to improve the forging outcome of peritectic solidifying cast titanium aluminide (TiAl) 4822 alloy (Ti-48Al-2Nb-2Cr at.%) in hot isostatic pressed and homogenised (HH) condition using cyclic induction heat treatment (CHT). This study adds to research around CHT [...] Read more.
The objective of this research was to improve the forging outcome of peritectic solidifying cast titanium aluminide (TiAl) 4822 alloy (Ti-48Al-2Nb-2Cr at.%) in hot isostatic pressed and homogenised (HH) condition using cyclic induction heat treatment (CHT). This study adds to research around CHT for TiAl alloys by applying industrially relevant induction heating to conduct five heating cycles at the single αphase temperatures (1370 °C) necessary for grain refinement. Two cooling rates were explored in each cycle, air cooling (ACCHT) and controlled furnace-like cooling (FCCHT), without returning to room temperature. Samples were assessed at each stage in terms of their morphologies, lamellar grain size and content, as well as phase and dynamic recrystallised fraction, and subsequent primary and secondary compression behaviour with uniaxial isothermal compression. The FCCHT process resulted in a homogeneously refined fully lamellar microstructure, and ACCHT, in a heterogeneous microstructure consisting of lamellar and feathery γ (γf) at differing fractions across the piece, depending on the cooling rate compared with HH. The results show that CHT improved forging outcomes for both compression stages investigated, resulting in uniform compression samples with higher volumes of dynamic recrystallised material compared with the instability seen with the compression of HH material. Full article
(This article belongs to the Special Issue Microstructure and Properties of Intermetallics)
Show Figures

Figure 1

13 pages, 4252 KiB  
Article
Microstructure of TiAl Capsules Processed by Electron Beam Powder Bed Fusion Followed by Post-Hot Isostatic Pressing
by Hanieh Bakhshi Farkoush, Giulio Marchese, Emilio Bassini, Alberta Aversa and Sara Biamino
Materials 2023, 16(16), 5510; https://doi.org/10.3390/ma16165510 - 8 Aug 2023
Cited by 2 | Viewed by 1631
Abstract
The microstructures of intermetallic γ-titanium aluminide (TiAl) alloys are subjected to a certain degree of Al evaporation when processed by electron beam powder bed fusion (EB-PBF). The magnitude of the Al-loss is mainly correlated with the process parameters, and highly energetic parameters produce [...] Read more.
The microstructures of intermetallic γ-titanium aluminide (TiAl) alloys are subjected to a certain degree of Al evaporation when processed by electron beam powder bed fusion (EB-PBF). The magnitude of the Al-loss is mainly correlated with the process parameters, and highly energetic parameters produce significant Al evaporation. The Al-loss leads to different microstructures, including the formation of inhomogeneous banded structures, thus negatively affecting its mechanical performance. For this reason, the current work deals with creating EB-PBFed TiAl capsules with the inner part produced using only the pre-heating step and melting parameters with low energetic parameters applying high beam speed from 5000 to 3000 mm/s. This approach is investigated to reduce the Al-loss and microstructure inhomogeneity after hot isostatic pressing (HIP). The results showed that the HIP treatment effectively densified the capsules obtaining a relative density of around 100%. After HIP, the capsules produced with the inner part melted at 3000 mm/s presented a lower area shrinkage (around 6.6%) compared to the capsules produced using only the pre-heating step in the core part (around 20.7%). The different magnitudes of shrinkage derived from different levels of residual porosity consolidated during the HIP process. The HIPed capsules exhibited the presence of previous particle boundaries (PPBs), covered by α2 phases. Notably, applying low energetic parameters to melt the core partially eliminates the particles’ surface, thus reducing the PPBs formation. In this case, the capsules melted with low energetic parameters (3000 mm/s) exhibited α2 concentration of 3.5% and an average size of 13 µm compared to the capsules produced with the pre-heating step in the inner part with an α2 around 5.7% and an average size around 23 µm. Moreover, the Al-loss of the capsules was drastically limited, as determined by X-ray fluorescence (XRF) analysis. More in detail, the capsules produced with the pre-heating step reported an atomic percentage of Al of 48.75, while using low energetic melting parameters led to 48.36. This result was interesting, considering that the massive samples produced with standard parameters (so more energetic ones) revealed atomic Al percentage from 48.04 to 47.70. Finally, the recycled small particles showed a higher fraction of α2 phases with respect to the coarse particles, as determined by X-ray diffraction (XRD). Full article
(This article belongs to the Special Issue Recent Application of Powder Metallurgy Materials)
Show Figures

Figure 1

19 pages, 5904 KiB  
Article
Influence of Silicon and Chromium on the Na2SO4-Induced Hot Corrosion Behavior of Titanium Alloys
by Marzena Mitoraj-Królikowska
Crystals 2023, 13(6), 948; https://doi.org/10.3390/cryst13060948 - 12 Jun 2023
Cited by 1 | Viewed by 1572
Abstract
Titanium alloys are widely used as construction materials in the aerospace and automotive industries. They have many advantages but also have limitations related to their susceptibility to high-temperature oxidation and hot corrosion. Many efforts to increase the lifetime of components made of titanium [...] Read more.
Titanium alloys are widely used as construction materials in the aerospace and automotive industries. They have many advantages but also have limitations related to their susceptibility to high-temperature oxidation and hot corrosion. Many efforts to increase the lifetime of components made of titanium alloys have been reported in the literature; the most promising ones involve the deposition of coatings. The present paper is focused on the development of coatings containing chromium and silicon, and their further evaluation in hot corrosion tests. It was proved that the Cr-Si coatings were more effective than Si coatings alone in protecting the titanium alloys against Na2SO4-induced hot corrosion at 800 °C. The enhanced corrosion resistance was attributed to the preferential formation of a thick and continuous SiO2 layer on the surface and—in the case of titanium aluminide alloy—the growth of an Al2O3-rich inner layer of the scale, promoted by chromium. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

19 pages, 7200 KiB  
Article
Insights on Niobium Micro-Alloyed Laser In Situ Synthesised Gamma Titanium Aluminide Alloys
by Monnamme Tlotleng, Sisa Pityana and Sibusisiwe Motha
Appl. Sci. 2023, 13(9), 5725; https://doi.org/10.3390/app13095725 - 6 May 2023
Cited by 3 | Viewed by 1917
Abstract
The effects of micro-alloying gamma titanium aluminide (γ-TiAl) with niobium (Nb) using a laser melt pool as a melting pot are reported. The Optomec LENS machine was used to carry out the laser in situ alloying experiments where Nb, ranging from 6 to [...] Read more.
The effects of micro-alloying gamma titanium aluminide (γ-TiAl) with niobium (Nb) using a laser melt pool as a melting pot are reported. The Optomec LENS machine was used to carry out the laser in situ alloying experiments where Nb, ranging from 6 to 10 (at. %), was added to the stable binary γ-TiAl alloy. The results of this study concluded that when a stable binary γ-TiAl alloy is micro-alloyed with Nb, there is a definite microstructural transformation, anneal twinning, promotion, and retardation of aluminium solubility in the dual and pure γ phases, respectively. Twinning in the as-built in situ alloyed ternary Ti–48Al–xNb was for the first time reported in this study. It was observed that 6 at. % Nb promoted twinning in the as-built sample, which inferred that the sample might have room temperature ductility. In fact, it was shown that the twins formed in the as-built sample dissipated with the addition of Nb. A heat treatment temperature of 1200 °C promoted anneal twinning only in the binary alloy, as confirmed by XRD data. Meanwhile, this twinning was absent in all the ternary alloys when they were heat treated to a temperature of 1200 °C. Anneal twinning was confirmed only for the alloy containing 8 Nb (at. %) at 1400 °C. Stalk faults, dislocations, and dislocation pile-ups were observed in the α2 phase of the alloys. Aluminium solubility was seen to increase in the α2 + γ (±49 at. %) phase alloy and sharply decrease in the pure γ (>49 at. %) phase alloys. Most importantly, this study determined that the laser in situ alloying process was highly exothermic. The heat gained by the reaction was found to increase with the increase in niobium content. Full article
(This article belongs to the Special Issue Heat Treatment of Metals and Alloys)
Show Figures

Figure 1

30 pages, 5481 KiB  
Review
A Review—Additive Manufacturing of Intermetallic Alloys Based on Orthorhombic Titanium Aluminide Ti2AlNb
by Anatoliy G. Illarionov, Stepan I. Stepanov, Inna A. Naschetnikova, Artemiy A. Popov, Prasanth Soundappan, K. H. Thulasi Raman and Satyam Suwas
Materials 2023, 16(3), 991; https://doi.org/10.3390/ma16030991 - 20 Jan 2023
Cited by 25 | Viewed by 5127
Abstract
Titanium alloys based on orthorhombic titanium aluminide Ti2AlNb are promising refractory materials for aircraft engine parts in the operating temperature range from 600–700 °C. Parts made of Ti2AlNb-based alloys by traditional technologies, such as casting and metal forming, have [...] Read more.
Titanium alloys based on orthorhombic titanium aluminide Ti2AlNb are promising refractory materials for aircraft engine parts in the operating temperature range from 600–700 °C. Parts made of Ti2AlNb-based alloys by traditional technologies, such as casting and metal forming, have not yet found wide application due to the sensitivity of processability and mechanical properties in chemical composition and microstructure compared with commercial solid-solution-based titanium alloys. In the last three decades, metal additive manufacturing (MAM) has attracted the attention of scientists and engineers for the production of intermetallic alloys based on Ti2AlNb. This review summarizes the recent achievements in the production of O-phase-based Ti alloys using MAM, including the analysis of the feedstock materials, technological processes, machines, microstructure, phase composition and mechanical properties. Powder bed fusion (PBF) and direct energy deposition (DED) are the most widely employed MAM processes to produce O-phase alloys. MAM provides fully dense, fine-grained material with a superior combination of mechanical properties at room temperature. Further research on MAM for the production of critical parts made of Ti2AlNb-based alloys can be focused on a detailed study of the influence of post-processing and chemical composition on the formation of the structure and mechanical properties, including cyclic loading, fracture toughness, and creep resistance. Full article
Show Figures

Figure 1

23 pages, 4649 KiB  
Article
Laser Powder Bed Fusion of Intermetallic Titanium Aluminide Alloys Using a Novel Process Chamber Heating System: A Study on Feasibility and Microstructural Optimization for Creep Performance
by Reinhold Wartbichler, Tobias Maiwald-Immer, Fabian Pürstl and Helmut Clemens
Metals 2022, 12(12), 2087; https://doi.org/10.3390/met12122087 - 5 Dec 2022
Cited by 4 | Viewed by 2807
Abstract
A laser powder bed fusion process operating at elevated temperatures is introduced capable of fabricating crack-free and dense intermetallic titanium aluminide alloy specimens as well as demonstrator components using a base plate heating up to 900 °C and a unique heating system of [...] Read more.
A laser powder bed fusion process operating at elevated temperatures is introduced capable of fabricating crack-free and dense intermetallic titanium aluminide alloy specimens as well as demonstrator components using a base plate heating up to 900 °C and a unique heating system of the uppermost powder bed layer up to 1200 °C. Two so-called 4th generation alloys, TNM and TNM+, were used for this study. The microstructure and its evolution during subsequent heat treatments were investigated and explained by employing scanning electron microscopy, hardness testing, X-ray diffraction, differential scanning calorimetry and thermodynamic equilibrium calculation. Selected specimens were subjected to creep tests at 750 °C. The microstructures after processing consist of extraordinarily fine lamellar γ-TiAl/α2-Ti3Al-colonies with globular γ and βo-TiAl grains for both the TNM and TNM+ alloy, exhibiting a microstructure gradient from the last consolidated powder layer down to the starting layer due to cellular reaction, which increases the amount of globular γ and βo at the boundaries of the γ/α2-colonies. During annealing in proximity to the γ-solvus temperature, banded microstructures might form, as the α-grain size is only partially controlled by heterogeneously distributed γ/β-phase, which stems from the process-related Al loss. Additionally, the occurrence of thermally-induced porosity is investigated. Optimizing the microstructure to a homogenized, almost fully lamellar microstructure, involved annealing in the β-single phase field region and led to improved creep properties. Finally, TNM demonstrator components with complex geometries, such as aero engine blades and turbocharger turbine wheels, are fabricated by employing the novel laser powder bed fusion process. Full article
(This article belongs to the Special Issue Intermetallics for Structural Applications)
Show Figures

Figure 1

13 pages, 3785 KiB  
Article
Effect of Copper on the Formation of L12 Intermetallic Phases in Al–Cu–X (X = Ti, Zr, Hf) Alloys
by Elvira Popova, Pavel Kotenkov, Ivan Gilev, Stepan Pryanichnikov and Alexey Shubin
Metals 2022, 12(12), 2067; https://doi.org/10.3390/met12122067 - 30 Nov 2022
Cited by 1 | Viewed by 2095
Abstract
Transition metal trialuminides of the Al3X type of groups 4 and 5 of the periodic system have reduced density, high melting points, and corrosion resistance. Aluminides with a cubic lattice of the Al3Sc type can be used as a [...] Read more.
Transition metal trialuminides of the Al3X type of groups 4 and 5 of the periodic system have reduced density, high melting points, and corrosion resistance. Aluminides with a cubic lattice of the Al3Sc type can be used as a nucleating phase for aluminum alloys. However, low plasticity and a tetragonal lattice limit their application. In this work, we stabilized the metastable cubic lattice of Al3X-type aluminides by replacing aluminum with copper. The conditions for the formation of L12 metastable aluminides in the Al–Cu–TM (TM: Ti, Zr, Hf) alloys were studied using a wide range of copper concentrations. A high concentration of copper (hypereutectic alloys) is the one of the necessary conditions for the formation of (Al1−xCux)3Ti, (Al1−xCux)3Zr, (Al1−xCux)3Hf aluminides. With an increase in the copper concentration, the number of metastable aluminides sharply increased. The process of their formation strongly depended on the sequence of dissolution of the corresponding components in the melts. The low volume fraction of precipitated titanium aluminides was the result of insufficient supersaturation of α-Al with titanium (at the peritectic temperature) compared to that for alloys with zirconium and hafnium. Under identical synthesis conditions in the crystal lattice of metastable aluminides formed in experimental Al–Cu–Ti, Al–Cu–Zr, Al–Cu–Hf alloys, copper was found to substitute up to 8, 10, and 13 at.% of aluminum, respectively. The crystallographic and dimensional similarities of the lattices in metastable transition metal aluminides and in α-Al suggest their usefulness as modifying additions in aluminum-based alloys. Full article
Show Figures

Figure 1

12 pages, 7307 KiB  
Article
Sliding Wear Behavior of Intermetallic Ti-45Al-2Nb-2Mn-(at%)-0.8vol%TiB2 Processed by Centrifugal Casting and Hot Isostatic Pressure: Influence of Microstructure
by Segundo Shagñay, Juan Cornide and Elisa María Ruiz-Navas
Materials 2022, 15(22), 8052; https://doi.org/10.3390/ma15228052 - 15 Nov 2022
Cited by 2 | Viewed by 1784
Abstract
Intermetallic alloys such as titanium aluminides (TiAl) are potential materials for aerospace applications at elevated temperatures. TiAl intermetallics have low weight and improved efficiency under aggressive environments. However, there is limited information about wear behavior of these alloys and their microstructure. The present [...] Read more.
Intermetallic alloys such as titanium aluminides (TiAl) are potential materials for aerospace applications at elevated temperatures. TiAl intermetallics have low weight and improved efficiency under aggressive environments. However, there is limited information about wear behavior of these alloys and their microstructure. The present work aims to study the influence of the microstructure in the tribological behavior of TiAl intermetallic alloy (45Al-2Mn-2Nb(at%)-0.8 vol%TiB2). Wear tests were performed on samples manufactured by centrifugal casting (CC) and hot isostatic pressure (HIP). Reciprocating sliding wear test was carried out for TiAl, it was combined with different loads and frequencies. Wear tracks were analyzed through opto-digital microscopy and electron microscopy (SEM). The results obtained reveal that CC intermetallics present the lowest volume wear lost, approximately 20% less than HIP intermetallics. This good behavior could be related to the high hardness material, associated with the main microstructure where CC intermetallic has nearly lamellar microstructure and HIP intermetallics present duplex microstructure. Full article
Show Figures

Figure 1

Back to TopTop