Tailoring the Microstructure of Laser-Additive-Manufactured Titanium Aluminide Alloys via In Situ Alloying and Parameter Variation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powder Preparation
2.2. Selective Laser Melting (SLM) Process
2.3. Analysis of Microstructures and Phase Composition
2.4. Tensile and Compressive Testing
2.5. Heat Treatment
2.6. Microhardness Testing
3. Results
3.1. Copper’s Influence on the Microstructure and Mechanical Properties of TiAl Alloys
3.2. The Influence of the Multiple Scans on the Microstructure and Mechanical Properties of Ti4822 Alloys
4. Discussion
4.1. Copper’s Influence on the Microstructure of the TiAl Alloy
4.2. The Influence of Repeating Scanning on the Microstructures of the Ti4822 Alloys
5. Conclusions
- Copper alloying enhances the formation of the α2-Ti3Al phase and increases its volume fraction in TiAl alloys. The addition of copper refines the material’s microstructure, leading to the formation of lamellar colonies surrounded by γ-phase boundaries.
- The microstructural changes induced by copper alloying result in improved mechanical properties. TiAl alloys with added copper exhibited higher microhardness and tensile strength compared to the alloy without copper. The TiAl-4Cu composition showed the highest tensile strength (432 ± 25 MPa) among the investigated compositions.
- Heat treatment of the TiAl-Cu alloys at 1260 °C led to grain growth, intergranular γ-TiAl boundary thickening, and the formation of coarse Cu-rich intermetallic phases. This heat treatment also reduced the tensile strength and ductility of the alloys.
- The use of multiple laser scans during the SLM process allows for the creation of tailored microstructures. The use of the single- and multiple-scan strategies resulted in different microstructural designs, such as near-lamellar and lamellar structures. Heat treatments at different temperatures further modified the microstructures, leading to fully lamellar or mixed nearly lamellar γ + α structures.
- The mechanical properties of the TiAl alloys were affected by the microstructural changes induced by the multiple laser scans and heat treatment. The samples with near-lamellar microstructures exhibited higher compressive strength and strain compared to the samples with fully lamellar or mixed structures.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Soliman, H.A.; Elbestawi, M. Titanium aluminides processing by additive manufacturing—A review. Int. J. Adv. Manuf. Technol. 2022, 119, 5583–5614. [Google Scholar] [CrossRef]
- Vogelpoth, A.; Schleifenbaum, J.H.; Rittinghaus, S. Laser Additive Manufacturing of Titanium Aluminides for Turbomachinery Applications. In Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Phoenix, AZ, USA, 17–21 June 2019; Volume 6. [Google Scholar] [CrossRef]
- Mallikarjuna, B.; Reutzel, E.W. Reclamation of intermetallic titanium aluminide aero-engine components using directed energy deposition technology. Manuf. Rev. 2022, 9, 27. [Google Scholar] [CrossRef]
- Duan, B.; Yang, Y.; He, S.; Feng, Q.; Mao, L.; Zhang, X.; Jiao, L.; Lu, X.; Chen, G.; Li, C. History and development of γ-TiAl alloys and the effect of alloying elements on their phase transformations. J. Alloys Compd. 2022, 909, 164811. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, B.; Bai, Q.; Xie, G. Correlation of microstructure and mechanical properties of Ti2AlNb manufactured by SLM and heat treatment. Intermetallics 2021, 139, 107367. [Google Scholar] [CrossRef]
- Polozov, I.; Sufiiarov, V.; Kantyukov, A.; Razumov, N.; Goncharov, I.; Makhmutov, T.; Silin, A.; Kim, A.; Starikov, K.; Shamshurin, A.; et al. Microstructure, densification, and mechanical properties of titanium intermetallic alloy manufactured by laser powder bed fusion additive manufacturing with high-temperature preheating using gas atomized and mechanically alloyed plasma spheroidized powders. Addit. Manuf. 2020, 34, 101374. [Google Scholar] [CrossRef]
- Polozov, I.; Kantyukov, A.; Goncharov, I.; Razumov, N.; Silin, A.; Popovich, V.; Zhu, J.-N.; Popovich, A. Additive Manufacturing of Ti-48Al-2Cr-2Nb Alloy Using Gas Atomized and Mechanically Alloyed Plasma Spheroidized Powders. Materials 2020, 13, 3952. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Luo, Q.; Wang, H.; Wu, Y.; Cheng, X.; Tang, H. Microstructure characteristics and failure mechanisms of Ti-48Al-2Nb-2Cr titanium aluminide intermetallic alloy fabricated by directed energy deposition technique. Addit. Manuf. 2019, 32, 101007. [Google Scholar] [CrossRef]
- Genc, O.; Unal, R. Development of gamma titanium aluminide (γ-TiAl) alloys: A review. J. Alloys Compd. 2022, 929, 167262. [Google Scholar] [CrossRef]
- Polozov, I.; Gracheva, A.; Popovich, A. Processing, Microstructure, and Mechanical Properties of Laser Additive Manufactured Ti2AlNb-Based Alloy with Carbon, Boron, and Yttrium Microalloying. Metals 2022, 12, 1304. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, K.; Niu, W. Microstructural characteristic and mechanical properties of titanium-copper alloys in-situ fabricated by selective laser melting. J. Alloys Compd. 2021, 885, 161032. [Google Scholar] [CrossRef]
- Akbarpour, M.R.; Mirabad, H.M.; Hemmati, A.; Kim, H.S. Processing and microstructure of Ti-Cu binary alloys: A comprehensive review. Prog. Mater. Sci. 2022, 127, 100933. [Google Scholar] [CrossRef]
- Cardoso, F.; Cremasco, A.; Contieri, R.; Lopes, E.; Afonso, C.; Caram, R. Hexagonal martensite decomposition and phase precipitation in Ti–Cu alloys. Mater. Des. 2011, 32, 4608–4613. [Google Scholar] [CrossRef]
- Vilardell, A.M.; Yadroitsev, I.; Yadroitsava, I.; Albu, M.; Takata, N.; Kobashi, M.; Krakhmalev, P.; Kouprianoff, D.; Kothleitner, G.; du Plessis, A. Manufacturing and characterization of in-situ alloyed Ti6Al4V(ELI)-3 at.% Cu by laser powder bed fusion. Addit. Manuf. 2020, 36, 101436. [Google Scholar] [CrossRef]
- Wartbichler, R.; Clemens, H.; Mayer, S. Electron Beam Melting of a β-Solidifying Intermetallic Titanium Aluminide Alloy. Adv. Eng. Mater. 2019, 21, 1900800. [Google Scholar] [CrossRef]
- Mphahlele, M.; Olevsky, E.; Olubambi, P. Chapter 12-Spark plasma sintering of near net shape titanium aluminide: A review. In Spark Plasma Sintering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 281–299. [Google Scholar] [CrossRef]
- Leyens, C.; Peters, M. Titanium and Titanium Alloys. Fundamentals and Applications; Wiley-VCH: Weinheim, Germany, 2006; ISBN 3527305343. [Google Scholar]
- Sun, F.-S.; Cao, C.-X.; Yan, M.-G.; Kim, S.-E.; Tailee, Y. Alloying mechanism of beta stabilizers in a TiAl alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2001, 32, 1573–1589. [Google Scholar] [CrossRef]
- Raji, S.A.; Popoola, A.P.I.; Pityana, S.L.; Popoola, O.M. Characteristic effects of alloying elements on β solidifying titanium aluminides: A review. Heliyon 2020, 6, e04463. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Luo, S.D.; Wu, X.; Schaffer, G.B.; Qian, M. The sintering densification, microstructure and mechanical properties of gamma Ti–48Al–2Cr–2Nb alloy with a small addition of copper. Mater. Sci. Eng. A 2013, 559, 293–300. [Google Scholar] [CrossRef]
- Huang, X.-M.; Zhang, S.-X.; Cai, G.-M.; Liu, H.-S. Study on the evolution of phase relations in the Ti–Al–Nb/Cr systems at 0–50 at.% Al region. Calphad 2022, 79, 102461. [Google Scholar] [CrossRef]
- Ju, J.; Zan, R.; Shen, Z.; Wang, C.; Peng, P.; Wang, J.; Sun, B.; Xiao, B.; Li, Q.; Liu, S.; et al. Remarkable bioactivity, bio-tribological, antibacterial, and anti-corrosion properties in a Ti-6Al-4V-xCu alloy by laser powder bed fusion for superior biomedical implant applications. Chem. Eng. J. 2023, 471, 144656. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, J.; Yang, Z.; Zhao, Q.; Chen, Y.; Zhao, Y. The Effect of Copper Content on the Mechanical and Tribological Properties of Hypo-, Hyper- and Eutectoid Ti-Cu Alloys. Materials 2020, 13, 3411. [Google Scholar] [CrossRef]
- Clemens, H.; Mayer, S. Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys. Adv. Eng. Mater. 2012, 15, 191–215. [Google Scholar] [CrossRef]
- Song, L.; Xu, X.; You, L.; Liang, Y.; Lin, J. Phase transformation and decomposition mechanisms of the β (ω) phase in cast high Nb containing TiAl alloy. J. Alloys Compd. 2014, 616, 483–491. [Google Scholar] [CrossRef]
- Niu, H.; Chen, Y.; Xiao, S.; Xu, L. Microstructure evolution and mechanical properties of a novel beta γ-TiAl alloy. Intermetallics 2012, 31, 225–231. [Google Scholar] [CrossRef]
- Takeyama, M.; Kobayashi, S. Physical metallurgy for wrought gamma titanium aluminides: Microstructure control through phase transformations. Intermetallics 2005, 13, 993–999. [Google Scholar] [CrossRef]
- Cui, N.; Wu, Q.; Yan, Z.; Zhou, H.; Wang, X. The Microstructural Evolution, Tensile Properties, and Phase Hardness of a TiAl Alloy with a High Content of the β Phase. Materials 2019, 12, 2757. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Nieh, T. Creep of a beta phase-containing TiAl alloy. Intermetallics 2000, 8, 737–748. [Google Scholar] [CrossRef]
- Xia, Z.; Shan, C.; Zhang, M.; Cui, M.; Luo, M. Machinability of γ-TiAl: A review. Chin. J. Aeronaut. 2023, 36, 40–75. [Google Scholar] [CrossRef]
- Schloffer, M.; Iqbal, F.; Gabrisch, H.; Schwaighofer, E.; Schimansky, F.-P.; Mayer, S.; Stark, A.; Lippmann, T.; Göken, M.; Pyczak, F.; et al. Microstructure development and hardness of a powder metallurgical multi phase γ-TiAl based alloy. Intermetallics 2012, 22, 231–240. [Google Scholar] [CrossRef] [Green Version]
Copper Content | 0 wt.%Cu | 2 wt.%Cu | 4 wt.%Cu | 6 wt.%Cu |
---|---|---|---|---|
Tensile strength, MPa | 210 ± 15 | 276 ± 25 | 432 ± 25 | 256 ± 16 |
Element Content, at. % | Ti | Al | Cr | Nb |
---|---|---|---|---|
Feedstock powder nominal composition | 48 | 48 | 2 | 2 |
X1 scanning | 50.54 | 45.26 | 2.12 | 2.07 |
X10 scanning | 52.91 | 42.49 | 1.95 | 2.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polozov, I.; Sokolova, V.; Gracheva, A.; Popovich, A. Tailoring the Microstructure of Laser-Additive-Manufactured Titanium Aluminide Alloys via In Situ Alloying and Parameter Variation. Metals 2023, 13, 1429. https://doi.org/10.3390/met13081429
Polozov I, Sokolova V, Gracheva A, Popovich A. Tailoring the Microstructure of Laser-Additive-Manufactured Titanium Aluminide Alloys via In Situ Alloying and Parameter Variation. Metals. 2023; 13(8):1429. https://doi.org/10.3390/met13081429
Chicago/Turabian StylePolozov, Igor, Victoria Sokolova, Anna Gracheva, and Anatoly Popovich. 2023. "Tailoring the Microstructure of Laser-Additive-Manufactured Titanium Aluminide Alloys via In Situ Alloying and Parameter Variation" Metals 13, no. 8: 1429. https://doi.org/10.3390/met13081429
APA StylePolozov, I., Sokolova, V., Gracheva, A., & Popovich, A. (2023). Tailoring the Microstructure of Laser-Additive-Manufactured Titanium Aluminide Alloys via In Situ Alloying and Parameter Variation. Metals, 13(8), 1429. https://doi.org/10.3390/met13081429