Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (198)

Search Parameters:
Keywords = time-dependent pharmacokinetics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1812 KiB  
Article
Systemic Metabolic Alterations Induced by Etodolac in Healthy Individuals
by Rajaa Sebaa, Reem H. AlMalki, Hatouf Sukkarieh, Lina A. Dahabiyeh, Maha Al Mogren, Tawfiq Arafat, Ahmed H. Mujamammi, Essa M. Sabi and Anas M. Abdel Rahman
Pharmaceuticals 2025, 18(8), 1155; https://doi.org/10.3390/ph18081155 - 4 Aug 2025
Abstract
Background/Objective: Pharmacological interventions often exert systemic effects beyond their primary targets, underscoring the need for a comprehensive evaluation of their metabolic impact. Etodolac is a nonsteroidal anti-inflammatory drug (NSAID) that alleviates pain, fever, and inflammation by inhibiting cyclooxygenase-2 (COX-2), thereby reducing prostaglandin synthesis. [...] Read more.
Background/Objective: Pharmacological interventions often exert systemic effects beyond their primary targets, underscoring the need for a comprehensive evaluation of their metabolic impact. Etodolac is a nonsteroidal anti-inflammatory drug (NSAID) that alleviates pain, fever, and inflammation by inhibiting cyclooxygenase-2 (COX-2), thereby reducing prostaglandin synthesis. While its pharmacological effects are well known, the broader metabolic impact and potential mechanisms underlying improved clinical outcomes remain underexplored. Untargeted metabolomics, which profiles the metabolome without prior selection, is an emerging tool in clinical pharmacology for elucidating drug-induced metabolic changes. In this study, untargeted metabolomics was applied to investigate metabolic changes following a single oral dose of etodolac in healthy male volunteers. By analyzing serial blood samples over time, we identified endogenous metabolites whose concentrations were positively or inversely associated with the drug’s plasma levels. This approach provides a window into both therapeutic pathways and potential off-target effects, offering a promising strategy for early-stage drug evaluation and multi-target discovery using minimal human exposure. Methods: Thirty healthy participants received a 400 mg dose of Etodolac. Plasma samples were collected at five time points: pre-dose, before Cmax, at Cmax, after Cmax, and 36 h post-dose (n = 150). Samples underwent LC/MS-based untargeted metabolomics profiling and pharmacokinetic analysis. A total of 997 metabolites were significantly dysregulated between the pre-dose and Cmax time points, with 875 upregulated and 122 downregulated. Among these, 80 human endogenous metabolites were identified as being influenced by Etodolac. Results: A total of 17 metabolites exhibited time-dependent changes closely aligned with Etodolac’s pharmacokinetic profile, while 27 displayed inverse trends. Conclusions: Etodolac influences various metabolic pathways, including arachidonic acid metabolism, sphingolipid metabolism, and the biosynthesis of unsaturated fatty acids. These selective metabolic alterations complement its COX-2 inhibition and may contribute to its anti-inflammatory effects. This study provides new insights into Etodolac’s metabolic impact under healthy conditions and may inform future therapeutic strategies targeting inflammation. Full article
(This article belongs to the Special Issue Advances in Drug Analysis and Drug Development, 2nd Edition)
Show Figures

Figure 1

28 pages, 4805 KiB  
Article
Mapping the Global Research on Drug–Drug Interactions: A Multidecadal Evolution Through AI-Driven Terminology Standardization
by Andrei-Flavius Radu, Ada Radu, Delia Mirela Tit, Gabriela Bungau and Paul Andrei Negru
Bioengineering 2025, 12(7), 783; https://doi.org/10.3390/bioengineering12070783 - 19 Jul 2025
Viewed by 672
Abstract
The significant burden of polypharmacy in clinical settings contrasts sharply with the narrow research focus on drug–drug interactions (DDIs), revealing an important gap in understanding the complexity of real-world multi-drug regimens. The present study addresses this gap by conducting a high-resolution, multidimensional bibliometric [...] Read more.
The significant burden of polypharmacy in clinical settings contrasts sharply with the narrow research focus on drug–drug interactions (DDIs), revealing an important gap in understanding the complexity of real-world multi-drug regimens. The present study addresses this gap by conducting a high-resolution, multidimensional bibliometric and network analysis of 19,151 DDI publications indexed in the Web of Science Core Collection (1975–2025). Using advanced tools, including VOSviewer version 1.6.20, Bibliometrix 5.0.0, and AI-enhanced terminology normalization, global research trajectories, knowledge clusters, and collaborative dynamics were systematically mapped. The analysis revealed an exponential growth in publication volume (from 55 in 1990 to 1194 in 2024), with output led by the United States and a marked acceleration in Chinese contributions after 2015. Key pharmacological agents frequently implicated in DDI research included CYP450-dependent drugs such as statins, antiretrovirals, and central nervous system drugs. Thematic clusters evolved from mechanistic toxicity assessments to complex frameworks involving clinical risk management, oncology co-therapies, and pharmacokinetic modeling. The citation impact peaked at 3.93 per year in 2019, reflecting the increasing integration of DDI research into mainstream areas of pharmaceutical science. The findings highlight a shift toward addressing polypharmacy risks in aging populations, supported by novel computational methodologies. This comprehensive assessment offers insights for researchers and academics aiming to navigate the evolving scientific landscape of DDIs and underlines the need for more nuanced system-level approaches to interaction risk assessment. Future studies should aim to incorporate patient-level real-world data, expand bibliometric coverage to underrepresented regions and non-English literature, and integrate pharmacogenomic and time-dependent variables to enhance predictive models of interaction risk. Cross-validation of AI-based approaches against clinical outcomes and prospective cohort data are also needed to bridge the translational gap and support precision dosing in complex therapeutic regimens. Full article
Show Figures

Figure 1

24 pages, 2011 KiB  
Article
Pharmacokinetics of Pegaspargase with a Limited Sampling Strategy for Asparaginase Activity Monitoring in Children with Acute Lymphoblastic Leukemia
by Cristina Matteo, Antonella Colombini, Marta Cancelliere, Tommaso Ceruti, Ilaria Fuso Nerini, Luca Porcu, Massimo Zucchetti, Daniela Silvestri, Maria Grazia Valsecchi, Rosanna Parasole, Luciana Vinti, Nicoletta Bertorello, Daniela Onofrillo, Massimo Provenzi, Elena Chiocca, Luca Lo Nigro, Laura Rachele Bettini, Giacomo Gotti, Silvia Bungaro, Martin Schrappe, Paolo Ubezio and Carmelo Rizzariadd Show full author list remove Hide full author list
Pharmaceutics 2025, 17(7), 915; https://doi.org/10.3390/pharmaceutics17070915 - 15 Jul 2025
Viewed by 391
Abstract
Background: Asparaginase (ASPase) plays an important role in the therapy of acute lymphoblastic leukemia (ALL). Serum ASPase activity (SAA) can be modified and even abolished by host immune responses; therefore, current treatment guidelines recommend to monitor SAA during treatment administration. The SAA [...] Read more.
Background: Asparaginase (ASPase) plays an important role in the therapy of acute lymphoblastic leukemia (ALL). Serum ASPase activity (SAA) can be modified and even abolished by host immune responses; therefore, current treatment guidelines recommend to monitor SAA during treatment administration. The SAA monitoring schedule needs to be carefully planned to reduce the number of samples without hampering the possibility of measuring pharmacokinetics (PK) parameters in individual patients. Complex modelling approaches, not easily applicable in common practice, have been applied in previous studies to estimate ASPase PK parameters. This study aimed to estimate PK parameters by using a simplified approach suitable for real-world settings with limited sampling. Methods: Our study was based on 434 patients treated in Italy within the AIEOP-BFM ALL 2009 trial. During the induction phase, patients received two doses of pegylated ASPase and were monitored with blood sampling at five time points, including time 0. PK parameters were estimated by using the individually available SAA measurements with simple modifications of the classical non-compartmental PK analysis. We also took the opportunity to develop and validate a series of limited sampling models to predict ASPase exposure. Results: During the induction phase, average ASPase activity at day 7 was 1380 IU/L after the first dose and 1948 IU/L after the second dose; therapeutic SAA levels (>100 IU/L) were maintained until day 33 in 90.1% of patients. The average AUC and clearance were 46,937 IU/L × day and 0.114 L/day/m2, respectively. The database was analyzed for possible associations of PK parameters with biological characteristics of the patients, finding only a limited dependence on sex, age and risk score; however, these differences were not sufficient to allow any dose or schedule adjustments. Thereafter the possibility of further sampling reduction by using simple linear models to estimate the AUC was also explored. The most simple model required only two samplings 7 days after each ASPase dose, with the AUC being proportional to the sum of the two measured activities A(7) and A(21), calculated by the formula AUC = 14.1 × [A(7) + A(21)]. This model predicts the AUC with 6% average error and 35% maximum error compared to the AUC estimated with all available measures. Conclusions: Our study demonstrates the feasibility of a direct estimation of PK parameters in a real-life situation with limited and variable blood sampling schedules and also offers a simplified method and formulae easily applicable in clinical practice while maintaining a reliable pharmacokinetic monitoring. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

22 pages, 3768 KiB  
Article
MWB_Analyzer: An Automated Embedded System for Real-Time Quantitative Analysis of Morphine Withdrawal Behaviors in Rodents
by Moran Zhang, Qianqian Li, Shunhang Li, Binxian Sun, Zhuli Wu, Jinxuan Liu, Xingchao Geng and Fangyi Chen
Toxics 2025, 13(7), 586; https://doi.org/10.3390/toxics13070586 - 14 Jul 2025
Viewed by 422
Abstract
Background/Objectives: Substance use disorders, particularly opioid addiction, continue to pose a major global health and toxicological challenge. Morphine dependence represents a significant problem in both clinical practice and preclinical research, particularly in modeling the pharmacodynamics of withdrawal. Rodent models remain indispensable for investigating [...] Read more.
Background/Objectives: Substance use disorders, particularly opioid addiction, continue to pose a major global health and toxicological challenge. Morphine dependence represents a significant problem in both clinical practice and preclinical research, particularly in modeling the pharmacodynamics of withdrawal. Rodent models remain indispensable for investigating the neurotoxicological effects of chronic opioid exposure and withdrawal. However, conventional behavioral assessments rely on manual observation, limiting objectivity, reproducibility, and scalability—critical constraints in modern drug toxicity evaluation. This study introduces MWB_Analyzer, an automated and high-throughput system designed to quantitatively and objectively assess morphine withdrawal behaviors in rats. The goal is to enhance toxicological assessments of CNS-active substances through robust, scalable behavioral phenotyping. Methods: MWB_Analyzer integrates optimized multi-angle video capture, real-time signal processing, and machine learning-driven behavioral classification. An improved YOLO-based architecture was developed for the accurate detection and categorization of withdrawal-associated behaviors in video frames, while a parallel pipeline processed audio signals. The system incorporates behavior-specific duration thresholds to isolate pharmacologically and toxicologically relevant behavioral events. Experimental animals were assigned to high-dose, low-dose, and control groups. Withdrawal was induced and monitored under standardized toxicological protocols. Results: MWB_Analyzer achieved over 95% reduction in redundant frame processing, markedly improving computational efficiency. It demonstrated high classification accuracy: >94% for video-based behaviors (93% on edge devices) and >92% for audio-based events. The use of behavioral thresholds enabled sensitive differentiation between dosage groups, revealing clear dose–response relationships and supporting its application in neuropharmacological and neurotoxicological profiling. Conclusions: MWB_Analyzer offers a robust, reproducible, and objective platform for the automated evaluation of opioid withdrawal syndromes in rodent models. It enhances throughput, precision, and standardization in addiction research. Importantly, this tool supports toxicological investigations of CNS drug effects, preclinical pharmacokinetic and pharmacodynamic evaluations, drug safety profiling, and regulatory assessment of novel opioid and CNS-active therapeutics. Full article
(This article belongs to the Section Drugs Toxicity)
Show Figures

Graphical abstract

15 pages, 1404 KiB  
Article
Physiologically Based Pharmacokinetic Modeling for Predicting Drug Levels After Bariatric Surgery: Vardenafil Exposure Before vs. After Gastric Sleeve/Bypass
by Daniel Porat, Oleg Dukhno, Sandra Cvijić and Arik Dahan
Biomolecules 2025, 15(7), 975; https://doi.org/10.3390/biom15070975 - 7 Jul 2025
Viewed by 381
Abstract
Bariatric surgery involves major changes in the anatomy and physiology of the gastrointestinal tract, which may alter oral drug bioavailability and efficacy. Phosphodiesterase-5 inhibitor (PDE5i) drugs are the first-line treatment of erectile dysfunction, a condition associated with a higher BMI. In this paper, [...] Read more.
Bariatric surgery involves major changes in the anatomy and physiology of the gastrointestinal tract, which may alter oral drug bioavailability and efficacy. Phosphodiesterase-5 inhibitor (PDE5i) drugs are the first-line treatment of erectile dysfunction, a condition associated with a higher BMI. In this paper, we examine the PDE5i vardenafil for possible post-bariatric changes in solubility/dissolution and absorption. Vardenafil solubility was determined in vitro, as well as ex vivo using aspirated gastric contents from patients prior to vs. following bariatric procedures. Dissolution was tested in vitro under unoperated stomach vs. post-gastric sleeve/bypass conditions. Lastly, the gathered solubility/dissolution data were used to produce an in silico physiologically based pharmacokinetic (PBPK) model (GastroPlus®), where gastric volume, pH, and transit time, as well as proximal GI bypass (when relevant) were all adjusted for, evaluating vardenafil dissolution, gastrointestinal compartmental absorption, and pharmacokinetics before vs. after different bariatric procedures. pH-dependent solubility was demonstrated for vardenafil with low (pH 7) vs. high solubility (pH 1–5), which was confirmed ex vivo. The impaired dissolution of all vardenafil doses under post-gastric bypass conditions was demonstrated, contrary to complete (100%) dissolution under pre-surgery and post-sleeve gastrectomy conditions. Compared to unoperated individuals, PBPK simulations revealed altered pharmacokinetics post-gastric bypass (but not after sleeve gastrectomy), with 30% lower peak plasma concentration (Cmax) and 40% longer time to Cmax (Tmax). Complete absorption after gastric bypass is predicted for vardenafil, which is attributable to significant absorption from the large intestine. The biopharmaceutics and PBPK analysis indicate that vardenafil may be similarly effective after sleeve gastrectomy as before the procedure. However, results after gastric bypass question the effectiveness of this PDE5i. Specifically, vardenafil’s onset of action might be delayed and unpredictable, negatively affecting the practicality of the intended use. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

17 pages, 2255 KiB  
Article
Engineering a Radiohybrid PSMA Ligand with an Albumin-Binding Moiety and Pharmacokinetic Modulation via an Albumin-Binding Competitor for Radiotheranostics
by Saki Hirata, Hiroaki Echigo, Masayuki Munekane, Kenji Mishiro, Kohshin Washiyama, Takeshi Fuchigami, Hiroshi Wakabayashi, Kazuhiro Takahashi, Seigo Kinuya and Kazuma Ogawa
Molecules 2025, 30(13), 2804; https://doi.org/10.3390/molecules30132804 - 29 Jun 2025
Viewed by 423
Abstract
The prostate-specific membrane antigen (PSMA) is a well-established target for radiotheranostics in prostate cancer. We previously demonstrated that 4-(p-astatophenyl)butyric acid (APBA), an albumin-binding moiety (ABM) labeled with astatine-211 (211At), enables the modulation of pharmacokinetics and enhancement of therapeutic efficacy [...] Read more.
The prostate-specific membrane antigen (PSMA) is a well-established target for radiotheranostics in prostate cancer. We previously demonstrated that 4-(p-astatophenyl)butyric acid (APBA), an albumin-binding moiety (ABM) labeled with astatine-211 (211At), enables the modulation of pharmacokinetics and enhancement of therapeutic efficacy when combined with the post-administration of an albumin-binding competitor. However, this strategy has not been explored in PSMA-targeting ligands. We designed and synthesized [211At]6, a novel PSMA ligand structurally analogous to PSMA-617 with APBA. The compound was obtained via a tin–halogen exchange reaction from the corresponding tributylstannyl precursor. Comparative cellular uptake and biodistribution studies were conducted with [211At]6, its radioiodinated analog [125I]5, and [67Ga]Ga-PSMA-617. To assess pharmacokinetic modulation, sodium 4-(p-iodophenyl)butanoate (IPBA), an albumin-binding competitor, was administered 1 h postinjection of [125I]5 and [211At]6 at a 10-fold molar excess relative to blood albumin. The synthesis of [211At]6 gave a radiochemical yield of 15.9 ± 7.7% and a radiochemical purity > 97%. The synthesized [211At]6 exhibited time-dependent cellular uptake and internalization, with higher uptake levels than [67Ga]Ga-PSMA-617. Biodistribution studies of [211At]6 in normal mice revealed a prolonged blood retention similar to those of [125I]5. Notably, post-administration of IPBA significantly reduced blood radioactivity and non-target tissue accumulation of [125I]5 and [211At]6. We found that ABM-mediated pharmacokinetic control was applicable to PSMA-targeted radiotherapeutics, broadening its potential for the optimization of radiotheranostics. Full article
(This article belongs to the Special Issue Advance in Radiochemistry, 2nd Edition)
Show Figures

Figure 1

20 pages, 1996 KiB  
Article
Thermosensitive Mucoadhesive Intranasal In Situ Gel of Risperidone for Nose-to-Brain Targeting: Physiochemical and Pharmacokinetics Study
by Mahendra Singh, Sanjay Kumar, Ramachandran Vinayagam and Ramachandran Samivel
Pharmaceuticals 2025, 18(6), 871; https://doi.org/10.3390/ph18060871 - 11 Jun 2025
Viewed by 519
Abstract
Background/Objectives: Non-invasive central nervous system (CNS) therapies are limited by complex mechanisms and the blood–brain barrier, but nasal delivery offers a promising alternative. The study planned to develop a non-invasive in situ intranasal mucoadhesive thermosensitive gel to deliver CNS-active risperidone via nose-to-brain targeting. [...] Read more.
Background/Objectives: Non-invasive central nervous system (CNS) therapies are limited by complex mechanisms and the blood–brain barrier, but nasal delivery offers a promising alternative. The study planned to develop a non-invasive in situ intranasal mucoadhesive thermosensitive gel to deliver CNS-active risperidone via nose-to-brain targeting. Risperidone, a second-generation antipsychotic, has shown efficacy in managing both psychotic and mood-related symptoms. The mucoadhesive gel formulations help to prolong the residence time at the nasal absorption site, thereby facilitating the uptake of the drug. Methods: The poloxamer 407 (18.0% w/v), HPMC K100M and K15M (0.3–0.5% w/v), and benzalkonium chloride (0.1% v/v) were used as thermosensitive polymers, a mucoadhesive agent, and a preservative, respectively, for the development of in situ thermosensitive gel. The developed formulations were evaluated for various parameters. Results: The pH, gelation temperature, gelation time, and drug content were found to be 6.20 ± 0.026–6.37 ± 0.015, 34.25 ± 1.10–37.50 ± 1.05 °C, 1.65 ± 0.30–2.50 ± 0.55 min, and 95.58 ± 2.37–98.03 ± 1.68%, respectively. Furthermore, the optimized F3 formulation showed satisfactory gelling capacity (9.52 ± 0.513 h) and an acceptable mucoadhesive strength (1110.65 ± 6.87 dyne/cm2). Diffusion of the drug through the egg membrane depended on the formulation’s viscosity, and the F3 formulation explained the first-order release kinetics, indicating concentration-dependent drug diffusion with n < 0.45 (0.398) value, indicating the Fickian-diffusion (diffusional case I). The pharmacokinetic study was performed with male Wistar albino rats, and the F3 in situ thermosensitive risperidone gel confirmed significantly (p < 0.05) ~5.4 times higher brain AUC0–∞ when administered intranasally compared to the oral solution. Conclusions: Based on physicochemical, in vitro, and in vivo parameters, it can be concluded that in situ thermosensitive gel is suitable for administration of risperidone through the nasal route and can enhance patient compliance through ease of application and with less repeated administration. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

16 pages, 596 KiB  
Review
Targeted but Troubling: CYP450 Inhibition by Kinase and PARP Inhibitors and Its Clinical Implications
by Martin Kondža, Josipa Bukić, Ivan Ćavar and Biljana Tubić
Drugs Drug Candidates 2025, 4(2), 24; https://doi.org/10.3390/ddc4020024 - 26 May 2025
Viewed by 1161
Abstract
Cytochrome P450 (CYP450) enzymes are pivotal in the metabolism of numerous anticancer agents, with CYP3A4 being the predominant isoform involved. Inhibition of CYP450 enzymes is a major mechanism underlying clinically significant drug-drug interactions (DDIs), particularly in oncology, where polypharmacy is frequent. This review [...] Read more.
Cytochrome P450 (CYP450) enzymes are pivotal in the metabolism of numerous anticancer agents, with CYP3A4 being the predominant isoform involved. Inhibition of CYP450 enzymes is a major mechanism underlying clinically significant drug-drug interactions (DDIs), particularly in oncology, where polypharmacy is frequent. This review aims to provide a comprehensive and critical overview of CYP450 enzyme inhibition, focusing specifically on the impact of kinase inhibitors (KIs) and poly adenosine diphosphate-ribose polymerase (PARP) inhibitors. A systematic review of the current literature was conducted, focusing on the molecular mechanisms of CYP450 inhibition, including reversible, time-dependent, mechanism-based, and pseudo-irreversible inhibition. Specific attention was given to the inhibitory profiles of clinically relevant KIs and PARP inhibitors, with analysis of pharmacokinetic consequences and regulatory considerations. Many KIs, such as abemaciclib and ibrutinib, demonstrate time-dependent or quasi-irreversible inhibition of CYP3A4, while PARP inhibitors like olaparib and rucaparib exhibit moderate reversible and time-dependent CYP3A4 inhibition. These inhibitory activities can significantly alter the pharmacokinetics of co-administered drugs, leading to increased risk of toxicity or therapeutic failure. Regulatory guidelines now recommend early identification of time-dependent and mechanism-based inhibition using physiologically based pharmacokinetic) (PBPK) modeling. CYP450 inhibition by KIs and PARP inhibitors represents a critical but often underappreciated challenge in oncology pharmacotherapy. Understanding the mechanistic basis of these interactions is essential for optimizing treatment regimens, improving patient safety, and supporting personalized oncology care. Greater clinical vigilance and the integration of predictive modeling tools are necessary to mitigate the risks associated with CYP-mediated DDIs. Full article
(This article belongs to the Section Marketed Drugs)
Show Figures

Figure 1

14 pages, 1451 KiB  
Article
In Silico Evaluation of the Biopharmaceutical and Pharmacokinetic Behavior of Metronidazole from Coated Colonic Release Matrix Tablets
by Roberto Arévalo-Pérez, Cristina Maderuelo and José M. Lanao
Pharmaceutics 2025, 17(5), 647; https://doi.org/10.3390/pharmaceutics17050647 - 14 May 2025
Viewed by 583
Abstract
Background: Physiologically based biopharmaceutics modeling (PBBM) models can help to predict drug release and in vivo absorption behaviors. Colon drug delivery systems have gained interest over the past few years due to the advantages they provide in treating certain diseases in a local [...] Read more.
Background: Physiologically based biopharmaceutics modeling (PBBM) models can help to predict drug release and in vivo absorption behaviors. Colon drug delivery systems have gained interest over the past few years due to the advantages they provide in treating certain diseases in a local way. The objectives of this work were to simulate the biopharmaceutical and pharmacokinetic behavior of metronidazole hydrophilic matrices coated with different enteric polymers and to highlight the factors with a significant impact on the simulated pharmacokinetic parameters. Methods: Physicochemical properties of metronidazole were introduced into Simcyp® simulator platform, and the Advanced Dissolution Absorption Model (ADAM) was employed to simulate the in vivo intestinal absorption and colonic concentrations of metronidazole using a PBBM model. A Kruskal–Wallis test was carried out in order to determine which one of the factors studied has a statistically significant impact on the pharmacokinetic parameters (AUC, Cmax, and Tmax) simulated. Results: Enteric-coated matrix tablets are capable of avoiding metronidazole absorption in the small intestine and releasing it in the colonic region. The release and absorption rates of metronidazole depend largely on the percentage of weight gain of the coating and also on the coating agent. Coated tablets with a time-dependent coating show less variability. Conclusions: PBBM models can help predict the release from drug delivery systems and the pharmacokinetics in vivo of metronidazole from data obtained in vitro, although complementary in vivo studies should be needed. Full article
Show Figures

Figure 1

14 pages, 7525 KiB  
Article
Novel Molecular Weight Gradient Hyaluronate Dissolving Microneedles for Sustained Intralesional Delivery and Photodynamic Activation of Hematoporphyrin in Port-Wine Stain Therapy
by Xueli Peng, Chenxin Yan, Nengquan Fan, Chaoguo Sun, Suohui Zhang and Yunhua Gao
Polymers 2025, 17(9), 1238; https://doi.org/10.3390/polym17091238 - 1 May 2025
Viewed by 536
Abstract
Port-wine stain (PWS), a progressive congenital vascular malformation characterized by ectatic dermal capillaries, demonstrates age-dependent lesion expansion and chromatic intensification, resulting in significant psychosocial comorbidity. While systemic hematoporphyrin (HP) administration remains the clinical paradigm for photodynamic therapy (PDT), its therapeutic utility is severely [...] Read more.
Port-wine stain (PWS), a progressive congenital vascular malformation characterized by ectatic dermal capillaries, demonstrates age-dependent lesion expansion and chromatic intensification, resulting in significant psychosocial comorbidity. While systemic hematoporphyrin (HP) administration remains the clinical paradigm for photodynamic therapy (PDT), its therapeutic utility is severely constrained by non-targeted biodistribution. Pharmacokinetic analyses reveal prolonged dermal retention and suboptimal lesion accumulation, predisposing 42% of patients to phototoxic reactions. To address these limitations, this work creatively suggested a local targeted drug delivery method based on soluble microneedles in response to the difficulties mentioned above. The rational design of a molecular weight (MW) HA gradient system enabled the engineering of ternary nanocomposite microneedles with enhanced biomechanical integrity (0.49 N/needle) and superior HP loading capacity, which collectively facilitated spatiotemporally controlled transdermal delivery of hematoporphyrin with complete dissolution within 30 min. The release performance, skin permeability, and storage stability of hematoporphyrin dissolving microneedles (HP-DMNs) have all been demonstrated in vitro. This study applies soluble microneedle technology to the delivery of HP in PWS for the first time. It avoids the risk of systemic exposure through precise local administration. It uses the rapid dissolution properties of microneedles to achieve high concentration and rapid release of drugs in skin lesions. This study provides a new strategy for sustained intralesional release and rapid drug delivery treatment of PWS and provides novel ideas for the development of new formulations of HP and related photosensitizers. Full article
(This article belongs to the Special Issue Polymers and Their Role in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

22 pages, 2568 KiB  
Article
Development of Rifampicin Eye Drops for the Treatment of Exudative Age-Related Macular Degeneration
by Valory Anne S. Vailoces, Andrew J. Tolentino, Jose Fernando Arevalo, Ron A. Adelman, Robert Bhisitkul, Diana V. Do, Quan Dong Nguyen, Michael J. Tolentino, Masaki Tanito and Hiroaki Serizawa
Pharmaceuticals 2025, 18(5), 655; https://doi.org/10.3390/ph18050655 - 29 Apr 2025
Viewed by 896
Abstract
Background/Objectives: Exudative age-related macular degeneration (AMD) is a disease of choroidal neovascularization that causes blindness. Current treatments to preserve vision in this prevalent and blinding condition are repeat intraocular injections of anti-vascular endothelial growth factor medicines for a patient’s lifetime to preserve [...] Read more.
Background/Objectives: Exudative age-related macular degeneration (AMD) is a disease of choroidal neovascularization that causes blindness. Current treatments to preserve vision in this prevalent and blinding condition are repeat intraocular injections of anti-vascular endothelial growth factor medicines for a patient’s lifetime to preserve and prevent vision loss leading to blindness. Rifampicin, a small-molecule antibiotic, has previously been reported to exhibit anti-angiogenic properties and a topical safety profile that is well-tolerated. Based on this evidence, we investigated the feasibility of formulating rifamycin as an ophthalmic drop capable of delivering therapeutic concentrations to the posterior segment of the eye. Methods: Inhibition of neovascularization by administration of rifampicin was analyzed in the rat oxygen-induced retinopathy (OIR) and mouse laser-induced choroidal neovascularization (CNV) models. Pharmacokinetic (PK) studies were conducted in mice, rats, and rabbits by dosing various formulations containing rifampicin, and the compound was quantified by LC/MS analysis. Results: Results from dose escalation studies in the mouse laser-induced CNV model suggested the minimum effective dose of rifampicin required for inhibiting neovascularization in subretinal tissues to be 0.7 mg/kg, which is substantially lower than the 20 mg/kg dosage approved for infectious disease treatments. The previous studies did not report the minimum effective dose in the anti-angiogenesis effects. The effective area under the concentration-time curve (AUC) in the sub-retina was evaluated as 0.27 h·ng/mg. In rabbits, rifampicin was delivered to the sub-retina by a single topical application of various formulations in a dose-dependent manner. The topical application of the formulations containing 1% rifampicin, which was well-tolerated in clinical trials previously reported for ocular trachoma, achieved subretinal delivery approximately 2–32 times greater than the effective AUC. Plasma exposure of the compound by the topical application was evaluated to range approximately 0.5–10 ng/mL. Conclusions: Rifampicin was delivered to the sub-retina in rabbits with an efficiency greater than the effective dose required for inhibiting neovascularization. Limited amounts of plasma exposure by the topical application were detected. These results suggested the therapeutic potential of the rifampicin formulations for the topical treatment of exudative macular degeneration. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

13 pages, 900 KiB  
Article
Risk of Potentially Neurotoxic Exposure in Infants Under High-Dose Cefepime Treatment—A Pharmacometric Simulation Study
by Verena Gotta, Chantal Csajka, Antonia Glauser, Christoph Berger, Marc Pfister and Paolo Paioni
Pharmaceutics 2025, 17(5), 544; https://doi.org/10.3390/pharmaceutics17050544 - 22 Apr 2025
Viewed by 428
Abstract
Background: Optimal dosing of cefepime in infants 1–2 months remains undefined. Objectives: We aimed to quantify the risk of potentially neurotoxic exposure with high-dose cefepime (50 mg/kg/8 h) in infants 1–2 months of age, as compared to adjacent age groups (neonates, infants [...] Read more.
Background: Optimal dosing of cefepime in infants 1–2 months remains undefined. Objectives: We aimed to quantify the risk of potentially neurotoxic exposure with high-dose cefepime (50 mg/kg/8 h) in infants 1–2 months of age, as compared to adjacent age groups (neonates, infants 2–12 months) and lower dose treatment (50 mg/kg/12 h). Methods: Pharmacometric simulations were performed using two published population pharmacokinetic models combined with demographic data, including serum creatinine, for neonates and infants ≤ 12 months. Adult-derived safety thresholds for potential neurotoxicity were defined as steady-state trough concentration (Ctrough) > 20 or > 35 mg/L, respectively. The corresponding probability of target attainment (PTA) was calculated as free concentration, 50% of the time during the dosing interval above the minimal inhibitory concentration (MIC) breakpoint of 8 mg/L (Pseudomonas spp.) (50% fT>MIC8mg/L). Results: The predicted risk of Ctrough > 20 (>35) mg/L under high-dose cefepime was 40–54% (12–22%) in infants 1–2 months while providing high PTA (100%). It was predicted to be 1.3–1.7 fold higher in neonates (model 1), and reduced 1.8–2.4 fold in infants 2–12 months (model 1), or to be similar (model 2), respectively. Both models predicted approximately 2–4 fold reduced risk using lower dose treatments while maintaining high PTA (≥97%). Conclusions: The risk of potential neurotoxic concentrations in infants > 1 month treated with cefepime 50 mg/kg/8 h is high if defined by adult safety thresholds. Lower dose cefepime in infants 1–2 months could be a safe option without compromising PTA, if defined as 50% fT>MIC8mg/L. Achievement of 100% fT>MIC8mg/L may require prolonged infusion time even under high-dose treatment. Future research is required to evaluate potentially age-dependent safety thresholds. Full article
Show Figures

Figure 1

17 pages, 1942 KiB  
Article
Effect of Acute Lung Injury (ALI) Induced by Lipopolysaccharide (LPS) on the Pulmonary Pharmacokinetics of an Antibody
by Shweta Jogi and Dhaval K. Shah
Antibodies 2025, 14(2), 33; https://doi.org/10.3390/antib14020033 - 6 Apr 2025
Cited by 1 | Viewed by 1286
Abstract
Objective: To investigate the effect of Lipopolysaccharide (LPS)-induced acute lung injury (ALI) on the pulmonary pharmacokinetics (PK) of a systemically administered antibody in mice. Method: The PK of a non-target-binding antibody was evaluated in healthy mice and mice with intratracheal instillation of 5 [...] Read more.
Objective: To investigate the effect of Lipopolysaccharide (LPS)-induced acute lung injury (ALI) on the pulmonary pharmacokinetics (PK) of a systemically administered antibody in mice. Method: The PK of a non-target-binding antibody was evaluated in healthy mice and mice with intratracheal instillation of 5 mg/kg LPS. The plasma, bronchoalveolar lavage (BAL), trachea, bronchi, and lung homogenate PK of the antibody were measured following intravenous administration of 5 mg/kg antibody dose. Noncompartmental analysis was performed to determine AUC values. Antibody concentrations in all biological matrices were quantified using qualified ELISA. The effect of ALI on BAL albumin and total protein concentrations was also determined. BAL protein concentrations were corrected for dilution using plasma urea concentrations. Results: Intratracheal instillation of LPS and the resultant ALI led to ~2–4-fold higher concentrations of albumin and proteins in the BAL. LPS-induced ALI also notably altered the pulmonary PK of the antibody. The effect of ALI on the antibody PK was time and tissue dependent. The trachea and bronchi showed ~1.7-fold and ~1.4-fold lower antibody exposure compared with the control group, but the BAL fluid exhibited ~4-fold increase in antibody exposure following LPS treatment. Most noticeable changes in antibody PK occurred 24 h after LPS administration, and the effect was temporary for the bronchi and trachea. However, the changes in lung homogenate and, more notably, in BAL persisted until the end of the experiment. Thus, our investigation suggests that due to the acute nature of ALI-induced pathophysiology and the changing severity of the disease, the dose and timing of antibody administration following ALI may need to be optimized based on the target site of action (e.g., bronchi, trachea, BAL, lung parenchyma, etc.) to maximize the therapeutic effect of the antibody. Conclusions: ALI may significantly affect pulmonary PK of systemically administered antibodies. Changes caused by ALI are time and tissue dependent, and hence, the timing and dose of antibody following ALI may need to be optimized to maximize the therapeutic effect of the antibody at the site of action. Full article
Show Figures

Figure 1

19 pages, 3362 KiB  
Article
Synthesis of Ethylphosphonate Curcumin Mimics: Substituents Allow Switching Between Cytotoxic and Cytoprotective Activities
by Valeria Romanucci, Rita Pagano, Solveigh C. Koeberle, Andreas Koeberle, Minh Bui Hoang, Sonia Di Gaetano, Domenica Capasso, Michele Francesco Maria Sciacca, Valeria Lanza, Carmelo Tempra, Fabio Lolicato, Armando Zarrelli, Danilo Milardi and Giovanni Di Fabio
Antioxidants 2025, 14(4), 412; https://doi.org/10.3390/antiox14040412 - 29 Mar 2025
Viewed by 704
Abstract
Curcumin is recognized for its diverse biological activities, including the ability to induce apoptosis and ferroptosis. Therefore, it represents a promising candidate for the development of new compounds with neuroprotective and anticancer properties. In order to synthesize mimics with improved pharmacokinetic properties (better [...] Read more.
Curcumin is recognized for its diverse biological activities, including the ability to induce apoptosis and ferroptosis. Therefore, it represents a promising candidate for the development of new compounds with neuroprotective and anticancer properties. In order to synthesize mimics with improved pharmacokinetic properties (better solubility and stability than curcumin) here, we present the design and synthesis of novel curcumin analogues named Ethylphosphonate-based curcumin mimics (EPs), which preserve the pharmacophoric features of curcumin. New EP mimics were synthesized by tyrosol- and melatonin-based building blocks using an orthogonal protection approach of the different precursors’ OH functions with good yields and in a few steps. Comparative screenings of the cytotoxic and cytoprotective properties (curcumin was used as a reference compound) were carried out on all new mimics in different cell lines (HeLa, A375, WM266, MDA-MB-231, LX2, and HDF). Assays with inhibitors of ferroptosis (Ferrostatin-1, Fer-1) and apoptosis (Quinoline-Val-Asp-difluorophenoxymethyl ketone, Q-VD), in combination with curcumin, suggested the specific cell death pathway (apoptotic or ferroptotic) of EPs, depending on the aromatic moieties contained in them. Interestingly, EP4 exhibited substantial cytotoxic effects against various human cancer cell lines (HeLa, A375, WM266) while sparing normal cells (HDFs). EP4 displayed a five-times-higher toxicity in triple-negative MDA-MB-231 and LX2 stellate cells than curcumin. The cytotoxicity exerted by EP4 involves only an apoptotic mechanism, contrary to curcumin, which exerts both apoptotic and ferroptotic effects. Additionally, EP4 was also found to be a very potent inhibitor of the ubiquitin-activating enzyme E1, reinforcing the anticancer potential of this compound. Furthermore, EP2 possesses high antioxidant properties, efficiently protects against cell death by ferroptosis, and inhibits the amyloid aggregation involved in AD. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

14 pages, 446 KiB  
Article
Comparative Pharmacological Assessment of Amoxicillin in Five Cultured Fish Species: Implications for Off-Label Use in Aquaculture
by Jun Sung Bae, Chae Won Lee, Chan Yeong Yang, Eun Ha Jeong, Bosung Kim, Kwan Ha Park, Jung Soo Seo, Mun-Gyeong Kwon and Ji-Hoon Lee
Antibiotics 2025, 14(4), 346; https://doi.org/10.3390/antibiotics14040346 - 27 Mar 2025
Viewed by 936
Abstract
Background: Amoxicillin (AMOX) is widely used in aquaculture for bacterial infections due to its efficacy and safety. Despite official approval for select species, off-label use is common. This study evaluated the antibacterial efficacy and residue depletion of AMOX in five aquaculture species: [...] Read more.
Background: Amoxicillin (AMOX) is widely used in aquaculture for bacterial infections due to its efficacy and safety. Despite official approval for select species, off-label use is common. This study evaluated the antibacterial efficacy and residue depletion of AMOX in five aquaculture species: olive flounder (Paralichthys olivaceus), rainbow trout (Oncorhynchus mykiss), Japanese eel (Anguilla japonica), black rockfish (Sebastes schlegelii), and Israeli carp (Cyprinus carpio). Methods: Fish were administered AMOX orally at 40 mg/kg and 80 mg/kg for seven days. Antibacterial efficacy was assessed by bacterial load reduction and survival rates following artificial infection. Residue depletion was analyzed using HPLC–MS/MS to determine the time required for AMOX levels to fall below the maximum residue limit (MRL, 0.05 mg/kg). Results: AMOX, at 40 mg/kg, significantly reduced bacterial loads in olive flounder, rainbow trout, and Japanese eel (p < 0.05), while Israeli carp exhibited a limited response (p = 0.54). Black rockfish showed moderate efficacy (RPS 72.7%) but increased mortality at 80 mg/kg. Residue levels fell below the MRL within 10 days for all species except Israeli carp (~30 days). Conclusions: These findings highlight species-specific differences in AMOX efficacy and residue depletion rates, emphasizing the necessity of tailored dosing regimens and withdrawal periods to ensure optimal therapeutic outcomes and food safety compliance in aquaculture. Further pharmacokinetic studies are needed to refine dosing strategies, particularly for species with extended residue retention and potential dose-dependent adverse effects. Full article
Show Figures

Figure 1

Back to TopTop