Synthesis of Ethylphosphonate Curcumin Mimics: Substituents Allow Switching Between Cytotoxic and Cytoprotective Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Synthesis of Ethylphosphonate-Linked Tyrosol Dimers (EP1–EP4): General Coupling Procedure
- EP1
- Rf = 0.6 (DCM-MeOH 9:1, v/v). HPLC purity ≥ 99%; 1H NMR (CD3OD, 400 MHz, rt): δ = 7.04 (4H, d, J2,3 = J2′,3′ = 8.31 Hz, H-3, H-3′, H-5, H-5′); 6.73 (4H, d, J2,3 = J2′,3′ = 8.31 Hz, H-2, H-2′, H-6, H-6′); 4.06 (4H, complex signal, H-8, H-8′); 2.82 (4H, t, J7,8 = J7′,8 = 6.79 Hz, H-7, H-7′); 1.64 (2H, dq, J9a–9b = 7.7 Hz, J9-P = 18.1 Hz, H-9); 1.01 (3H, dt, J9–10 = 7.6 Hz, J10-P = 20.3 Hz, H-10) ppm. 13C NMR (CD3OD, 100 MHz, rt): δ = 155.9 (2C, C-4, C-4′); 129.7 (4CH, C-3, C-3′, C-5, C-5′); 128.1 (2C, C-1, C-1′); 114.9 (4CH, C-2, C-2′, C-6, C-6′); 66.5 (d, 2JC8-P = 2JC8′-P = 7.35 Hz, 2CH2, C-8, C-8′); 35.6 (d, 3JC7-P = 3JC7′-P = 6.32 Hz, 2CH2, C-7, C-7′); 17.4 (d, JC9-P = 142.6 Hz, CH2, C-9); 5.10 (d, 2JC10-P = 6.64 Hz, CH3, C-10) ppm. 31P NMR (CD3OD, 161.98 MHz, rt): δ = 34.7 ppm. HRMS (MALDI-TOF, positive ions): m/z calculated for C18H24O5P+ = 351.1356; found: 351.1408 [M+H]+.
- EP2
- Rf = 0.5 (DCM-MeOH 9:1, v/v). HPLC purity ≥ 99%; 1H NMR (CD3OD, 400 MHz, rt): δ = 6.70 (2H, d, J5,6 = J5′,6′ = 8.1 Hz, H-5, H-5′); 6.67 (2H, d, J2,5 = J2′,5′ = 1.8 Hz, H-2, H-2′); 6.54 (2H, dd, J6,5 = J6′,5′ = 8.0, J6,3 = J6′,3′ = 1.6 Hz, H-6, H-6′); 4.06 (4H, complex signal, H-8, H-8′); 2.77 (4H, t, J7,8 = J7′,8′ = 6.6 Hz, H-7, H-7′); 1.64 (2H, dq, J9a,9b = 7.6 Hz, 2J9-P = 18.1 Hz, H-9); 1.02 (3H, dt, J9,10 = 7.8 Hz 3J10-P = 20.2 Hz, H-10) ppm. 13C NMR (CD3OD, 100 MHz, rt): δ = 144.8 (2C, C-4, C-4′); 143.6 (2C, C-3, C-3′); 128.9 (2C, C-1, C-1′); 120.0 (2CH, C-6, C-6′); 115.8 (2CH, C-2, C-2′); 115.0 (2CH, C-2, C-2′); 66.5 (d, 2JC8-P =2JC8′-P = 6.90 Hz, 2CH2, C-8, C-8′); 35.9 (d, 3JC7-P = 3JC7′-P = 6.6 Hz, 2CH2, C-7, C-7′); 17.4 (d, JC9-P = 141.8 Hz, CH2, C-9); 5.1 (d, 2JC10-P = 6.5 Hz, CH3, C-10) ppm. 31P NMR (CD3OD, 161.98 MHz, rt): δ = 34.7 ppm. HRMS (MALDI-TOF, negative ions): m/z calculated for C18H22O7P− = 381.1109; found: 381.1567 [M+H]−.
- EP3
- Rf = 0.5 (DCM-MeOH 9:1, v/v). HPLC purity ≥ 99%; 1H NMR (CD3OD, 400 MHz, rt): δ = 6.81 (2H, d, J2,5 = J2′,5′ = 1.5 Hz, H-2, H-2′); 6.74 (2H, d, J5,6 = J5′,6′ = 8.1 Hz, H-5, H-5′); 6.65 (2H, dd, J6,5 = J6′,5′ = 8.1, J6,3 = J6′,3′ = 1.67 Hz, H-6, H-6′); 4.09 (4H, complex signal, H-8, H-8′); 3.83 (6H, s, -OCH3); 2.83 (4H, t, J7,8 = J7′,8′ = 6.6 Hz, H-7, H-7′); 1.65 (2H, dq, J9a-9b = 7.6 Hz, 2J9-P = 18.0 Hz, H-9); 1.02 (3H, dt, J9–10 = 7.6 Hz, 3J10-P = 20.1 Hz, H-10) ppm. 13C NMR (CD3OD, 100 MHz, rt): δ = 147.5 (2C, C-3, C-3′); 144.9 (2C, C-4, C-4′); 128.9 (2C, C-1, C-1′); 121.2 (2CH, C-6, C-6′); 114.8 (2CH, C-5, C-5′); 112.3 (2C, C-2, C-2′); 66.5 (d, 2JC8-P = 2JC8′-P = 6.9 Hz, 2CH2, C-8, C-8′); 55.0 (CH3, -OCH3); 36.0 (d, 3JC7-P = 2JC7′-P = 6.2 Hz, 2CH2, C-7, C-7′); 17.5 (d, JC9-P = 141.9 Hz, CH2, C-9); 5.2 (d, 2JC10-P = 6.9 Hz, CH3, C-10) ppm. 31P NMR (CD3OD, 161.98 MHz, rt): δ = 34.7 ppm. HRMS (MALDI-TOF, positive ions): m/z calculated for C20H28O7P+ = 411.1567; found: 411.1593 [M+H]+.
- EP4
- Rf = 0.6 (DCM-MeOH 9:1, v/v). HPLC purity ≥ 99%; 1H NMR (DMSO-d6, 500 MHz, rt): δ = 10.7 (2H, s, NH); 7.23 (2H, d, J6,7 = J6′,7′ = 8.8 Hz, H-7, H-7′); 7.14 (2H, s, H-2, H-2′); 7.02 (2H, d, J4,6 = J4′,6′ = 1.5 Hz, H-4, H-4′); 6.72 (2H, dd, J6,7 = J6′,7′ = 8.6, J6,4 = J6′,4′ = 2.0 Hz, H-6, H-6′); 4.13 (4H, complex signal, H-9, H-9′); 3.74 (6H, s, -OCH3); 2.99 (4H, t, J8,9 = J8′,9′ = 7.0 Hz, H-8, H-8′); 1.67 (2H, dq, J10–11 = 7.7 Hz, 2J10-P = 18.0 Hz, H-10); 0.96 (3H, dt, J10–11 = 7.7 Hz, 3J11-P = 19.8 Hz, H-11) ppm. 13C NMR (DMSO-d6, 100 MHz, rt): δ = 153.5 (2C, C-5, C-5′); 131.7 (2C, C-7a, C-7a’); 127.9 (2C, C-4a, C-4a’); 124.3 (2CH, C-2, C-2′); 112.5 (2CH, C-7, C-7′); 111.6 (2CH, C-6, C-6′); 110.0 (2C, C-3, C-3′); 100.5 (2CH, C-4, C-4′); 65.4 (d, 2JC9-P = 6.7 Hz, 2CH2, C-9, C-9′); 55.8 (CH3, -OCH3); 26.9 (d, 3JC8-P = 5.6 Hz, 2CH2, C-8, C-8′); 18.2 (d, J10-P = 141.09 Hz, CH2, C-10); 6.8 (d, 2JC11-P = 6.61 Hz, CH3, C-11) ppm. 31P NMR (DMSO-d6, 161.98 MHz, rt): δ =33.4 ppm. HRMS (MALDI-TOF, positive ions): m/z calculated for C24H30N2O5P+ = 457.1887; found: 457.1916 [M+H]+.
2.3. Cell Culture of Human Cancer Cells (HeLa, A375, WM266, MDA-MB-231, LX2) and HDF Cell Lines
2.4. Determination of Metabolic Activity
2.5. Wound Healing Assay
2.6. Inhibition of RSL3-Induced Ferroptotic Cell Death
2.7. Ubiquitin Activation Assays
2.8. ThT Assays
3. Results and Discussion
3.1. Synthesis and Characterization of EPs
3.2. Chemical Stability, Water Solubility, and Radical Scavenger Activities of EPs
3.3. Free Energy Profiles of EP1–EP4 Curcumin-Inspired Compounds During Membrane Translocation
3.4. Cytotoxic Effect on Different Cancer Cell Lines
3.5. Effects of Ethylphosphonates EP1–EP4 on Ubiquitin Activation
3.6. Protection Against RSL3-Induced Ferroptotic Cell Death
3.7. Investigating the Ability of Ethylphosphonates (EPis) to Inhibit the Aggregation of Aβ Peptides
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Singh, P.K.; Verma, H.; Singh, H.; Silakari, O. Success Stories of Natural Product-Based Hybrid Molecules for Multi-Factorial Diseases. Eur. J. Med. Chem. 2018, 151, 62–97. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Li, J.; Zhang, X. Natural Flavonoids and Ferroptosis: Potential Therapeutic Opportunities for Human Diseases. J. Agric. Food Chem. 2023, 71, 5902–5916. [Google Scholar] [CrossRef]
- Gali-Muhtasib, H.; Hmadi, R.; Kareh, M.; Tohme, R.; Darwiche, N. Cell Death Mechanisms of Plant-Derived Anticancer Drugs: Beyond Apoptosis. Apoptosis 2015, 20, 1531–1562. [Google Scholar]
- Koeberle, S.C.; Kipp, A.P.; Stuppner, H.; Koeberle, A. Ferroptosis-Modulating Small Molecules for Targeting Drug-Resistant Cancer: Challenges and Opportunities in Manipulating Redox Signaling. Med. Res. Rev. 2023, 43, 614–682. [Google Scholar] [CrossRef]
- Devisscher, L.; Van Coillie, S.; Hofmans, S.; Van Rompaey, D.; Goossens, K.; Meul, E.; Maes, L.; De Winter, H.; Van Der Veken, P.; Vandenabeele, P.; et al. Discovery of Novel, Drug-Like Ferroptosis Inhibitors with in Vivo Efficacy. J. Med. Chem. 2018, 61, 10126–10140. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Ryan, S.K.; Ugalde, C.L.; Rolland, A.S.; Skidmore, J.; Devos, D.; Hammond, T.R. Therapeutic Inhibition of Ferroptosis in Neurodegenerative Disease. Trends Pharmacol. Sci. 2023, 44, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, S.; Li, Q.; Sun, H.; Wang, H. Pharmacological Inhibition of Ferroptosis as a Therapeutic Target for Neurodegenerative Diseases and Strokes. Adv. Sci. 2023, 10, 2300325. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, R.; Geng, Y.; Chen, K.; Wang, L.; Imam, M.U. The Regulatory Effects and the Signaling Pathways of Natural Bioactive Compounds on Ferroptosis. Foods 2021, 10, 2952. [Google Scholar] [CrossRef]
- Gu, F.; Zhu, M.; Shi, J.; Hu, Y.; Zhao, Z. Enhanced Oxidative Stress Is an Early Event during Development of Alzheimer-like Pathologies in Presenilin Conditional Knock-out Mice. Neurosci. Lett. 2008, 440, 44–48. [Google Scholar] [CrossRef]
- Lesjak, M.; Simin, N.; Srai, S.K.S. Can Polyphenols Inhibit Ferroptosis? Antioxidants 2022, 11, 150. [Google Scholar] [CrossRef]
- Kajarabille, N.; Latunde-Dada, G.O. Programmed Cell-Death by Ferroptosis: Antioxidants as Mitigators. Int. J. Mol. Sci. 2019, 20, 4968. [Google Scholar] [CrossRef]
- Esatbeyoglu, T.; Huebbe, P.; Ernst, I.M.A.; Chin, D.; Wagner, A.E.; Rimbach, G. Curcumin-From Molecule to Biological Function. Angew. Chem. Int. Ed. 2012, 51, 5308–5332. [Google Scholar] [CrossRef]
- Patel, S.S.; Acharya, A.; Ray, R.S.; Agrawal, R.; Raghuwanshi, R.; Jain, P. Cellular and Molecular Mechanisms of Curcumin in Prevention and Treatment of Disease. Crit. Rev. Food Sci. Nutr. 2020, 60, 887–939. [Google Scholar]
- Mortezaee, K.; Salehi, E.; Mirtavoos-mahyari, H.; Motevaseli, E.; Najafi, M.; Farhood, B.; Rosengren, R.J.; Sahebkar, A. Mechanisms of Apoptosis Modulation by Curcumin: Implications for Cancer Therapy. J. Cell. Physiol. 2019, 234, 12537–12550. [Google Scholar]
- El-Saadony, M.T.; Yang, T.; Korma, S.A.; Sitohy, M.; El-Mageed, T.A.A.; Selim, S.; Al Jaouni, S.K.; Salem, H.M.; Mahmmod, Y.; Soliman, S.M.; et al. Impacts of Turmeric and Its Principal Bioactive Curcumin on Human Health: Pharmaceutical, Medicinal, and Food Applications: A Comprehensive Review. Front. Nutr. 2023, 9, 1040259. [Google Scholar] [CrossRef]
- Nie, A.; Shen, C.; Zhou, Z.; Wang, J.; Sun, B.; Zhu, C. Ferroptosis: Potential Opportunities for Natural Products in Cancer Therapy. Phytother. Res. 2024, 38, 1173–1190. [Google Scholar]
- Thapa, A.; Jett, S.D.; Chi, E.Y. Curcumin Attenuates Amyloid-β Aggregate Toxicity and Modulates Amyloid-β Aggregation Pathway. ACS Chem. Neurosci. 2016, 7, 56–68. [Google Scholar] [CrossRef]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The Essential Medicinal Chemistry of Curcumin. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef]
- Bahadori, F.; Demiray, M. A Realistic View on “the Essential Medicinal Chemistry of Curcumin”. ACS Med. Chem. Lett. 2017, 8, 893–896. [Google Scholar] [CrossRef]
- Zhou, H.; Beevers, C.S.; Huang, S. The Targets of Curcumin. Curr. Drug Targets 2012, 12, 332–347. [Google Scholar] [CrossRef]
- Zhao, S.; Pi, C.; Ye, Y.; Zhao, L.; Wei, Y. Recent Advances of Analogues of Curcumin for Treatment of Cancer. Eur. J. Med. Chem. 2019, 180, 524–535. [Google Scholar] [CrossRef]
- Costantino, M.; Corno, C.; Colombo, D.; Perego, P. Curcumin and Related Compounds in Cancer Cells: New Avenues for Old Molecules. Front. Pharmacol. 2022, 13, 889816. [Google Scholar] [CrossRef]
- Reinke, A.A.; Gestwicki, J.E. Structure-Activity Relationships of Amyloid Beta-Aggregation Inhibitors Based on Curcumin: Influence of Linker Length and Flexibility. Chem. Biol. Drug Des. 2007, 70, 206–215. [Google Scholar] [CrossRef]
- Romanucci, V.; Giordano, M.; De Tommaso, G.; Iuliano, M.; Bernini, R.; Clemente, M.; Garcia-Viñuales, S.; Milardi, D.; Zarrelli, A.; Di Fabio, G. Synthesis of New Tyrosol-Based Phosphodiester Derivatives: Effect on Amyloid β Aggregation and Metal Chelation Ability. ChemMedChem 2021, 16, 1172–1183. [Google Scholar] [CrossRef]
- Romanucci, V.; Giordano, M.; Pagano, R.; Agarwal, C.; Agarwal, R.; Zarrelli, A.; Di Fabio, G. Solid-Phase Synthesis of Curcumin Mimics and Their Anticancer Activity against Human Pancreatic, Prostate, and Colorectal Cancer Cell Lines. Bioorganic Med. Chem. 2021, 42, 116249. [Google Scholar] [CrossRef]
- Su, F.; Descher, H.; Bui-Hoang, M.; Stuppner, H.; Skvortsova, I.; Rad, E.B.; Ascher, C.; Weiss, A.; Rao, Z.; Hohloch, S.; et al. Iron(III)-Salophene Catalyzes Redox Cycles That Induce Phospholipid Peroxidation and Deplete Cancer Cells of Ferroptosis-Protecting Cofactors. Redox Biol. 2024, 75, 103257. [Google Scholar] [CrossRef]
- Gollowitzer, A.; Pein, H.; Rao, Z.; Waltl, L.; Bereuter, L.; Loeser, K.; Meyer, T.; Jafari, V.; Witt, F.; Winkler, R.; et al. Attenuated Growth Factor Signaling during Cell Death Initiation Sensitizes Membranes towards Peroxidation. Nat. Commun. 2025, 16, 1774. [Google Scholar] [CrossRef]
- Di Gaetano, S.; Pirone, L.; Galdadas, I.; Traboni, S.; Iadonisi, A.; Pedone, E.; Saviano, M.; Gervasio, F.L.; Capasso, D. Design, Synthesis, and Anticancer Activity of a Selenium-Containing Galectin-3 and Galectin-9N Inhibitor. Int. J. Mol. Sci. 2022, 23, 2581. [Google Scholar] [CrossRef]
- Mangolim, C.S.; Moriwaki, C.; Nogueira, A.C.; Sato, F.; Baesso, M.L.; Neto, A.M.; Matioli, G. Curcumin-β-Cyclodextrin Inclusion Complex: Stability, Solubility, Characterisation by FT-IR, FT-Raman, X-ray Diffraction and Photoacoustic Spectroscopy, and Food Application. Food Chem. 2014, 153, 361–370. [Google Scholar] [CrossRef]
- Tønnesen, H.H.; Másson, M.; Loftsson, T. Studies of Curcumin and Curcuminoids. XXVII. Cyclodextrin Complexation: Solubility, Chemical and Photochemical Stability. Int. J. Pharm. 2002, 244, 127–135. [Google Scholar] [CrossRef]
- Torrie, G.M.; Valleau, J.P. Monte Carlo Free Energy Estimates Using Non-Boltzmann Sampling: Application to the Sub-Critical Lennard-Jones Fluid. Chem. Phys. Lett. 1974, 28, 578–581. [Google Scholar] [CrossRef]
- Torrie, G.M.; Valleau, J.P. Nonphysical Sampling Distributions in Monte Carlo Free-Energy Estimation: Umbrella Sampling. J. Comput. Phys. 1977, 23, 187–199. [Google Scholar] [CrossRef]
- Chan, W.H.; Wu, H.Y.; Chang, W.H. Dosage Effects of Curcumin on Cell Death Types in a Human Osteoblast Cell Line. Food Chem. Toxicol. 2006, 44, 1362–1371. [Google Scholar] [CrossRef]
- Yang, Y.; Kitagaki, J.; Dai, R.M.; Yien, C.T.; Lorick, K.L.; Ludwig, R.L.; Pierre, S.A.; Jensen, J.P.; Davydov, I.V.; Oberoi, P.; et al. Inhibitors of Ubiquitin-Activating Enzyme (E1), a New Class of Potential Cancer Therapeutics. Cancer Res. 2007, 67, 9472–9481. [Google Scholar] [CrossRef]
- Barghout, S.H.; Schimmer, A.D. E1 Enzymes as Therapeutic Targets in Cancer. Pharmacol. Rev. 2021, 73, 1–56. [Google Scholar] [CrossRef]
- Murai, Y.; Jo, U.; Murai, J.; Jenkins, L.M.; Huang, S.-Y.N.; Chakka, S.; Chen, L.; Cheng, K.; Fukuda, S.; Takebe, N.; et al. SLFN11 Inactivation Induces Proteotoxic Stress and Sensitizes Cancer Cells to Ubiquitin Activating Enzyme Inhibitor TAK-243. Cancer Res. 2021, 81, 3067–3078. [Google Scholar] [CrossRef]
- Selkoe, D.J. The Molecular Pathology of Alzheimer’s Disease. Neuron 1991, 6, 487–498. [Google Scholar] [CrossRef]
- Coria, F.; Rubio, I.; Bayon, C. Alzheimer’s Disease, ß-Amyloidosis, and Aging. Rev. Neurosci. 1994, 5, 275–292. [Google Scholar] [CrossRef]
- Hamley, I.W. The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chem. Rev. 2012, 112, 5147–5192. [Google Scholar] [CrossRef]
- Ahmed, R.; Akcan, M.; Khondker, A.; Rheinstädter, M.C.; Bozelli, J.C.; Epand, R.M.; Huynh, V.; Wylie, R.G.; Boulton, S.; Huang, J.; et al. Atomic Resolution Map of the Soluble Amyloid Beta Assembly Toxic Surfaces. Chem. Sci. 2019, 10, 6072–6082. [Google Scholar] [CrossRef]
- Hyung, S.J.; Detoma, A.S.; Brender, J.R.; Lee, S.; Vivekanandan, S.; Kochi, A.; Choi, J.S.; Ramamoorthy, A.; Ruotolo, B.T.; Lim, M.H. Insights into Antiamyloidogenic Properties of the Green Tea Extract (-)-Epigallocatechin-3-Gallate toward Metal-Associated Amyloid-β Species. Proc. Natl. Acad. Sci. USA 2013, 110, 3743–3748. [Google Scholar] [CrossRef]
- Lolicato, F.; Raudino, A.; Milardi, D.; La Rosa, C. Resveratrol Interferes with the Aggregation of Membrane-Bound Human-IAPP: A Molecular Dynamics Study. Eur. J. Med. Chem. 2015, 92, 876–881. [Google Scholar] [CrossRef]
- Romanucci, V.; García-Viñuales, S.; Tempra, C.; Bernini, R.; Zarrelli, A.; Lolicato, F.; Milardi, D.; Di Fabio, G. Modulating Aβ Aggregation by Tyrosol-Based Ligands: The Crucial Role of the Catechol Moiety. Biophys. Chem. 2020, 265, 106434. [Google Scholar] [CrossRef]
- Sciacca, M.F.M.; Romanucci, V.; Zarrelli, A.; Monaco, I.; Lolicato, F.; Spinella, N.; Galati, C.; Grasso, G.; D’Urso, L.; Romeo, M.; et al. Inhibition of Aβ Amyloid Growth and Toxicity by Silybins: The Crucial Role of Stereochemistry. ACS Chem. Neurosci. 2017, 8, 1767–1778. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Ono, K.; Yamada, M. REVIEW: Curcumin and Alzheimer’s Disease. CNS Neurosci. Ther. 2010, 16, 285–297. [Google Scholar] [CrossRef]
- Orlando, R.A.; Gonzales, A.M.; Royer, R.E.; Deck, L.M.; Jagt, D.L.V. A Chemical Analog of Curcumin as an Improved Inhibitor of Amyloid Abeta Oligomerization. PLoS ONE 2012, 7, e31869. [Google Scholar] [CrossRef]
- Rao, P.P.N.; Mohamed, T.; Teckwani, K.; Tin, G. Curcumin Binding to Beta Amyloid: A Computational Study. Chem. Biol. Drug Des. 2015, 86, 813–820. [Google Scholar] [CrossRef]
- Yanagisawa, D.; Taguchi, H.; Yamamoto, A.; Shirai, N.; Hirao, K.; Tooyama, I. Curcuminoid Binds to Amyloid-Β1-42 Oligomer and Fibril. J. Alzheimer’s Dis. 2011, 24, 33–42. [Google Scholar] [CrossRef]
- Kochi, A.; Lee, H.J.; Vithanarachchi, S.M.; Padmini, V.; Allen, M.J.; Lim, M.H. Inhibitory Activity of Curcumin Derivatives Towards Metal-Free and Metal-Induced Amyloid-β Aggregation. Curr. Alzheimer Res. 2015, 12, 415–423. [Google Scholar] [CrossRef] [PubMed]
Compound | Yield (%) | ORAC (TE) | DPPH (EC50, µM) | Solubility (μM) a |
---|---|---|---|---|
Curcumin | – | 5.03 ± 0.14 | 13.5 ± 0.50 | Insoluble [31] |
TYR | – | 2.18 ± 0.12 | >1000 | – |
MTYR | – | 2.90 ± 0.21 | 31.0 ± 2.6 | – |
HTYR | – | 7.40 ± 0.17 | 12.3 ± 1.0 | – |
MEL | – | 2.23 ± 0.12 | >1000 | – |
EP1 | 60 | 5.12 ± 0.56 | >1000 | 15.0 ± 0.23 |
EP2 | 75 | 8.84 ± 0.45 | 6.00 ± 0.43 | 40.0 ± 0.58 |
EP3 | 48 | 4.14 ± 0.29 | 17.22 ± 0.08 | 40.0 ± 0.49 |
EP4 | 34 | 7.24 ± 0.46 | >1000 | 20.0 ± 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanucci, V.; Pagano, R.; Koeberle, S.C.; Koeberle, A.; Hoang, M.B.; Di Gaetano, S.; Capasso, D.; Sciacca, M.F.M.; Lanza, V.; Tempra, C.; et al. Synthesis of Ethylphosphonate Curcumin Mimics: Substituents Allow Switching Between Cytotoxic and Cytoprotective Activities. Antioxidants 2025, 14, 412. https://doi.org/10.3390/antiox14040412
Romanucci V, Pagano R, Koeberle SC, Koeberle A, Hoang MB, Di Gaetano S, Capasso D, Sciacca MFM, Lanza V, Tempra C, et al. Synthesis of Ethylphosphonate Curcumin Mimics: Substituents Allow Switching Between Cytotoxic and Cytoprotective Activities. Antioxidants. 2025; 14(4):412. https://doi.org/10.3390/antiox14040412
Chicago/Turabian StyleRomanucci, Valeria, Rita Pagano, Solveigh C. Koeberle, Andreas Koeberle, Minh Bui Hoang, Sonia Di Gaetano, Domenica Capasso, Michele Francesco Maria Sciacca, Valeria Lanza, Carmelo Tempra, and et al. 2025. "Synthesis of Ethylphosphonate Curcumin Mimics: Substituents Allow Switching Between Cytotoxic and Cytoprotective Activities" Antioxidants 14, no. 4: 412. https://doi.org/10.3390/antiox14040412
APA StyleRomanucci, V., Pagano, R., Koeberle, S. C., Koeberle, A., Hoang, M. B., Di Gaetano, S., Capasso, D., Sciacca, M. F. M., Lanza, V., Tempra, C., Lolicato, F., Zarrelli, A., Milardi, D., & Di Fabio, G. (2025). Synthesis of Ethylphosphonate Curcumin Mimics: Substituents Allow Switching Between Cytotoxic and Cytoprotective Activities. Antioxidants, 14(4), 412. https://doi.org/10.3390/antiox14040412