Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = tilapia fish gelatin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 890 KiB  
Article
Residue Depletion Profile and Estimation of Withdrawal Period for Sulfadimethoxine and Ormetoprim in Edible Tissues of Nile Tilapia (Oreochromis sp.) on Medicated Feed
by Lucas Victor Pereira de Freitas, Carlos Augusto Alvarenga da Mota Júnior, Marina Alves Damaceno, Juliana Grell Fernandes Silveira, Ana Carolina Vellosa Portela, Sarah Chagas Campanharo, Agnaldo Fernando Baldo da Silva, Inácio Mateus Assane, Fabiana Pilarski, James Jacob Sasanya and Jonas Augusto Rizzato Paschoal
Animals 2023, 13(15), 2499; https://doi.org/10.3390/ani13152499 - 3 Aug 2023
Cited by 3 | Viewed by 2883
Abstract
Sulfadimethoxine (SDM) and ormetoprim (OMP) are antimicrobials used in combination to treat bacterial infections in fish farming. The use of this drug combination is not yet regulated in some countries, such as Brazil. Due to the lack of regulated drugs for aquaculture in [...] Read more.
Sulfadimethoxine (SDM) and ormetoprim (OMP) are antimicrobials used in combination to treat bacterial infections in fish farming. The use of this drug combination is not yet regulated in some countries, such as Brazil. Due to the lack of regulated drugs for aquaculture in Brazil, this study investigated the residue depletion profile of SDM and OMP in Nile tilapia (Oreochromis sp.) after oral administration. Fish were treated with medicated feed containing a 5:1 ratio of SDM:OMP at the dose of 50 mg kg BW−1 for five consecutive days with an average water temperature of 28 °C. The drugs were incorporated into the feed by using a gelatin coating process which promoted homogeneity in drug concentration and prevented the drug leaching into the water during medication. The SDM and OMP determination in fish fillets (muscle plus skin in natural proportions) was performed using the QuEChERS approach followed by LC-MS/MS quantification. The analytical method was validated according to Brazilian and selected international guidelines. A withdrawal period of 9 days (or 252 °C days) was estimated for the sum of SDM and OMP residues at concentration levels below the maximum residue level of 100 µg kg−1. Full article
(This article belongs to the Special Issue Pharmacokinetics and Pharmacodynamics in Aquatic Animals)
Show Figures

Figure 1

14 pages, 5916 KiB  
Article
Influences of Trypsin Pretreatment on the Structures, Composition, and Functional Characteristics of Skin Gelatin of Tilapia, Grass Carp, and Sea Perch
by Qiufeng Ruan, Weijie Chen, Min Lv, Rong Zhang, Xu Luo, Ermeng Yu, Chuanyan Pan and Huawei Ma
Mar. Drugs 2023, 21(8), 423; https://doi.org/10.3390/md21080423 - 25 Jul 2023
Cited by 5 | Viewed by 2183
Abstract
Fish skin gelatin is an important functional product in the food, cosmetics, and biomedicine industries, and establishing a green and effective fish skin gelatin extraction method is an effective way to obtain high-quality gelatin and improve its production efficiency. In this study, a [...] Read more.
Fish skin gelatin is an important functional product in the food, cosmetics, and biomedicine industries, and establishing a green and effective fish skin gelatin extraction method is an effective way to obtain high-quality gelatin and improve its production efficiency. In this study, a trypsin method was used to extract the skin gelatin of sea perch, tilapia, and grass carp, and the microstructures of skin gelatin of these three fish species were analyzed, with such functional characteristics as thermal stability, gel strength, and emulsifying properties measured. The study results show that the skin gelatin of sea perch and tilapia obtained through the trypsin method has a relatively big molecular mass, a dense network structure, and a stable trihelix conformation. In addition, the skin gelatin of these three fish species has a relatively high β-turn content in the secondary structure, good gel strength, and water absorption properties. The compositions of the collagen-associated proteins in the skin gelatins of these three fish species extracted with the trypsin method are significantly different from each other, with positive effects of decorin and biglycan on the stability of the network structure of gelatin and a certain damaging effect of metalloendopeptidase on the network structure of gelatin. The skin gelatin of tilapia has high thermal stability and good emulsifying performance. Therefore, this gelatin type has bright application prospects in such fields as food processing, cosmetics, and drug development. In contrast, the skin gelatin of grass carp has poor functional properties. Therefore, there are significant differences among the structures and functions of skin gelatin extracted from different kinds of fish through the trypsin method. This finding has provided a useful reference for the production of customized fish gelatin according to demand. Full article
(This article belongs to the Special Issue Fundamentals and Biomedical Applications of Marine Collagen)
Show Figures

Graphical abstract

18 pages, 20672 KiB  
Article
Development of Composite Edible Coating from Gelatin-Pectin Incorporated Garlic Essential Oil on Physicochemical Characteristics of Red Chili (Capsicum annnum L.)
by Windy Heristika, Andriati Ningrum, Supriyadi, Heli Siti Helimatul Munawaroh and Pau Loke Show
Gels 2023, 9(1), 49; https://doi.org/10.3390/gels9010049 - 6 Jan 2023
Cited by 16 | Viewed by 4208
Abstract
Red chili is a climacteric fruit that still undergoes respiration after harvest. During storage, it is susceptible to mechanical, physical, and physiological damage and decay incidence, therefore a method is needed to protect it so that the quality losses can be minimized. One [...] Read more.
Red chili is a climacteric fruit that still undergoes respiration after harvest. During storage, it is susceptible to mechanical, physical, and physiological damage and decay incidence, therefore a method is needed to protect it so that the quality losses can be minimized. One way this can be achieved is by applying edible coatings that can be made from hydrocolloids, lipids, or composites of both, in addition to antimicrobial agents that can also be added to inhibit microbial growth. In this study, we detail the application of an edible coating made of gelatin composite from tilapia fish skin, which has a transparent color and good barrier properties against O2, CO2, and lipids. To increase its physicochemical and functional qualities, it must be modified by adding composite elements such as pectin as well as hydrophobic ingredients such as garlic essential oil. This study was conducted to determine the effect of a gelatin–pectin composite edible coating (75:25, 50:50, 25:75), which was incorporated with garlic essential oil (2% and 3%) on the physicochemical properties of red chili at room temperature (±29 °C), RH ± 69%) for 14 days. The best treatment was the 50–50% pectin–gelatin composite, which was incorporated with garlic essential oil with a concentration of 2 and 3%. This treatment provided a protective effect against changes in several physicochemical properties: inhibiting weight loss of 36.36 and 37.03%, softening of texture by 0.547 and 0.539 kg/84 mm2, maintaining acidity of 0.0087 and 0.0081%, maintaining vitamin C content of 2.237 and 2.349 mg/gr, anti-oxidant activity (IC50) 546.587 and 524.907; it also provided a protective effect on chili colors changing to red, and retains better total dissolved solid values. Full article
(This article belongs to the Special Issue Recent Developments in Food Gels)
Show Figures

Figure 1

16 pages, 3508 KiB  
Article
Fabrication and Characterization of Intelligent Multi-Layered Biopolymer Film Incorporated with pH-Sensitive Red Cabbage Extract to Indicate Fish Freshness
by Mindu Zam, Itthi Niyumsut, Kazufumi Osako and Saroat Rawdkuen
Polymers 2022, 14(22), 4914; https://doi.org/10.3390/polym14224914 - 14 Nov 2022
Cited by 11 | Viewed by 2772
Abstract
This study aimed to fabricate an intelligent monolayer and multi-layered biodegradable films incorporated with red cabbage extract (RCE) to act as a safe and reliable freshness indicator. A film-forming solution (FFS) of gelatin, carboxymethyl cellulose (CMC) and chitosan was prepared and fortified with [...] Read more.
This study aimed to fabricate an intelligent monolayer and multi-layered biodegradable films incorporated with red cabbage extract (RCE) to act as a safe and reliable freshness indicator. A film-forming solution (FFS) of gelatin, carboxymethyl cellulose (CMC) and chitosan was prepared and fortified with 0.5% (w/v) of RCE for developing intelligent monolayer films. The intelligent multi-layer film was prepared via layer by layer casting of gelatin, chitosan (added with 0.5% of RCE) and CMC biopolymers. The thickness of the multi-layered film was the highest (0.123 ± 0.001 mm) compared to gelatin-, CMC- and chitosan-based monolayer films (p < 0.05). Chitosan film has the highest tensile strength (p < 0.05), followed by multi-layer, CMC and gelatin films. Elongation at break was slightly higher in CMC (35.67 ± 7.62%) compared to the multi-layer film (33.12 ± 9.88%) and gelatin film (p > 0.05). Water vapor permeability was higher in the multi-layer film (1.244 ± 0.05 × 10−5 g mm h−1cm−2 P−1) than the other monolayer films. Moisture content was highest in chitosan film followed by the multi-layered film (p < 0.05) and then the CMC and gelatin films. CMC film showed the highest solubility compared to multi-layered and chitosan film (p < 0.05). Additionally, transmittance and transparency values in the multi-layered film were the lowest compared to the chitosan-, CMC- and gelatin-based films. L* and a* values were the lowest, while b* values increased in the multi-layered film compared to the other film samples (p < 0.05). pH sensitivity and ammonia gas tests revealed similar color changes in chitosan and multi-layer films. However, FTIR spectra confirmed that dye leaching was not detected for the multi-layered film soaked in ethanol. The biodegradability test showed rapid degradation of multi-layered and chitosan films within 1 month. Based on the optimum results of the multi-layered film, it was applied to monitor the fresh quality of tilapia fish fillets at 4 °C for 10 days. The results of freshness acceptability were noted on day 6 due to the change in color of the multi-layer film with an estimated total volatile basic nitrogen content of 21.23 mg/100 g. Thus, the multi-layered film can be used as an indicator to monitor the quality of the fish freshness without leaching dye onto the food surface. Full article
(This article belongs to the Special Issue Biopolymer-Based Films and Coatings for Packaging Applications)
Show Figures

Figure 1

13 pages, 4298 KiB  
Article
Effects of Acidulants on the Rheological Properties of Gelatin Extracted from the Skin of Tilapia (Oreochromis mossambicus)
by Qijia Zhou, Zhiping Zhang, Yiqun Huang, Lihong Niu, Junjian Miao and Keqiang Lai
Foods 2022, 11(18), 2812; https://doi.org/10.3390/foods11182812 - 12 Sep 2022
Cited by 10 | Viewed by 2346
Abstract
This study aimed to evaluate the effects of lactic acid (LA), citric acid (CA), and malic acid (MA) varying in concentration (0.5–2.0% w/w) on the rheological properties of fish gelatin (1.5–6.67% w/w) obtained from the skin of [...] Read more.
This study aimed to evaluate the effects of lactic acid (LA), citric acid (CA), and malic acid (MA) varying in concentration (0.5–2.0% w/w) on the rheological properties of fish gelatin (1.5–6.67% w/w) obtained from the skin of tilapia (Oreochromis mossambicus). The addition of LA, CA, or MA in gelatin dispersions significantly (p < 0.05) weakened their gel strengths, leading to a 14.3–62.2 reduction in gel strength. The gel strength, elastic (G′), and viscous (G″) moduli, as well as the gelling (TG) and melting (TM) temperatures of gelatin dispersions decreased with an increased level of acid added, implying the weakening effects of these acids on junction zones of the gelatin network in aqueous media. The addition of LA had less effect on these rheological properties of gelatin dispersions as compared to that of MA and CA, which were consistent with their effects on the pH of gelatin dispersions. Moreover, the reductions of TG and TM for gelatin dispersions with a higher gelatin concentration (e.g., 6.67% gelatin with 0.5% LA, TG dropped 0.4 °C) due to the addition of LA, CA, or MA were less pronounced compared to those with a lower gelatin content (e.g., 2% gelatin with 0.5% LA, TG dropped 7.1 °C), likely attributing to the stronger buffering effect of the high gelatin dispersion and less percentage reduction in the junction zones in the dispersion due to the addition of an acid. Incorporation of the effects of acids on the linear relationships (R2 = 0.9959–0.9999) between the square of gelatin concentrations and G′ or G″ could make it possible to develop a model to predict G′, G″, phase transition temperatures of gelatin dispersions containing different amounts of gelatin and acid (within the tested range) in the future. Full article
Show Figures

Graphical abstract

16 pages, 6797 KiB  
Article
Conversion of Fishery Waste to Proteases by Streptomyces speibonae and Their Application in Antioxidant Preparation
by Thi Ngoc Tran, Chien Thang Doan, Van Bon Nguyen, Anh Dzung Nguyen and San-Lang Wang
Fishes 2022, 7(3), 140; https://doi.org/10.3390/fishes7030140 - 14 Jun 2022
Cited by 10 | Viewed by 3009
Abstract
Proteinaceous wastes from the fishery process are an abundant renewable resource for the recovery of a variety of high-value products. This work attempted to utilize several proteinaceous wastes to produce proteases using the Streptomyces speibonae TKU048 strain. Among different possible carbon and nitrogen [...] Read more.
Proteinaceous wastes from the fishery process are an abundant renewable resource for the recovery of a variety of high-value products. This work attempted to utilize several proteinaceous wastes to produce proteases using the Streptomyces speibonae TKU048 strain. Among different possible carbon and nitrogen sources, the protease productive activity of S. speibonae TKU048 was optimal on 1% tuna head powder. Further, the casein/gelatin/tuna head powder zymography of the crude enzyme revealed the presence of three/nine/six proteases, respectively. The crude-enzyme cocktail of S. speibonae TKU048 exhibited the best proteolytic activity at 70 °C and pH = 5.8. Sodium dodecyl sulfate strongly enhanced the proteolytic activity of the cocktail, whereas FeCl3, CuSO4, and ethylenediaminetetraacetic acid could completely inhibit the enzyme activity. Additionally, the crude-enzyme cocktail of S. speibonae TKU048 could efficiently enhance the 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities of all tested proteinaceous materials including the head, viscera, and meat of tuna fish; the head, viscera, and meat of tilapia fish; the head, meat, and shell of shrimp; squid pen; crab shell; and soybean. Taken together, S. speibonae TKU048 revealed potential in the reclamation of proteinaceous wastes for protease production and antioxidant preparation. Full article
Show Figures

Graphical abstract

16 pages, 3051 KiB  
Article
Release of Cinnamaldehyde and Thymol from PLA/Tilapia Fish Gelatin-Sodium Alginate Bilayer Films to Liquid and Solid Food Simulants, and Japanese Sea Bass: A Comparative Study
by Jingwen Chen, Yinxuan Li, Wenzheng Shi, Hui Zheng, Li Wang and Li Li
Molecules 2021, 26(23), 7140; https://doi.org/10.3390/molecules26237140 - 25 Nov 2021
Cited by 16 | Viewed by 3671
Abstract
This study aimed to develop an active biodegradable bilayer film and to investigate the release behaviors of active compounds into different food matrices. Cinnamaldehyde (CI) or thymol (Ty) was encapsulated in β-cyclodextrin (β-CD) to prepare the active β-CD inclusion [...] Read more.
This study aimed to develop an active biodegradable bilayer film and to investigate the release behaviors of active compounds into different food matrices. Cinnamaldehyde (CI) or thymol (Ty) was encapsulated in β-cyclodextrin (β-CD) to prepare the active β-CD inclusion complex (β-CD-CI/β-CD-Ty). The tilapia fish gelatin-sodium alginate composite (FGSA) containing β-CD-CI or β-CD-Ty was coated on the surface of PLA film to obtain the active bilayer film. Different food simulants including liquid food simulants (water, 3% acetic acid, 10% ethanol, and 95% ethanol), solid dry food simulant (modified polyphenylene oxide (Tenax TA)), and the real food (Japanese sea bass) were selected to investigate the release behaviors of bilayer films into different food matrixes. The results showed that the prepared β-CD inclusion complexes distributed evenly in the cross-linking structure of FGSA and improved the thickness and water contact angle of the bilayer films. Active compounds possessed the lowest release rates in Tenax TA, compared to the release to liquid simulants and sea bass. CI and Ty sustained the release to the sea bass matrix with a similar behavior to the release to 95% ethanol. The bilayer film containing β-CD-Ty exhibited stronger active antibacterial and antioxidant activities, probably due to the higher release efficiency of Ty in test mediums. Full article
(This article belongs to the Special Issue Polymer-Based Nanoparticles for Bio-Chemical Applications)
Show Figures

Graphical abstract

18 pages, 2428 KiB  
Article
Physicochemical and Antioxidant Properties of Gelatin and Gelatin Hydrolysates Obtained from Extrusion-Pretreated Fish (Oreochromis sp.) Scales
by Wei-Cheng Shiao, Tien-Chiu Wu, Chia-Hung Kuo, Yung-Hsiang Tsai, Mei-Ling Tsai, Yong-Han Hong and Chun-Yung Huang
Mar. Drugs 2021, 19(5), 275; https://doi.org/10.3390/md19050275 - 14 May 2021
Cited by 30 | Viewed by 4673
Abstract
Fish gelatin and its hydrolysates exhibit a variety of biological characteristics, which include antihypertensive and antioxidant properties. In this study, fish gelatins were extracted from extrusion-pretreated tilapia scales, and then subjected to analyses to determine the physicochemical properties and antioxidant activity of the [...] Read more.
Fish gelatin and its hydrolysates exhibit a variety of biological characteristics, which include antihypertensive and antioxidant properties. In this study, fish gelatins were extracted from extrusion-pretreated tilapia scales, and then subjected to analyses to determine the physicochemical properties and antioxidant activity of the extracted gelatins. Our findings indicate that TSG2 (preconditioned with 1.26% citric acid) possessed the greatest extraction yield, as well as higher antioxidant activities compared with the other extracted gelatins. Hence, TSG2 was subjected to further hydrolyzation using different proteases and ultrafiltration conditions, which yielded four gelatin hydrolysates: TSGH1, TSGH2, TSGH3, and TSGH4. The results showed that TSGH4 (Pepsin + Pancreatin and ultrafiltration < 3000 Da) had a higher yield and greater antioxidant activity in comparison with the other gelatin hydrolysates. As such, TSGH4 was subjected to further fractionation using a Superdex peptide column and two-stage reverse-phase column HPLC chromatography, yielding a subfraction TSGH4-6-2-b, which possessed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity compared with the other fractions. Further LC-ESI/MS/MS analysis of TSGH4-6-2-b suggested two novel peptides (GYDEY and EPGKSGEQGAPGEAGAP), which could have potential as naturally-occurring peptides with antioxidant properties. These promising results suggest that these antioxidant peptides could have applications in food products, nutraceuticals, and cosmetics. Full article
Show Figures

Figure 1

11 pages, 1006 KiB  
Article
High-Intensity Ultrasound Pulses Effect on Physicochemical and Antioxidant Properties of Tilapia (Oreochromis niloticus) Skin Gelatin
by Dulce Alondra Cuevas-Acuña, Joe Luis Arias-Moscoso, Wilfrido Torres-Arreola, Francisco Cadena-Cadena, Ramón Gertrudis Valdez-Melchor, Sarai Chaparro-Hernandez, Hisila del Carmen Santacruz-Ortega and Saúl Ruiz-Cruz
Appl. Sci. 2020, 10(3), 1004; https://doi.org/10.3390/app10031004 - 3 Feb 2020
Cited by 11 | Viewed by 3239
Abstract
Ultrasonic pulses are considered green technology for the improvement of the functional properties of proteins. In this study, four high-intensity ultrasound pulse treatments (ultrasound-pulsed gelatin (UPG)-42, UPG-52, UPG-71, UPG-84, and non-pulsed control gelatin (CG)) were applied to tilapia (Oreochromis niloticus) skin [...] Read more.
Ultrasonic pulses are considered green technology for the improvement of the functional properties of proteins. In this study, four high-intensity ultrasound pulse treatments (ultrasound-pulsed gelatin (UPG)-42, UPG-52, UPG-71, UPG-84, and non-pulsed control gelatin (CG)) were applied to tilapia (Oreochromis niloticus) skin gelatin in order to study their effect on its physicochemical and antioxidant properties; a non-treated gelatin was used as a control. UPGs showed a significant increase in soluble protein and surface hydrophobicity compared to the control gelatin, and no significant difference was found in the electrophoretic profiles. The effects on the secondary structure were studied by circular dichroism and infrared spectra, and these showed that the random coil conformation was the main component in all treatments and the ultrasonic treatments only affected the α-helix and β-sheet proportion. Finally, the ABTS ((2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)) and FRAP (ferric reducing ability) assays demonstrated that ultrasound treatments could improve the antioxidant activity of gelatins as free radical scavengers and electron donors. These results suggest that high-intensity ultrasound pulse technology is useful to improve fish gelatin antioxidant properties, which could be associated with secondary structure disruption. Full article
(This article belongs to the Collection Ultrasound in Extraction Processing)
Show Figures

Graphical abstract

14 pages, 1562 KiB  
Article
Fish Scale Valorization by Hydrothermal Pretreatment Followed by Enzymatic Hydrolysis for Gelatin Hydrolysate Production
by Yiqi Zhang, Dan Tu, Qing Shen and Zhiyuan Dai
Molecules 2019, 24(16), 2998; https://doi.org/10.3390/molecules24162998 - 19 Aug 2019
Cited by 57 | Viewed by 7410
Abstract
Protein hydrolysates from fish by-products have good process suitability and bioavailability in the food industry. The objective of this work was to develop a method for protein recovery from fish scales and evaluate the hydrolysis of the scale protein. The effect of the [...] Read more.
Protein hydrolysates from fish by-products have good process suitability and bioavailability in the food industry. The objective of this work was to develop a method for protein recovery from fish scales and evaluate the hydrolysis of the scale protein. The effect of the hydrothermal process on protein recovery, degree of hydrolysis (DH) and structural properties of the hydrolysates was investigated. Results showed that hydrothermal treatment could enhance protein recovery of tilapia scales without demineralization and dramatically improve the DH of the hydrolysates. The hydrothermal treated scales showed a better protein recovery (84.81%) and DH (12.88%) and released peptides more efficiently than that of the conventional treated samples. The obtained gelatin hydrolysates mainly distributed in the range of 200–2000 Da with an angiotensin I-converting enzyme (ACE) IC50 value of 0.73 mg/mL. The ACE inhibitory activity of gelatin hydrolysates was stable under high temperature, pH and gastrointestinal proteases. Hydrothermal treatment followed by enzymatic hydrolysis offers a potential solution for preparation of gelatin hydrolysates for food ingredients from fish processing by-products. Full article
(This article belongs to the Special Issue Bioactives from Bioprocessing: Sources and Production)
Show Figures

Figure 1

16 pages, 4580 KiB  
Article
Preventive Effect of YGDEY from Tilapia Fish Skin Gelatin Hydrolysates against Alcohol-Induced Damage in HepG2 Cells through ROS-Mediated Signaling Pathways
by Mei-Fang Chen, Fang Gong, Yuan Yuan Zhang, Chengyong Li, Chunxia Zhou, Pengzhi Hong, Shengli Sun and Zhong-Ji Qian
Nutrients 2019, 11(2), 392; https://doi.org/10.3390/nu11020392 - 13 Feb 2019
Cited by 33 | Viewed by 4416
Abstract
According to a previous study, YGDEY from tilapia fish skin gelatin hydrolysates has strong free radical scavenging activity. In the present study, the protective effect of YGDEY against oxidative stress induced by ethanol in HepG2 cells was investigated. First, cells were incubated with [...] Read more.
According to a previous study, YGDEY from tilapia fish skin gelatin hydrolysates has strong free radical scavenging activity. In the present study, the protective effect of YGDEY against oxidative stress induced by ethanol in HepG2 cells was investigated. First, cells were incubated with YGDEY (10, 20, 50, and 100 μM) to assess cytotoxicity, and there was no significant change in cell viability. Next, it was established that YGDEY decreased the production of reactive oxygen species (ROS). Western blot results indicated that YGDEY increased the levels of superoxide dismutase (SOD) and glutathione (GSH) and decreased the expression of gamma-glutamyltransferase (GGT) in HepG2 cells. It was then revealed that YGDEY markedly reduced the expressions of bax and cleaved-caspase-3 (c-caspase-3); inhibited phosphorylation of Akt, IκB-α, p65, and p38; and increased the level of bcl-2. Moreover, the comet assay showed that YGDEY effectively decreased the amount of ethanol-induced DNA damage. Thus, YGDEY protected HepG2 cells from alcohol-induced injury by inhibiting oxidative stress, and this may be associated with the Akt/nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) signal transduction pathways. These results demonstrate that YGDEY from tilapia fish skin gelatin hydrolysates protects HepG2 cells from oxidative stress, making it a potential functional food ingredient. Full article
Show Figures

Figure 1

12 pages, 1449 KiB  
Article
Functional Characteristics of Ultraviolet-Irradiated Tilapia Fish Skin Gelatin
by Cheng-Kuo Wu, Jenn-Shou Tsai and Wen-Chieh Sung
Molecules 2019, 24(2), 254; https://doi.org/10.3390/molecules24020254 - 11 Jan 2019
Cited by 4 | Viewed by 4641
Abstract
Studies were undertaken to investigate the effects of ultraviolet (UV) irradiation on the gel strength, color, thermal properties, protein molecular masses, and functional groups of commercially available fish gelatin samples. Commercially available tilapia skin gelatin powder was used as the raw material to [...] Read more.
Studies were undertaken to investigate the effects of ultraviolet (UV) irradiation on the gel strength, color, thermal properties, protein molecular masses, and functional groups of commercially available fish gelatin samples. Commercially available tilapia skin gelatin powder was used as the raw material to investigate the functional properties of fish skin gelatin powder treated with UV irradiation for different durations (0–6 h). The functional properties of fish gelatin and the optimum irradiation treatment conditions were determined through gel strength testing, color characterization, differential scanning calorimetry, sodium dodecyl sulfate polyacrylamide gel electrophoresis, Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy. UV irradiation treatment increased gel strength and thermal stability, and significantly degraded the macromolecules. FTIR and Raman spectroscopy data indicated that UV irradiation treatment did not significantly change the molecular structure of fish gelatin powder, but these methods could discriminate the molecular structure of gelatin from various sources. Irradiation for 2 h yielded the highest gel strength and melting peak temperature, and the lowest chromatic aberration. Full article
(This article belongs to the Special Issue Gelatin: Chemistry, Characterization, Application)
Show Figures

Figure 1

16 pages, 4784 KiB  
Article
Enhancement of Cell Adhesion, Cell Growth, Wound Healing, and Oxidative Protection by Gelatins Extracted from Extrusion-Pretreated Tilapia (Oreochromis sp.) Fish Scale
by Chun-Yung Huang, Tien-Chou Wu, Yong-Han Hong, Shu-Ling Hsieh, Hui-Ru Guo and Ren-Han Huang
Molecules 2018, 23(10), 2406; https://doi.org/10.3390/molecules23102406 - 20 Sep 2018
Cited by 22 | Viewed by 5513
Abstract
Gelatin has been broadly utilized in the food, pharmaceutical, photographic, cosmetic and packaging industries, and there is also huge potential for novel applications of gelatin in the fields of biotechnology and biomedicine. In the present study, we extracted gelatin from fish processing waste, [...] Read more.
Gelatin has been broadly utilized in the food, pharmaceutical, photographic, cosmetic and packaging industries, and there is also huge potential for novel applications of gelatin in the fields of biotechnology and biomedicine. In the present study, we extracted gelatin from fish processing waste, i.e., scale of tilapia, by a combined method of extrusion-pretreatment and hot water extraction. The extrusion-pretreatment process increases the extraction yield of gelatin. Three gelatins (FS2: preconditioning with double-distilled water (ddH2O) before extrusion; FS12: preconditioning with citric acid solution before extrusion; FS14: preconditioning with acetic acid solution before extrusion) were obtained and all of them enhanced cell adhesion, cell growth, and wound healing in HaCaT cells and protected HaCaT cells from H2O2-induced cellular damage. Among FS2, FS12, and FS14, FS12 exhibited the most pronounced enhancement of cell adhesion, cell growth, and wound healing in HaCaT cells, and thus it may have potential as an effective natural raw material in cell therapies for cutaneous wounds and for reducing H2O2-induced oxidative damage of cells. In additional experiments, it was found that phosphorylations of Akt and mTOR are involved in the signaling pathway activated by FS2, FS12, and FS14 in HaCaT cells. Full article
(This article belongs to the Special Issue Gelatin: Chemistry, Characterization, Application)
Show Figures

Figure 1

12 pages, 13440 KiB  
Article
Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity
by Qingyu Ma, Qiuming Liu, Ling Yuan and Yongliang Zhuang
Nutrients 2018, 10(4), 420; https://doi.org/10.3390/nu10040420 - 28 Mar 2018
Cited by 38 | Viewed by 5299
Abstract
A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB)-induced [...] Read more.
A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB)-induced mouse embryonic fibroblasts (MEFs). UVB irradiation significantly increased the intercellular reactive oxygen species (ROS) production and matrix metalloproteinases (MMPs) activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD) activity and the increase of malondiaidehyde (MDA) content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities. Full article
(This article belongs to the Special Issue Impact of Bioactive Peptides on Human Health)
Show Figures

Figure 1

Back to TopTop