Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = three-edge-bearing test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4649 KiB  
Article
Failure Behavior of Damaged Reinforced Concrete Pipe Rehabilitated with Fiber-Reinforced Mortar Lining
by Jieyao Li, Chunliang He, Yingjie Wei, Haoliang Wu, Jiajie Liao, Shun Dong, Sheng Huang and Baosong Ma
Materials 2025, 18(13), 3130; https://doi.org/10.3390/ma18133130 - 2 Jul 2025
Viewed by 360
Abstract
The spray-applied pipe lining (SAPL) method, extensively employed in the trenchless rehabilitation of reinforced concrete pipes (RCPs) due to its operational versatility, remains constrained by an incomplete understanding of the failure behavior of rehabilitated pipelines, thereby impeding optimal design strategies. This study proposes [...] Read more.
The spray-applied pipe lining (SAPL) method, extensively employed in the trenchless rehabilitation of reinforced concrete pipes (RCPs) due to its operational versatility, remains constrained by an incomplete understanding of the failure behavior of rehabilitated pipelines, thereby impeding optimal design strategies. This study proposes an analytical approach to evaluate the structural performance of pipes with fiber-reinforced mortar lining, with a particular focus on interface failure and its consequences. Two RCPs with an inner diameter of 1000 mm, repaired with 34 mm and 45 mm centrifugally sprayed fiber-reinforced mortar liners, were subjected to three-edge-bearing (TEB) tests. The elastic limit loads of the two pipes were 57% and 39% of their pre-rehabilitation conditions, while the ultimate loads were 45% and 69%. A thicker liner exhibits a greater susceptibility to interface failure, leading to wider cracks around the elastic stage during loading. Once the interface failure occurs, load redistribution allows the liner to resist further cracking and sustain higher capacity, demonstrating enhanced bearing performance. Critical factors influencing the failure process were analyzed to inform design optimization, revealing that improving the interface takes precedence, followed by thickness design. Full article
(This article belongs to the Special Issue Strengthening, Repair, and Retrofit of Reinforced Concrete)
Show Figures

Figure 1

16 pages, 4663 KiB  
Article
Geological Conditions and Reservoir Formation Models of Low- to Middle-Rank Coalbed Methane in the Northern Part of the Ningxia Autonomous Region
by Dongsheng Wang, Qiang Xu, Shuai Wang, Quanyun Miao, Zhengguang Zhang, Xiaotao Xu and Hongyu Guo
Processes 2025, 13(7), 2079; https://doi.org/10.3390/pr13072079 - 1 Jul 2025
Viewed by 311
Abstract
The mechanism of low- to middle-rank coal seam gas accumulation in the Baode block on the eastern edge of the Ordos Basin is well understood. However, exploration efforts in the Shizuishan area on the western edge started later, and the current understanding of [...] Read more.
The mechanism of low- to middle-rank coal seam gas accumulation in the Baode block on the eastern edge of the Ordos Basin is well understood. However, exploration efforts in the Shizuishan area on the western edge started later, and the current understanding of enrichment and accumulation rules is unclear. It is important to systematically study enrichment and accumulation, which guide the precise exploration and development of coal seam gas resources in the western wing of the basin. The coal seam collected from the Shizuishan area of Ningxia was taken as the target. Based on drilling, logging, seismic, and CBM (coalbed methane) test data, geological conditions were studied, and factors and reservoir formation modes of CBM enrichment were summarized. The results are as follows. The principal coal-bearing seams in the study area are coal seams No. 2 and No. 3 of the Shanxi Formation and No. 5 and No. 6 of the Taiyuan Formation, with thicknesses exceeding 10 m in the southwest and generally stable thickness across the region, providing favorable conditions for CBM enrichment. Spatial variations in burial depth show stability in the east and south, but notable fluctuations are observed near fault F1 in the west and north. These burial depth patterns are closely linked to coal rank, which increases with depth. Although the southeastern region exhibits a lower coal rank than the northwest, its variation is minimal, reflecting a more uniform thermal evolution. Lithologically, the roof of coal seam No. 6 is mainly composed of dense sandstone in the central and southern areas, indicating a strong sealing capacity conducive to gas preservation. This study employs a system that fuses multi-source geological data for analysis, integrating multi-dimensional data such as drilling, logging, seismic, and CBM testing data. It systematically reveals the gas control mechanism of “tectonic–sedimentary–fluid” trinity coupling in low-gentle slope structural belts, providing a new research paradigm for coalbed methane exploration in complex structural areas. It creatively proposes a three-type CBM accumulation model that includes the following: ① a steep flank tectonic fault escape type (tectonics-dominated); ② an axial tectonic hydrodynamic sealing type (water–tectonics composite); and ③ a gentle flank lithology–hydrodynamic sealing type (lithology–water synergy). This classification system breaks through the traditional binary framework, systematically explaining the spatiotemporal matching relationships of the accumulated elements in different structural positions and establishing quantitative criteria for target area selection. It systematically reveals the key controlling roles of low-gentle slope structural belts and slope belts in coalbed methane enrichment, innovatively proposing a new gentle slope accumulation model defined as “slope control storage, low-structure gas reservoir”. These integrated results highlight the mutual control of structural, thermal, and lithological factors on CBM enrichment and provide critical guidance for future exploration in the Ningxia Autonomous Region. Full article
Show Figures

Figure 1

23 pages, 5097 KiB  
Article
Experimental and Restoring Force Model of Precast Shear Walls with Steel Sleeve and Corrugated Metallic Duct Hybrid Connections
by Yuqing Han, Yongjun Qin, Wentong Cheng and Qi Chen
Buildings 2025, 15(13), 2178; https://doi.org/10.3390/buildings15132178 - 22 Jun 2025
Viewed by 510
Abstract
This study proposes a novel hybrid connection method for precast concrete shear walls, where the edge walls are connected using grouting splice sleeves and the middle walls are connected using grouted corrugated metallic ducts. To investigate the effects of connection type and axial [...] Read more.
This study proposes a novel hybrid connection method for precast concrete shear walls, where the edge walls are connected using grouting splice sleeves and the middle walls are connected using grouted corrugated metallic ducts. To investigate the effects of connection type and axial compression ratio on structural performance, five shear wall specimens were tested under low-cycle reversed loading, with detailed analysis of their failure modes and hysteretic behavior. Based on experimental results and theoretical derivation, a restoring force model incorporating connection type was developed. The results demonstrate that hybrid-connected specimens exhibit significantly improved load-bearing capacity, ductility, and seismic performance compared to those with only grouted corrugated metallic duct connections. A higher axial compression ratio enhances structural strength but also accelerates damage progression, particularly after peak loading. A three-line skeleton curve model was established to describe the load, displacement, and stiffness relationships at key characteristic points, and unloading stiffness expressions for different loading stages were proposed. The calculated skeleton and hysteresis curves align well with the experimental results, accurately capturing the cyclic behavior of the hybrid-connected precast shear walls. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

22 pages, 15055 KiB  
Article
Tension Strength of Multi-Fastener, Single-Lap Joints in Flax and Jute Composite Plates Using Bolts or Rivets
by Mike R. Bambach
Materials 2025, 18(10), 2180; https://doi.org/10.3390/ma18102180 - 8 May 2025
Cited by 1 | Viewed by 441
Abstract
The behavior of joints and fasteners in fiber-epoxy composites has been researched for several decades, and many studies have demonstrated their performance in tension testing. These studies have focused nearly exclusively on synthetic fibers, such as carbon and glass. Meanwhile, natural fiber–epoxy composites [...] Read more.
The behavior of joints and fasteners in fiber-epoxy composites has been researched for several decades, and many studies have demonstrated their performance in tension testing. These studies have focused nearly exclusively on synthetic fibers, such as carbon and glass. Meanwhile, natural fiber–epoxy composites have recently received considerable attention as load-bearing members, including as columns and beams. In order for individual members to be used to create structural systems, the behavior of mechanically fastened joints in natural fiber–epoxy composites needs to be thoroughly investigated. This paper presents an experimental program of 120 single-lap joints in flax–epoxy and jute–epoxy composites. Between one and three mechanical fasteners were used in the joints, and both bolts and rivets were investigated. A variety of geometric variables were investigated, relevant to joints between load-bearing members. The results are used to demonstrate the optimum strength of multi-fastener joints in natural fiber composite structural systems. It is shown that maximum joint efficiency is achieved with larger fastener-diameter-to-width ratios, three fasteners (located along the line of action of the force), and edge-distance-to-fastener-diameter ratios greater than 2.5. Full article
Show Figures

Figure 1

21 pages, 4734 KiB  
Article
Experimental Study on the Mechanical Properties of Cracked Limestone Reinforced by Modified Cement Grouting
by Dong Zhu, Yijiang Zong, Min Chen, Xiangling Tao and Liang Yue
Processes 2025, 13(4), 1205; https://doi.org/10.3390/pr13041205 - 16 Apr 2025
Viewed by 439
Abstract
Grouting reinforcement is a pivotal approach to enhancing the integrity and load-bearing capacity of fractures in surrounding rock. In this study, standard limestone specimens were fractured through uniaxial compression. Then, the specimens were reinforced with grouting, using ultrafine cement paste containing varying mass [...] Read more.
Grouting reinforcement is a pivotal approach to enhancing the integrity and load-bearing capacity of fractures in surrounding rock. In this study, standard limestone specimens were fractured through uniaxial compression. Then, the specimens were reinforced with grouting, using ultrafine cement paste containing varying mass fractions of enhancers and a grouting apparatus developed by the authors. After the specimens were cured under standard conditions for 28 days, CT scanning technology was used to investigate the microstructure and grouting effect characteristics of grouted bodies containing different mass fractions of enhancers from a mesoscopic perspective. Then, uniaxial compression tests were conducted on those grouted specimens. The experimental results revealed that the content of the enhancer significantly affected the post-peak characteristics, mechanical parameters, and failure modes of the grouted specimens. When the content of the enhancer increased from 2.50 wt.% to 15.00 wt.%, the uniaxial compressive strength of the grouted specimens exhibited a positive correlation with the enhancer content, with the maximum improvement rate reaching 18.10% compared to the residual strength. However, when the enhancer content ranged from 15.00 wt.% to 20.00 wt.%, the uniaxial compressive strength was negatively correlated with the enhancer content. At an enhancer content of 15.00 wt.%, the overall stability of the grouted specimens was optimal, with all mechanical parameters reaching their maximum values. Utilizing three-dimensional CT scanning and reconstruction technology, it was observed that when the enhancer content was less than 15.00 wt.%, the cracks were concentrated in the limestone matrix rather than in the grouted solid in the edge regions of grouted specimens. However, in the whole specimens, the cracks in the grouted solid exceeded that in the limestone matrix. Conversely, when the enhancer content was greater than 17.50 wt.%, the grouted solid was predominantly distributed within the edge fissures of the specimens, while the internal regions exhibited a lower volume fraction of the grouted solid. In this scenario, the volume fraction of the grouted solid in the specimens was significantly lower than that of the fissures. Full article
Show Figures

Figure 1

24 pages, 19853 KiB  
Article
Optimization of Mechanical Performance of Full-Scale Precast Concrete Pipes with Varying Concrete Strengths and Reinforcement Using Factorial Design
by Safeer Abbas
Infrastructures 2025, 10(2), 29; https://doi.org/10.3390/infrastructures10020029 - 24 Jan 2025
Cited by 1 | Viewed by 1077
Abstract
The use of precast concrete pipes for water and sewage transportation systems is a very important element of a country’s infrastructure. The main aim of this study was to investigate the effects of concrete’s compressive strength and reinforcement levels on the mechanical performance [...] Read more.
The use of precast concrete pipes for water and sewage transportation systems is a very important element of a country’s infrastructure. The main aim of this study was to investigate the effects of concrete’s compressive strength and reinforcement levels on the mechanical performance of spun-cast full-scale precast concrete pipes in the local construction industries of developing countries. A test matrix was adopted using a full 32 factorial design. The studied concrete’s compressive strength was 20, 30, and 40 MPa, and reinforcement levels were 60%, 80%, and 100%, representing low, medium, and high levels, respectively. The medium level of reinforcement represented the reinforcement requirement of ASTM C76 in concrete pipes. A total of eighteen full-scale pipes of 450 mm diameter were cast in an industrial precast pipe unit using a spin-casting technique and were tested under a three-edge bearing load. The experimental results showed that the crack load and ultimate load of the tested pipes increased with higher levels of concrete strength and reinforcement levels. For example, an approximately 35% increase in the 0.30 mm crack load was observed when the concrete strength increased from 20 MPa to 30 MPa for all tested levels of reinforcement. Similarly, around a 19% increase in ultimate load was observed for pipes with 80% reinforcement compared to identical pipes with 60% reinforcement. It was found that the pipe class, as per ASTM C76, is highly dependent on the concrete strength and reinforcement levels. All of the pipes exhibited the development of flexural cracks at critical locations (crown, invert, and springlines). Moreover, concrete pipes cast with low-level strength and reinforcement also showed signs of crushing at the crown location near to the pipe failure. The analysis of variance (ANOVA) results showed that the main factors (compressive strength and reinforcement levels) were significantly affected by the cracking loads of precast pipes. No significant effect of the interaction of factors was observed on the crack load response. However, interaction factors, along with main factors, have significant effects on the ultimate load capacity of the concrete pipes, as indicated by the F-value, p-value, and Pareto charts. This study made an effort to illustrate and optimize the mechanical performance of pipes cast with various concrete strengths and reinforcement levels to facilitate the efficient use of materials for more resilient pipe infrastructure. Moreover, the exact optimization of concrete strength and reinforcement level for the desired pipe class will make the pipe design economical, leading to an increased profit margin for local spin-cast pipe fabricators without compromising the pipe’s quality. Full article
Show Figures

Figure 1

23 pages, 3687 KiB  
Article
End-to-End Methodology for Predictive Maintenance Based on Fingerprint Routines and Anomaly Detection for Machine Tool Rotary Components
by Amaia Arregi, Aitor Barrutia and Iñigo Bediaga
J. Manuf. Mater. Process. 2025, 9(1), 12; https://doi.org/10.3390/jmmp9010012 - 3 Jan 2025
Cited by 1 | Viewed by 1238
Abstract
This work introduces an end-to-end methodology, from data gathering to fault notification, for the predictive maintenance of rotary components of machine tools. This is done through fingerprint routines; that is, processes that are executed periodically under the same no-load conditions to obtain a [...] Read more.
This work introduces an end-to-end methodology, from data gathering to fault notification, for the predictive maintenance of rotary components of machine tools. This is done through fingerprint routines; that is, processes that are executed periodically under the same no-load conditions to obtain a snapshot of the machine condition. High-frequency vibration data gathered during these routines combined with knowledge about the machine structure and its components are used to obtain failure-specific features. These features are then introduced to an anomaly and paradigm shifts detection algorithm. The method is evaluated through three distinct scenarios. First, we use synthetically generated data to test its ability to detect controlled variations and edge cases. Second, we use with publicly available data obtained from bearing run-to-failure tests under normal load conditions on a specially designed test rig. Finally, the methodology is validated using real-world data collected from a spindle bearing installed in a machine tool. The novelty of this work lies in performing anomaly detection using failure-specific features derived from fingerprint routines, ensuring stability over time and enabling precise identification of machine conditions with minimal data requirements. Full article
(This article belongs to the Special Issue Smart Manufacturing in the Era of Industry 4.0)
Show Figures

Figure 1

20 pages, 16997 KiB  
Article
Contact Load and Elastohydrodynamic Lubrication Analysis of Eccentric Bearings in RV Reducer Considering the Effects of Roller Profile Modification
by Xinyue Zhang, Gang Wang, Daqi Wu, Jian Guan and Wenjie Chen
Lubricants 2025, 13(1), 14; https://doi.org/10.3390/lubricants13010014 - 3 Jan 2025
Cited by 1 | Viewed by 981
Abstract
The mechanical and tribological behavior of eccentric bearings is crucial for the performance of a RV reducer. By combining the finite element model (FEM) and the elastohydrodynamic lubrication (EHL) method, a comprehensive model for the cylindrical roller bearings applied in the RV reducer [...] Read more.
The mechanical and tribological behavior of eccentric bearings is crucial for the performance of a RV reducer. By combining the finite element model (FEM) and the elastohydrodynamic lubrication (EHL) method, a comprehensive model for the cylindrical roller bearings applied in the RV reducer is developed in this study. During the modeling phase, FEM is utilized to determine the bearing load, taking into account the structural flexibility. The FEM result demonstrates that a 15% increase in the maximum bearing’s load is detected by the FEM compared to the analytical model. After the simulations, the effects of the roller profile modification, the bearing load and the rolling speed on the bearing performance are revealed. The numerical results indicate that the combined generatrix shape roller results in weaker edge effects and stress concentration compared with that of the straight generatrix shape roller and the arc generatrix shape roller. The optimal values of modification length and modification quantity under various load and rolling speed conditions are provided. Furthermore, durability tests on RV reducers equipped with the three types of rollers were conducted. Experimental outcomes demonstrate that the combined generatrix shape roller significantly improves the reliability and fatigue life of the RV reducer, corroborating the numerical analyses. Full article
Show Figures

Figure 1

22 pages, 18402 KiB  
Article
Preliminary Failure Analyses of Loaded Hot Water Bottles
by Joseph Towler, Mohamed Baraya, Ziying Ran, Adel Alshammari, Syead Arif, Mohammad Desai, Sasidharan Palanivel, Rosti Readioff and Ahmed Abass
Appl. Sci. 2024, 14(11), 4427; https://doi.org/10.3390/app14114427 - 23 May 2024
Viewed by 2636
Abstract
Hot water bottles are widely utilised for their therapeutic advantages, such as relieving muscle tension and imparting warmth. However, the increasing frequency and potential risks associated with bursting or failure necessitate a detailed examination of the contributing factors as their failure is not [...] Read more.
Hot water bottles are widely utilised for their therapeutic advantages, such as relieving muscle tension and imparting warmth. However, the increasing frequency and potential risks associated with bursting or failure necessitate a detailed examination of the contributing factors as their failure is not fully understood in a scientific manner. With the apparent lack of analysis of hot water bottles in the literature, this study employs, for the first time, a dual methodology involving finite-element (FE) analysis conducted in ABAQUS and experimental validation to systematically investigate the underlying mechanisms leading to failure incidents. Through FE modelling and analysis, the stress and strain distribution within typical hot water bottles is modelled under compression loading conditions, facilitating the identification of vulnerable areas prone to failure. Experimental validation encompasses uniaxial loading compression tests on distinct specimens, generating load–displacement curves that elucidate material responses to compressive forces and highlight variations in load-bearing capacities. The study explores diverse failure modes, attributing them to stress concentration at geometric transitions and contact regions. Stress–strain curves contribute valuable insights into material characteristics, with ultimate stress values as crucial indicators of resistance to deformation and rupture. The FE analysis simulation results visualise deformation patterns and stress concentration zones. The findings illustrate that the highest stress concentration areas exist in the internal boundary of hot water bottles near the neck and cap region. This is experimentally confirmed through the bursting failures of four samples, with three failures occurring in this specific region. The findings support the guidance that users should avoid sleeping with a hot water bottle as it may fail under compression if they lay on top of it. Meanwhile, this result guides manufacturers to strengthen the weak areas of hot water bottles around the nicks and edges. This study significantly enhances our understanding of hot water bottle mechanics, thereby guiding design practice to improve overall performance and user safety. In summary, hot water bottles are commonly used but have not been investigated scientifically regarding external loading conditions and their related failure, as the current study has achieved. Identifying the weak points through experiment and simulation directs manufacturers towards required improvements in particular regions, such as the bottleneck and edge reinforcement during the design and manufacturing phases. Full article
Show Figures

Graphical abstract

20 pages, 5120 KiB  
Article
Effects of Curing Defects in Adhesive Layers on Carbon Fiber–Quartz Fiber Bonded Joint Performance
by Xiaobo Yang, Miaomiao Zhang, Lihua Zhan, Bolin Ma, Xintong Wu, Cong Liu and He Xiang
Polymers 2024, 16(10), 1406; https://doi.org/10.3390/polym16101406 - 15 May 2024
Cited by 4 | Viewed by 1716
Abstract
Due to their mechanical load-bearing and functional wave transmission, adhesively bonded joints of carbon fiber–quartz fiber composites have been widely used in the new generation of stealth aviation equipment. However, the curing defects, caused by deviations between the process environment and the setting [...] Read more.
Due to their mechanical load-bearing and functional wave transmission, adhesively bonded joints of carbon fiber–quartz fiber composites have been widely used in the new generation of stealth aviation equipment. However, the curing defects, caused by deviations between the process environment and the setting parameters, directly affect the service performance of the joint during the curing cycle. Therefore, the thermophysical parameter evolution of adhesive films was analyzed via dynamic DSC (differential scanning calorimeter), isothermal DSC and TGA (thermal gravimetric analyzer) tests. The various prefabricating defects within the adhesive layer were used to systematically simulate the impacts of void defects on the tensile properties, and orthogonal tests were designed to clarify the effects of the curing process parameters on the joints’ bonding performance. The results demonstrate that the J-116 B adhesive film starts to cure at a temperature of 160 °C and gradually forms a three-dimensional mesh-bearing structure. Furthermore, a bonding interface between the J-116 B adhesive film and the components to be connected is generated. When the curing temperature exceeds 200 °C, both the adhesive film and the resin matrix thermally degrade the molecular structure. The adhesive strength weakens with an increasing defect area ratio and number, remaining more sensitive to triangle, edge and penetration defects. By affecting the molecular structure of the adhesive film, the curing temperature has a significant impact on the bonding properties; when the curing degree is ensured, the curing pressure directly impacts the adhesive’s performance by influencing the morphology, number and distribution of voids. Conversely, the heating rate and heat preservation time have minimal effects on the bonding performance. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

17 pages, 16408 KiB  
Article
Comparison of Fracture Behavior in Single-Edge Notched Beams Reinforced with Steel Bars or CFRP Bars
by Zhiyong Wang, Yushu Yang, Min Song, Jie Zhang and Zhihua Wang
Materials 2024, 17(10), 2216; https://doi.org/10.3390/ma17102216 - 8 May 2024
Viewed by 1462
Abstract
To explore and compare the failure modes, deformation behaviors, and load-bearing capacities of single-edge notched (SEN) beams strengthened with carbon fiber-reinforced polymer (CFRP) and steel bars, static and dynamic three-point bending tests on both types of concrete beams have been carried out in [...] Read more.
To explore and compare the failure modes, deformation behaviors, and load-bearing capacities of single-edge notched (SEN) beams strengthened with carbon fiber-reinforced polymer (CFRP) and steel bars, static and dynamic three-point bending tests on both types of concrete beams have been carried out in this study. During the static tests, the electro-hydraulic servo machine served as a loading device to apply pressure to CFRP beams and reinforced concrete (RC) beams. During the impact experiments, different impact velocities were imparted by adjusting the drop hammer’s height. Thus, information regarding crack propagation, energy absorption, and deformation was obtained. The results from the static tests showed that the RC beams predominantly experienced shear failure. In contrast, the CFRP beams primarily exhibited bending–shear failure, attributed to the relatively weaker bond strength between the bars and the concrete. Impact tests were conducted at three different velocities in this study. As the impact velocity increased, both types of concrete beams transitioned from bending failure to bending–shear failure. At the lowest velocity, the difference in energy absorption between beams reinforced with different materials was insignificant during the bending process. However, at the highest velocity, CFRP beams absorbed less energy than RC beams. The study of structures’ impact failure modes and their mechanical characteristics offers valuable references for the anti-collision design and protection of structures. Full article
Show Figures

Figure 1

14 pages, 5916 KiB  
Technical Note
Practical Aspects of Correlation Analysis of Compressive Strength from Destructive and Non-Destructive Methods in Different Directions
by Baitollah Badarloo and Petr Lehner
Infrastructures 2023, 8(11), 155; https://doi.org/10.3390/infrastructures8110155 - 24 Oct 2023
Cited by 2 | Viewed by 3372
Abstract
The research presented here demonstrates the practical aspects of the numerical correlation of the results of the compressive strength test. The destructive test (DT) in a hydraulic press and the non-destructive test (NDT) using a Schmidt hammer in several process variations were evaluated. [...] Read more.
The research presented here demonstrates the practical aspects of the numerical correlation of the results of the compressive strength test. The destructive test (DT) in a hydraulic press and the non-destructive test (NDT) using a Schmidt hammer in several process variations were evaluated. The aim was to evaluate the real differences between the tool supplier’s curve and testing. Therefore, 150 concrete cube specimens with an edge length of 150 mm were produced using a mixture of three types of concrete classes: C30, C35, and C40. The test was carried out 7 and 28 days of age of the concrete. The Schmidt hammer test was carried out in horizontal (θ = 0) and vertical (θ = 90) directions and using a series of 10 measurements. Furthermore, the tests were performed in two sets: first, the sample was placed on the ground, and second, under a hydraulic jack with a load of 50% of the maximum bearing capacity of specific concrete. Then, regression analysis was performed on the data sets to establish linear mathematical relationships between compressive strength and number of bounces. The results showed that the correlation between the DT and NDT tests has a high value for each group, but the correlation equations are different and must be taken into account. Full article
Show Figures

Figure 1

26 pages, 19060 KiB  
Article
The Influence of Scratches on the Tribological Performance of Friction Pairs Made of Different Materials under Water-Lubrication Conditions
by Qingchen Liang, Peng Liang, Feng Guo, Shuyi Li, Xiaohan Zhang and Fulin Jiang
Lubricants 2023, 11(10), 449; https://doi.org/10.3390/lubricants11100449 - 17 Oct 2023
Cited by 7 | Viewed by 2542
Abstract
Water-lubricated bearings are widely used in marine equipment, and the lubricating water often contains hard particles. Once these particles enter the gap between the bearing and the shaft, they can scratch the smooth surfaces of the shaft and bearing, influencing the working performance [...] Read more.
Water-lubricated bearings are widely used in marine equipment, and the lubricating water often contains hard particles. Once these particles enter the gap between the bearing and the shaft, they can scratch the smooth surfaces of the shaft and bearing, influencing the working performance of the bearing system. To investigate the effect of scratch parameters on tribological performance, this paper conducts multiple block-on-ring experiments and constructs a mixed-lubrication model under water-lubrication conditions. The results show that among the three commonly used bearing materials, the tribological performance of graphite block is the most sensitive to scratches on the test ring surface. Under the condition of one scratch (N = 1), the loading area of water film pressure is divided into two separate zones (a trapezoidal pressure zone and an extremely low-pressure zone). In addition, the variation of maximum water film pressure is determined by the positive effect (hydrodynamic pressure effect of fluid) and negative effect (“piercing effect” of the asperities). Compared with the scratch depth and scratch location, the scratch width has the most significant effect on the tribological performance of the block-on-ring system. The maximum contact pressure is located at both edges of the scratch due to the formation of a water sac structure. The scratch has a great influence on the transition of the lubrication state of the block-on-ring system. The existence of scratches increases the critical speed at which the lubrication state transits from mixed-lubrication to elastohydrodynamic lubrication, and the critical speed is directly proportional to the scratch width. Full article
(This article belongs to the Special Issue Water-Lubricated Bearings)
Show Figures

Figure 1

12 pages, 3999 KiB  
Article
Lightweight Solid Wood Panels Made of Paulownia Plantation Wood
by Marius Cătălin Barbu, Helmut Radauer, Alexander Petutschnigg, Eugenia Mariana Tudor and Markus Kathriner
Appl. Sci. 2023, 13(20), 11234; https://doi.org/10.3390/app132011234 - 12 Oct 2023
Cited by 4 | Viewed by 2860
Abstract
Light Paulownia seamless-edged glued solid wood panels (SWPs), single-layered and three-layered, were analyzed in this study. Both panel types were calibrated at a thickness of 19 mm, a dimension very often in demand on the SWP market, but produced with other wood species [...] Read more.
Light Paulownia seamless-edged glued solid wood panels (SWPs), single-layered and three-layered, were analyzed in this study. Both panel types were calibrated at a thickness of 19 mm, a dimension very often in demand on the SWP market, but produced with other wood species (for example, spruce, pine, larch and fir). The panels were bonded with melamine-urea formaldehyde, polyurethane and polyvinyl acetate resins. The panels were tested for their physical (density) and mechanical (modulus of rupture, modulus of elasticity, compressive shear strength and wood breakage rate) properties. For the single-layered panels, the mechanical and physical properties did not differ significantly and were similar to massive Paulownia wood. For the three-layered panels, the adhesive application of polyurethane influenced positively all SWP properties. Considering the differences in density, these composites failed to achieve the performance of one- and single-layered panels made of spruce. The results of these findings recommend Paulownia SWPs to be used as lightweight and sustainable core materials in sandwich structures for the furniture and packaging industry, sport articles or non-load-bearing constructions. Full article
Show Figures

Figure 1

17 pages, 28081 KiB  
Article
Numerical Investigation of Bump Foil Configurations Effect on Gas Foil Thrust Bearing Performance Based on a Thermos-Elastic-Hydrodynamic Model
by Bin Hu, Anping Hou, Rui Deng, Rui Wang, Zhiyong Wu, Qifeng Ni and Zhong Li
Lubricants 2023, 11(10), 417; https://doi.org/10.3390/lubricants11100417 - 22 Sep 2023
Cited by 2 | Viewed by 2367
Abstract
The performance of gas foil thrust bearings is critical to the successful design and operation of the high axial load rotatory machines that employ gas foil bearings. However, our understanding of gas foil thrust bearings remains incomplete. To enhance our understanding and predict [...] Read more.
The performance of gas foil thrust bearings is critical to the successful design and operation of the high axial load rotatory machines that employ gas foil bearings. However, our understanding of gas foil thrust bearings remains incomplete. To enhance our understanding and predict the performance of gas foil thrust bearings, we have established a detailed three-dimensional thermo-elastic-hydrodynamic model of a gas foil thrust bearing based on a fluid-thermal-structure interaction approach in this study. To validate the accuracy of our model, a gas foil thrust bearing test rig was developed. Moreover, we present a numerical investigation of the influence of bump foil configurations on gas foil thrust bearing performance. The results show that the gas foil thrust bearing that fixes the bump foil at the trailing edge and splits the bump foil into several strips exhibits a 36.4% increase in load capacity compared to the gas foil thrust bearing that fixes a whole piece of bump foil at the leading edge. Fixing the bump foil at the trailing edge and splitting it into several strips effectively decreases power loss and reduces the risk of bearing thermal failure. Full article
(This article belongs to the Special Issue Advances in Bearing Lubrication and Thermodynamics 2023)
Show Figures

Figure 1

Back to TopTop