Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = thiocarbohydrazide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10861 KB  
Article
Electrical Properties of Cu-Based Coordination Complexes: Insights from In Situ Impedance Spectroscopy
by Jana Pisk, Marko Dunatov, Martina Stojić, Nenad Judaš, Ivica Đilović, Marta Razum and Luka Pavić
Molecules 2025, 30(1), 82; https://doi.org/10.3390/molecules30010082 - 29 Dec 2024
Viewed by 1273
Abstract
This study examines the influence of ligand design on the structural, optical, and electrical properties of copper-based coordination complexes. Ligands H2L1 and H2L2 were synthesized via the reaction of 5-nitrosalicylaldehyde with 2-hydroxy- or 4-hydroxybenzhydrazide. H4L [...] Read more.
This study examines the influence of ligand design on the structural, optical, and electrical properties of copper-based coordination complexes. Ligands H2L1 and H2L2 were synthesized via the reaction of 5-nitrosalicylaldehyde with 2-hydroxy- or 4-hydroxybenzhydrazide. H4L3 was obtained from the reaction of carbohydrazide and salicylaldehyde, while H4L4 was prepared by condensing 4-methoxysalicylaldehyde with thiocarbohydrazide. The research focuses on two key design elements: (1) the effect of hydroxyl group positioning on the aroyl ring in hydrazide ligands (H2L1 vs. H2L2) and (2) the impact of carbonyl versus thiocarbonyl groups and aldehyde substituents in hydrazone ligands (H4L3 vs. H4L4). The resulting complexes, [Cu2(L1)2], [Cu2(L2)2(MeOH)3], [Cu2(L3)(H2O)2], and [Cu2(L4)(H2O)2], were synthesized and characterized using attenuated total reflectance infrared (IR-ATR) spectroscopy, thermogravimetric analysis (TG), and UV-Vis diffuse reflectance spectroscopy. Their electrical properties were investigated using solid-state impedance spectroscopy (IS). The crystal and molecular structure of the complex [Cu2(L2)2(MeOH)3]∙MeOH was determined by single-crystal X-ray diffraction (SCXRD). This study underscores the pivotal role of ligand modifications in modulating the functional properties of coordination complexes, offering valuable insights for the advancement of materials chemistry. Full article
(This article belongs to the Special Issue Analysis and Characterization of Materials in Chemistry)
Show Figures

Graphical abstract

33 pages, 18950 KB  
Review
Synthetic Methods and Pharmacological Potentials of Triazolothiadiazines: A Review
by Mohamed S. Mostafa, Ibrahim Ali M. Radini, Naglaa M. Abd El-Rahman and Rizk E. Khidre
Molecules 2024, 29(6), 1326; https://doi.org/10.3390/molecules29061326 - 16 Mar 2024
Cited by 6 | Viewed by 2585
Abstract
This review article examines the synthetic pathways for triazolothiadiazine derivatives, such as triazolo[3,4-b]thiadiazines, triazolo[5,1-b]thiadiazines, and triazolo[4,3-c]thiadiazines, originating from triazole derivatives, thiadiazine derivatives, or thiocarbohydrazide. The triazolothiadiazine derivatives exhibit several biological actions, including antibacterial, anticancer, antiviral, antiproliferative, analgesic, [...] Read more.
This review article examines the synthetic pathways for triazolothiadiazine derivatives, such as triazolo[3,4-b]thiadiazines, triazolo[5,1-b]thiadiazines, and triazolo[4,3-c]thiadiazines, originating from triazole derivatives, thiadiazine derivatives, or thiocarbohydrazide. The triazolothiadiazine derivatives exhibit several biological actions, including antibacterial, anticancer, antiviral, antiproliferative, analgesic, anti-inflammatory, and antioxidant properties. The review article aims to assist researchers in creating new biologically active compounds for designing target-oriented triazolothiadiazine-based medicines to treat multifunctional disorders. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

13 pages, 1990 KB  
Article
Molecular and Electronic Structures of Macrocyclic Compounds Formed at Template Synthesis in the M(II)—Thiocarbohydrazide—Diacetyl Triple Systems: A Quantum-Chemical Analysis by DFT Methods
by Oleg V. Mikhailov and Denis V. Chachkov
Molecules 2023, 28(11), 4383; https://doi.org/10.3390/molecules28114383 - 27 May 2023
Cited by 2 | Viewed by 1730
Abstract
Using density functional theory (DFT) B3PW91/TZVP, M06/TZVP, and OPBE/TZVP chemistry models and the Gaussian09 program, a quantum-chemical calculation of geometric and thermodynamic parameters of Ni(II), Cu(II), and Zn(II) macrotetracyclic chelates, with (NNNN)-coordination of ligand donor centers arising during template synthesis between the indicated [...] Read more.
Using density functional theory (DFT) B3PW91/TZVP, M06/TZVP, and OPBE/TZVP chemistry models and the Gaussian09 program, a quantum-chemical calculation of geometric and thermodynamic parameters of Ni(II), Cu(II), and Zn(II) macrotetracyclic chelates, with (NNNN)-coordination of ligand donor centers arising during template synthesis between the indicated ions of 3d elements, thiocarbohydrazide H2N–HN–C(=S)–NH–NH2 and diacetyl Me–C(=O)–C(=O)–Me, in gelatin-immobilized matrix implants was performed. The key bond lengths and bond angles in these coordination compounds are provided, and it is noted that in all these complexes the MN4 chelate sites, the grouping of N4 atoms bonded to the M atom, and the five-membered and six-membered metal chelate rings are practically coplanar. NBO analysis of these compounds was carried out, on the basis of which it was shown that all these complexes, in full accordance with theoretical expectations, are low-spin complexes. The standard thermodynamic characteristics of the template reactions for the formation of the above complexes are also presented. Good agreement between the data obtained using the above DFT levels is noted. Full article
Show Figures

Figure 1

19 pages, 2739 KB  
Article
Phenotypic Discovery of Thiocarbohydrazone with Anticancer Properties and Catalytic Inhibition of Human DNA Topoisomerase IIα
by Ilija N. Cvijetić, Barbara Herlah, Aleksandar Marinković, Andrej Perdih and Snežana K. Bjelogrlić
Pharmaceuticals 2023, 16(3), 341; https://doi.org/10.3390/ph16030341 - 23 Feb 2023
Cited by 7 | Viewed by 2567
Abstract
Phenotypic screening of α-substituted thiocarbohydrazones revealed promising activity of 1,5-bis(salicylidene)thiocarbohydrazide against leukemia and breast cancer cells. Supplementary cell-based studies indicated an impairment of DNA replication via the ROS-independent pathway. The structural similarity of α-substituted thiocarbohydrazone to previously published thiosemicarbazone catalytic inhibitors targeting the [...] Read more.
Phenotypic screening of α-substituted thiocarbohydrazones revealed promising activity of 1,5-bis(salicylidene)thiocarbohydrazide against leukemia and breast cancer cells. Supplementary cell-based studies indicated an impairment of DNA replication via the ROS-independent pathway. The structural similarity of α-substituted thiocarbohydrazone to previously published thiosemicarbazone catalytic inhibitors targeting the ATP-binding site of human DNA topoisomerase IIα prompted us to investigate the inhibition activity on this target. Thiocarbohydrazone acted as a catalytic inhibitor and did not intercalate the DNA molecule, which validated their engagement with this cancer target. A comprehensive computational assessment of molecular recognition for a selected thiosemicarbazone and thiocarbohydrazone provided useful information for further optimization of this discovered lead compound for chemotherapeutic anticancer drug discovery. Full article
(This article belongs to the Special Issue Topoisomerases as Targets for Novel Drug Discovery)
Show Figures

Figure 1

39 pages, 14226 KB  
Review
Transition Metal Complexes of Thiosemicarbazides, Thiocarbohydrazides, and Their Corresponding Carbazones with Cu(I), Cu(II), Co(II), Ni(II), Pd(II), and Ag(I)—A Review
by Ashraf A. Aly, Elham M. Abdallah, Salwa A. Ahmed, Mai M. Rabee and Stefan Bräse
Molecules 2023, 28(4), 1808; https://doi.org/10.3390/molecules28041808 - 14 Feb 2023
Cited by 41 | Viewed by 6713
Abstract
This review focuses on some interesting and recent applications of transition metals towards the complexation of thiosemicarbazides, thiocarbohydrazides, and their corresponding carbazones. We started the review with a description of the chosen five metals, including Cu[Cu(I), Cu(II], Co(II), Ni(II), Pd(II), and Ag(I) and [...] Read more.
This review focuses on some interesting and recent applications of transition metals towards the complexation of thiosemicarbazides, thiocarbohydrazides, and their corresponding carbazones. We started the review with a description of the chosen five metals, including Cu[Cu(I), Cu(II], Co(II), Ni(II), Pd(II), and Ag(I) and their electronic configurations. The stability of the assigned complexes was also discussed. We shed light on different routes describing the synthesis of these ligands. We also reported on different examples of the synthesis of Cu(I), Cu(II), Co(II), Ni(II), Ag(I), and Pd(II) of thiosemicarbazide and thiocarbohydrazide complexes (until 2022). This review also deals with a summary of the fruitful use of metal complexes of thiosemicarbazones and thiocarbazones ligands in the field of catalysis. Finally, this recent review focuses on the applications of these complexes related to their biological importance. Full article
(This article belongs to the Special Issue Featured Reviews in Organometallic Chemistry)
Show Figures

Graphical abstract

5 pages, 2017 KB  
Proceeding Paper
Oxidation Processes in a Phosphine-Thiocarbohydrazone Ligand
by Sandra Fernández-Fariña, Isabel Velo-Heleno, Lara Rouco, Miguel Martínez-Calvo and Ana M. González-Noya
Chem. Proc. 2022, 12(1), 57; https://doi.org/10.3390/ecsoc-26-13559 - 14 Nov 2022
Viewed by 1120
Abstract
In this work, we isolated a pentadentate [P2N2S] phosphine-thiocarbohydrazone ligand H2L with a bulky phosphine group in both linker domains that undergoes an oxidation process in solution. This ligand was synthesized by a direct reaction between two [...] Read more.
In this work, we isolated a pentadentate [P2N2S] phosphine-thiocarbohydrazone ligand H2L with a bulky phosphine group in both linker domains that undergoes an oxidation process in solution. This ligand was synthesized by a direct reaction between two equivalents of 2-diphe-nylphosphinebenzaldehyde and one equivalent of thiocarbohydrazide. Two types of crystals de-rived from this ligand were obtained and studied using X-ray diffraction spectroscopy. One structure corresponds to the monooxidized ligand H2L(O) while the other indicates a dioxidation of the compound, H2L(OO). Full article
Show Figures

Figure 1

7 pages, 132 KB  
Short Note
N"-[(3Z)-1-Acetyl-5-chloro-2-oxo-1,2-dihydro-3H-indol-3-ylidene]thiocarbonohydrazide
by Nataša Ristovska, Frosa Anastasova and Marina Stefova
Molbank 2013, 2013(2), M798; https://doi.org/10.3390/M798 - 16 Apr 2013
Cited by 4 | Viewed by 5293
Abstract
A novel synthetic methodology for preparation of thiocarbohydrazone by reacting thiocarbohydrazide with 1-acetyl-5-chloroisatin is described. The title compound was prepared by condensation of thiocarbohydrazide and substituted isatin in aqueous ethanol. The newly synthesized compound was characterized using 1H-NMR, 13C-NMR, FT-IR and [...] Read more.
A novel synthetic methodology for preparation of thiocarbohydrazone by reacting thiocarbohydrazide with 1-acetyl-5-chloroisatin is described. The title compound was prepared by condensation of thiocarbohydrazide and substituted isatin in aqueous ethanol. The newly synthesized compound was characterized using 1H-NMR, 13C-NMR, FT-IR and mass spectrometry. Full article
Show Figures

Graphical abstract

15 pages, 268 KB  
Article
Synthesis and Biological Activity of Substituted Urea and Thiourea Derivatives Containing 1,2,4-Triazole Moieties
by Bedia Kocyigit-Kaymakcioglu, Ahmet Ozgur Celen, Nurhayat Tabanca, Abbas Ali, Shabana I. Khan, Ikhlas A. Khan and David E. Wedge
Molecules 2013, 18(3), 3562-3576; https://doi.org/10.3390/molecules18033562 - 19 Mar 2013
Cited by 70 | Viewed by 10382
Abstract
A series of novel thiourea and urea derivatives containing 1,2,4-triazole moieties were synthesized and evaluated for their antifungal and larvicidal activity. Triazole derivatives 3ae and 4ae were synthesized by reacting thiocarbohydrazide with thiourea and urea compounds 1ae [...] Read more.
A series of novel thiourea and urea derivatives containing 1,2,4-triazole moieties were synthesized and evaluated for their antifungal and larvicidal activity. Triazole derivatives 3ae and 4ae were synthesized by reacting thiocarbohydrazide with thiourea and urea compounds 1ae and 2ae, respectively, in a 130–140 °C oil bath. The proposed structures of all the synthesized compounds were confirmed using elemental analysis, UV, IR, 1H-NMR and mass spectroscopy. All compounds were evaluated for antifungal activity against plant pathogens, larvicidal and biting deterrent activity against the mosquito Aedes aegypti L. and in vitro cytotoxicity and anti-inflammatory activity against some human cell lines. Phomopis species were the most sensitive fungi to these compounds. Compounds 1b, 1c, 3a and 4e demonstrated selectively good activity against Phomopis obscurans and only 1b and 4e showed a similar level of activity against P. viticola. Compound 3d, with a LD50 value of 67.9 ppm, followed by 1c (LD50 = 118.8 ppm) and 3e (LD50 = 165.6 ppm), showed the highest toxicity against Aedes aegypti larvae. Four of these compounds showed biting deterrent activity greater than solvent control, with the highest activity being seen for 1c, with a proportion not biting (PNB) value of 0.75, followed by 1e, 2b and 1a. No cytotoxicity was observed against the tested human cancer cell lines. No anti-inflammatory activity was observed against NF-kB dependent transcription induced by phorbol myristate acetate (PMA) in human chondrosarcoma cells. Full article
Show Figures

Figure 1

Back to TopTop