Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = thin-walled box girders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 11193 KiB  
Article
An Improved Shear Lag Analysis Method for Composite Box Girders with Corrugated Steel Webs
by Meihua Bian, Xingsen Zhang, Junhua Li, Jianing Peng and Songlin Qin
Buildings 2024, 14(12), 4087; https://doi.org/10.3390/buildings14124087 - 23 Dec 2024
Viewed by 1105
Abstract
Composite box girders with corrugated steel webs (CBGCWs) have attracted increasing attention in bridge engineering. However, the shear lag effect has an impact on the mechanical behavior of thin-walled box girders and the impact of transverse deformation on this effect is usually neglected. [...] Read more.
Composite box girders with corrugated steel webs (CBGCWs) have attracted increasing attention in bridge engineering. However, the shear lag effect has an impact on the mechanical behavior of thin-walled box girders and the impact of transverse deformation on this effect is usually neglected. In this study, a modified energy variational method is proposed to quantify the shear lag effect on CBGCWs. The shear deformations of each flange are analyzed based on the mechanical properties of the corrugated steel webs. A shear-lag warpage displacement function is introduced for each flange to account for the shear lag effect due to transverse deformation of the top flange. The formulation for the shear lag effect on CBGCWs is then derived using the principle of the energy variational method. The feasibility and accuracy of the proposed method are validated through a numerical study of a simply supported CBGCW subjected to uniform loading. In addition, a parametric analysis of the shear lag effect on CBGCWs is conducted. The results demonstrate that local bending deformation of the top flange leads to an uneven distribution of shear lag effects and the shear lag effect on corrugated steel webs is significantly influenced by the width–to–span ratio. Full article
(This article belongs to the Special Issue Recent Developments in Structural Health Monitoring)
Show Figures

Figure 1

24 pages, 4037 KiB  
Article
Shear Lag Effect of Ultra-Wide Box Girder under Influence of Shear Deformation
by Yanfeng Li, Jiyuan Xie, Fengchi Wang and Yuanhui Li
Appl. Sci. 2024, 14(11), 4778; https://doi.org/10.3390/app14114778 - 31 May 2024
Cited by 1 | Viewed by 1039
Abstract
The objective of this study was to determine the reasonable flexural functions of ultra-wide box girders, reveal the mechanism of the shear lag effect, and improve the analysis theory of ultra-wide box girders. Considering a single-box three-chamber thin-walled box girder as an example, [...] Read more.
The objective of this study was to determine the reasonable flexural functions of ultra-wide box girders, reveal the mechanism of the shear lag effect, and improve the analysis theory of ultra-wide box girders. Considering a single-box three-chamber thin-walled box girder as an example, starting from an uneven transfer of shear flow, the flexural displacement function of the curved box girder under the influence of shear deformation of each plate was derived according to the flexural theory of a thin-walled box girder, balance equation of a thin-walled microelement plate, and theory of plane stress. The energy variational method was used to analyze the flexural displacement function, providing a theoretical solution for the shear lag effect of the curved box girder. A displacement correction of the cantilever plate displacement function was performed by comparing the calculation results for the shear lag coefficients. The results indicated that under the shear deformation of each plate, the flexural displacement functions of the wing and web plates of the box girder no longer satisfy the assumption of plane section. The flexural displacement function is a quadratic function of the transverse wing plate, and the web height is the sum of the first- and third-order functions. The theoretical calculation results agree sufficiently well with the experimental results, proving that the flexural displacement function of the box girder under the influence of the shear deformation of each plate is reliable. Full article
(This article belongs to the Special Issue Bridge Structural Analysis)
Show Figures

Figure 1

19 pages, 4065 KiB  
Article
Experimental Study on Shear Lag Effect of Long-Span Wide Prestressed Concrete Cable-Stayed Bridge Box Girder under Eccentric Load
by Yanfeng Li, Jiyuan Xie, Fengchi Wang, Di Wu, Jiahui Wang and Yanao Liu
Constr. Mater. 2024, 4(2), 425-443; https://doi.org/10.3390/constrmater4020023 - 20 May 2024
Viewed by 1098
Abstract
Based on the engineering background of the wide-width single cable-stayed bridge, the shear lag effects of the cross-section of these bridge box girders under the action of the eccentric load were experimentally studied. The behavior of shear lag effects in the horizontal and [...] Read more.
Based on the engineering background of the wide-width single cable-stayed bridge, the shear lag effects of the cross-section of these bridge box girders under the action of the eccentric load were experimentally studied. The behavior of shear lag effects in the horizontal and longitudinal bridge directions under eccentric load in the operational stage of a single cable-stayed bridge was analyzed by a model testing method and a finite element (FE) analytical method. The results showed that the plane stress calculation under unidirectional live load was similar to the results from spatial FE analysis and structural calculations performed according to the effective flange width described in the design specification. At the position of the main beam near the cable force point of action, the positive stress at its upper wing edge was greatest. At a distance from the cable tension point, the maximum positive stress position trend showed that from the center of the top flange to the junction of the top flange and the middle web to the junction of the top flange and the middle web and the side web. Under eccentric load, the positive and negative shear lag effects on the end fulcrum existed at the same time, and the shear lag coefficient on the web plate was larger than the shear lag coefficient on the unforced side. Due to the influence of constraint at the middle fulcrum near the middle pivot point, positive and negative shear lag effects were significant, and the coefficient variation range was large, resulting in large tensile stress on the roof plate in this area. According to FE analytical results, stress and shear forces of a single box three-chamber box girder under eccentric load were theoretically analyzed, the bending load decomposed into the accumulation of bending moment and axial force, using the bar simulation method, and the overall shear lag effect coefficient λ was obtained and verified. Full article
Show Figures

Figure 1

14 pages, 4207 KiB  
Article
Distortion Effect on the UHPC Box Girder with Vertical Webs: Theoretical Analysis and Case Study
by Chenguang Wang, Yaowen Wu, Yuanhai Zhang, Shiying Tang, Weiwen Li, Peng Wang and Walid Mansour
Materials 2024, 17(6), 1303; https://doi.org/10.3390/ma17061303 - 12 Mar 2024
Cited by 3 | Viewed by 1396
Abstract
Distortion deformation usually imposes a potential threat to bridge safety. In order to comprehensively understand the distortion effect on thin-walled ultra-high performance concrete (UHPC) box girders, an innovative approach encompassing the governing distortion differential equation is introduced in this study based on the [...] Read more.
Distortion deformation usually imposes a potential threat to bridge safety. In order to comprehensively understand the distortion effect on thin-walled ultra-high performance concrete (UHPC) box girders, an innovative approach encompassing the governing distortion differential equation is introduced in this study based on the general definition of distortion angle within the cross-section plane. The analytical results obtained from the proposed method are in accordance with those obtained from the energy method, and exhibit favorable agreement with experimental findings documented in the existing literature. Furthermore, a finite element model is developed on the ANSYS 2021 R1 software platform with the employment of a Shell 63 element. Numerical outcomes are also in good agreement with the experimental data, affirming the validity and reliability of the findings. In addition, parameter analysis results indicate that the distortion angle remains approximately constant at a location approximately 1/10 of the span from the mid-span cross-section of the box girder, regardless of changes in the span-to-depth ratio. Increasing the web thickness yields a notable reduction in the distortion effects, and decreasing the wall thickness can effectively mitigate the distortion-induced transverse bending moment. Compared with normal-strength concrete box girders, UHPC box girders can reduce the distortion angle within the span range, which is beneficial for maintaining the overall stability of the box girders. The outcomes obtained from this study yield engineers an enhanced understanding of distortion effect on the UHPC girder performance. Full article
Show Figures

Figure 1

30 pages, 41188 KiB  
Article
Analytical Method of the Shear Lag Effect in Thin-Walled Box Girders Based on the Shear Flow Distribution Law
by Yuan Shi, Shijun Zhou, Gang Wang and Cao Zhou
Appl. Sci. 2024, 14(2), 828; https://doi.org/10.3390/app14020828 - 18 Jan 2024
Viewed by 2035
Abstract
This paper presents an analytical method based on the shear flow distribution law to study the shear lag effect of thin-walled single- and double-cell box girders. The first step in this method is to determine the box girder’s shear flow distribution. Subsequently, a [...] Read more.
This paper presents an analytical method based on the shear flow distribution law to study the shear lag effect of thin-walled single- and double-cell box girders. The first step in this method is to determine the box girder’s shear flow distribution. Subsequently, a series of novel improved longitudinal displacement functions mathematically expressed as cubic parabolas are established. The parabolic origin of these functions is located at the zero point of the shear flow corresponding to each plate; the unknown parameters used to describe the function form can be determined according to the shear flow distribution, the continuity conditions, and the axial force balance condition. Then, the variational energy method is adopted to derive the governing differential equations. The shear lag effect in thin-walled single- and double-cell box girders under several boundary conditions and load cases is studied and analytical expressions for the shear lag coefficient are derived. Finally, results obtained using the proposed method are validated via comparison with numerical results. The results show that the proposed method can provide reasonable predictions for the shear lag effect of single- and double-cell box girders, and that this method is more straightforward and practical. In addition, the shear lag coefficients at different webs are not entirely equal, which is related to the distance from the web to the zero point of the shear flow. Full article
(This article belongs to the Special Issue Bridge Structural Analysis)
Show Figures

Figure 1

20 pages, 9661 KiB  
Article
Research on the Shear Performance of Cold-Formed Thin-Walled Steel-Glued Laminated Wood Composite Beams
by Haixu Yang, Yue Guo, Haibiao Wang and Zihang Jiang
Buildings 2023, 13(12), 2903; https://doi.org/10.3390/buildings13122903 - 21 Nov 2023
Cited by 3 | Viewed by 1420
Abstract
This paper proposes a new type of composite box beam combined with cold-formed thin-walled steel and glued laminated timber to develop green building structures while improving the load-carrying capacity of a single steel girder and glued timber girder. Two composite beams composed of [...] Read more.
This paper proposes a new type of composite box beam combined with cold-formed thin-walled steel and glued laminated timber to develop green building structures while improving the load-carrying capacity of a single steel girder and glued timber girder. Two composite beams composed of laminated timber and Q235 cold-formed thin-walled steel were designed and fabricated. Then, the shear performance test with quadratic loading was carried out to analyze the load carrying capacity, damage modes, and deformation characteristics of the test beams, as well as their influencing factors. Subsequently, a finite element model of the composite beam was established, and the loading mode was the same as that of the test to further study the parameters affecting the shear performance of the composite beam. The results of the study indicate that steel and glued timber in composite beams connected by adhesive bonding can work and deform together under load and each give full play to its material properties, especially the composite beams, which exhibit higher shear strength than a steel or timber beam. The effects of parameters such as steel cross-sectional area, shear span ratio, steel skeleton form, and steel cross-sectional strength on the shear capacity of the composite beams were observed, among which the shear span ratio had the greatest effect on the shear capacity of the composite beams. The shear capacity decreased by 14.3% and 19.5% when the shear span ratio was increased from 1.5 to 2.0 and 2.5, respectively. The shear capacity of the combined composite beams increased by 10.6%, 6.3%, and 5.8% when the thickness was increased from 1.5 mm to 2.0 mm, 2.5 mm, and 3.0 mm, respectively. When the combination of the steel cross-section was a box beam, the overall shear-bearing capacity could be increased by 12% compared with the “I” type composite beam, although its shear stiffness was close to that of the “I” section composite beam. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 8992 KiB  
Article
On the Torsional Behavior of the Longitudinal Bridge Girders Used in the LT-Bridge Construction Method
by Michael Rath, Franz Untermarzoner and Johann Kollegger
Appl. Sci. 2023, 13(11), 6657; https://doi.org/10.3390/app13116657 - 30 May 2023
Cited by 1 | Viewed by 2123
Abstract
A new bridge construction method, combining semi-precast elements and in situ concrete, has been developed at TU Wien, with the aim of decreasing erection time. In the course of construction using this new method, structural conditions arise that render a more detailed investigation [...] Read more.
A new bridge construction method, combining semi-precast elements and in situ concrete, has been developed at TU Wien, with the aim of decreasing erection time. In the course of construction using this new method, structural conditions arise that render a more detailed investigation necessary. By connecting a precast, thin-walled box girder to a bridge segment located on a pier by means of post-tensioning, a joint is created. By casting in situ concrete on the bottom and top slabs, the joint can be bridged with longitudinal reinforcement; however, the unreinforced vertical joints in the webs remain. This detail is a specific characteristic of the LT-bridge construction method and needs to be further investigated and assessed, as the question arises as to how this circumstance affects the torsional bearing behavior of the bridge superstructure. Torsion tests described in the literature consider ordinary box girders with longitudinal reinforcement or post-tensioned segmental bridges without longitudinal reinforcement at the joints. Therefore, the new reinforcement layout at the joints had to be investigated experimentally. Two large-scale thin-walled box girders—one without joints in the webs and the other with unreinforced joints in the webs—were tested, allowing for a direct comparison of conventionally manufactured bridges and those erected with the new bridge construction method. Furthermore, we investigated whether the results of common calculation methods corresponded to the experimental findings. Full article
(This article belongs to the Special Issue Advances on Structural Engineering, Volume III)
Show Figures

Figure 1

23 pages, 11388 KiB  
Article
Semi-Precast Segmental Bridge Construction Method: Experimental Investigation on the Shear Transfer in Longitudinal and Transverse Direction
by Stephan Johann Fasching, Tobias Huber, Michael Rath and Johann Kollegger
Appl. Sci. 2021, 11(12), 5502; https://doi.org/10.3390/app11125502 - 14 Jun 2021
Cited by 4 | Viewed by 4305
Abstract
Large span concrete bridges with a box-shaped girder are usually built from prefabricated concrete segments or by in-situ casting of the concrete on a scaffolding system. Both technologies have their advantages and drawbacks. Recently a new approach to the construction of such bridges [...] Read more.
Large span concrete bridges with a box-shaped girder are usually built from prefabricated concrete segments or by in-situ casting of the concrete on a scaffolding system. Both technologies have their advantages and drawbacks. Recently a new approach to the construction of such bridges which combines the advantages of both existing solutions was proposed at the TU Wien. This method uses the standard precast segmental erection methods with their high construction speed, but divides the segments into easily transportable pre-fabricated thin-walled elements to create new, lighter versions of the segments. Following the installation of these lightweight segments, they are strengthened with additional concrete in their final position in the superstructure. This paper focuses on the transmission of shear forces during construction stages. Firstly, on the level of individual segments, where rigid cross-frames are necessary to guarantee the stability of the segments and secondly, on the level of a bridge girder built from such segments, where new joint types must be developed to ensure the force transfer between the segments. Different options for the formation of cross-frames as well as shear tests on double walls and concrete panels with steel girders are shown. In this experimental series, different shear transmitting elements were compared to each other and to calculations with non-linear finite element analysis, showing that all the investigated solutions are suitable for use in thin-walled bridge segments. Several methods, including a new concept for joining thin-walled pre-fabricated elements, are described for the joints between the segments. Push-off tests with a constant lateral force were carried out to assess the shear strength and deformation behaviour. The main parameters were the joint type (wet joints: plain, grooved, keyed; dry joints), the grout type, and the lateral force level. The test results are presented and the structural behaviour is further analysed using non-linear finite-element simulations. Full article
Show Figures

Figure 1

23 pages, 16182 KiB  
Article
Behavior of a Two-Way Lightweight Steel–Concrete Composite Slab Voided with Thin-Walled Core Boxes towards Sustainable Construction
by Yongqi Huang, Vincent J.L. Gan, Huaguo Chen and Jianjun Yang
Materials 2020, 13(18), 4129; https://doi.org/10.3390/ma13184129 - 17 Sep 2020
Cited by 13 | Viewed by 9574
Abstract
High-performance engineered structural systems are crucial for sustainable development in the field of construction. In our previous research, a novel steel–concrete composite beam with transverse and longitudinal hidden girders exhibited good flexural behavior and desirable ductility. However, there is a dearth of studies [...] Read more.
High-performance engineered structural systems are crucial for sustainable development in the field of construction. In our previous research, a novel steel–concrete composite beam with transverse and longitudinal hidden girders exhibited good flexural behavior and desirable ductility. However, there is a dearth of studies on the flexural response of a steel–concrete composite slab voided with thin-walled core boxes. Therefore, in this study, we investigated the overarching flexural mechanism of the proposed structure when subjected to uniform vertical loads. The experimental detection results illustrated that the deflection value of the composite beam was 95.75% less than the GB/T 50152-2012 recommendation. Numerical results further validated this observation. The recorded data from the strain profile at the mid-span of the frame girder indicated that there was a considerable membrane effect, which delayed the strain growth of rebars, yielding appreciable bearing capacity. Thus, two original approaches to predicting the ultimate load of this novel structure are proposed, considering limit analysis using the upper-bound method and the membrane effect, with the latter closely linked to the experimental results. The findings can promote the extensive application of similar sustainable systems and inspire further advancements in advanced engineering structures. Full article
Show Figures

Figure 1

20 pages, 7150 KiB  
Article
Experimental and Numerical Investigation on the Ultimate Vertical Bearing Capacity of U-Shaped Girder with Damaged Web
by Jingfeng Zhang, Yuan Jing, Pandao Li, Wanshui Han, Nan Zhang and Yunlai Zhou
Sensors 2019, 19(17), 3735; https://doi.org/10.3390/s19173735 - 29 Aug 2019
Cited by 11 | Viewed by 4061
Abstract
U-shaped girder has been extensively used for its excellent adaptability in the urban railway transit system. As an open thin-walled structure, significant difference of working mechanism exists between U-shaped girder and conventional section girder (e.g., T section or box section). The thin-walled web [...] Read more.
U-shaped girder has been extensively used for its excellent adaptability in the urban railway transit system. As an open thin-walled structure, significant difference of working mechanism exists between U-shaped girder and conventional section girder (e.g., T section or box section). The thin-walled web plays significant role in the flexural performance of U type girder particularly. Moreover, severe collision may occur between the moving train and the girder, and subsequently results in the decrease of the structural bearing capacity. In this paper, a full-scale test was carried out to examine the ultimate bearing capacity and the failure mechanism of the U-shaped girder, and a refined numerical model was developed to simulate the damage evolution and the failure process. It was shown that the flexural failure occurred on the U-shaped girder under vertical loads. In addition, the ultimate bearing capacity of the structure under different web damage conditions (e.g., web damaged region or damaged range) was studied by applying the displacement based lateral load on the flange of the U-shaped girder to simulate the damage caused by accidental train collision. The numerical results have shown that the damaged web greatly affects the ultimate bearing capacity of U-shaped girder, more severe bearing capacity descending occurs around the middle span rather than the beam ends. The damaged range (length) of the web has less influence on the falling amplitude of bearing capacity. It can be concluded that the major reason accounting for the bearing capacity decrease is that the original section is weakened by the web damage, and consequently results in the buckling of the damaged web and lead to the total failure of the structure. It is recommended that the lateral resistant design for the web should be taken into consideration to ensure the operation safety of the urban railway transportation. Full article
Show Figures

Figure 1

Back to TopTop