Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = thin orebody

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5620 KiB  
Article
A Deep-Penetrating Geochemical Prospecting Experiment of Mahuagou Gold Deposit in the Core of the Huangling Anticline, Western Hubei, China
by Weihang Zhou, Li Lei, Yin Gong, Demin Liu, Shuyun Xie, Zhijun Chen, Qinglin Xia, Mengqi Wang, Salah Fadlallah Awadelseid and Oraphan Yaisamut
Appl. Sci. 2023, 13(22), 12279; https://doi.org/10.3390/app132212279 - 13 Nov 2023
Viewed by 1901
Abstract
The Mahuagou gold deposit is among the most important gold deposits in the core of the Huangling Anticline. However, the geochemical exploration on the surface of the mining area presents challenges due to the thin overburden. This paper focuses on the overburden soil [...] Read more.
The Mahuagou gold deposit is among the most important gold deposits in the core of the Huangling Anticline. However, the geochemical exploration on the surface of the mining area presents challenges due to the thin overburden. This paper focuses on the overburden soil of the Fengxiangshugou (FXS)-Mahuanggou (MHG) section as the research object. It utilizes chemical form analysis of gold, soil halogen survey, and heat-released mercury survey to determine the key deep-penetrating geochemical methods for the mining area. The results indicated that Si and Al components of samples exhibit minimal variation, suggesting that drift loads did not influence the overburden soil. Based on the systematic clustering, As, Sb, Mo, Bi, W, and Hg emerge as ore-body or ore-belt front elements of hydrothermal gold deposits. In the study area, the predominant chemical form of gold in soil is the strong organic bond. Compared to the total amount, strong organic bound gold and heat-released mercury show higher anomaly contrasts, making them crucial indicators of faults, intrusions, and hidden ore bodies. Consequently, chemical form analysis of gold and heat-released mercury surveys can enhance the anomaly contrast, proving beneficial for geochemical prospecting for weak anomalies in this area. Full article
(This article belongs to the Special Issue New Advances, Challenges, and Illustrations in Applied Geochemistry)
Show Figures

Figure 1

12 pages, 4498 KiB  
Article
Study on Stope Stability in Continuous Mining of Long-Dip, Thin Orebody by Room–Pillar Method
by Yanhui Guo and Yichen Miao
Sustainability 2022, 14(15), 9601; https://doi.org/10.3390/su14159601 - 4 Aug 2022
Cited by 7 | Viewed by 2239
Abstract
In order to analyze the stability of the stope under continuous mining with the room–pillar method for a kind of orebody with a long inclination, but not deep mining, this paper takes the room–pillar method for the continuous mining of a long-inclination orebody [...] Read more.
In order to analyze the stability of the stope under continuous mining with the room–pillar method for a kind of orebody with a long inclination, but not deep mining, this paper takes the room–pillar method for the continuous mining of a long-inclination orebody in the Mengnuo Lead–Zinc Mine, Yunnan Province as the research background. On the basis of the analysis of the stope mechanical model of a long, inclined, thin orebody with room-and-pillar mining, based on numerical simulation, the nature of the change in stress, displacement and the plasticity zone of the roof and pillar during continuous mining along the inclination are systematically analyzed. The results show that as the mining depth increases, the roof subsidence of the stope in the middle of the current operation increases. With the continuous mining of the lower middle section, the roof displacement of the stope will continue to increase with the subsequent mining of the middle section until the end of all stope operations, and the roof displacement of the stope has an obvious cumulative effect. The stress on the roofs and pillars increases with the gradual downward movement of the mining in each level, and the distribution of the plastic zone also expands. It shows that the stope structural parameters that are set according to shallow mining cannot fully meet the requirements of stability and safety in mining a deeper orebody. Therefore, for the mining of a non-deep orebody with a greater tendency to extend, the structural parameters of a shallow stope should not simply be used in the mining of a deeper orebody, but the pillar size should be appropriately increased or the spacing between the room and pillar should be reduced to ensure the stability and safety of the continuous stope. Full article
Show Figures

Figure 1

34 pages, 8837 KiB  
Article
Mineralogy, Fluid Inclusion, and C-O-Sr Isotope Geochemistry to Unravel the Evolution of the Magmatic-Hydrothermal System at the Igoudrane Silver-Rich Deposit (Imiter District, Eastern Anti-Atlas, Morocco)
by Mamadoudjan Diallo, Mohammed Bouabdellah, Gilles Levresse, Johan Yans, Francesca Castorina, Andreas Klügel, Mohamed Mouhagir, Salim El Mouden and Lhou Maacha
Minerals 2021, 11(9), 997; https://doi.org/10.3390/min11090997 - 12 Sep 2021
Cited by 4 | Viewed by 4203
Abstract
The Igoudrane mine with a total production of 700,000 t of ore grading 485 g/t Ag is currently one of the most productive mines in the Imiter district of the eastern Anti-Atlas in Morocco. The silver-rich ± base metal deposit occurs dominantly as [...] Read more.
The Igoudrane mine with a total production of 700,000 t of ore grading 485 g/t Ag is currently one of the most productive mines in the Imiter district of the eastern Anti-Atlas in Morocco. The silver-rich ± base metal deposit occurs dominantly as vein- and hydrothermal breccia-hosted orebodies at the interface between the lower Ediacaran turbidites of the Saghro Group and the unconformably overlying, dominantly felsic volcanic, and volcaniclastic rocks of the late Ediacaran Ouarzazate Group. Higher-grade ores are lithologically hosted by the uppermost organic-rich black shale unit and structurally controlled by the intersection of subvertical NW- and NE-trending fault systems. Ore-related hydrothermal alteration includes, in order of decreasing abundance, carbonatization, silicification, sericitization, and chloritization. Three primary paragenetic stages of veining and associated silver ± base metal mineralization have been recognized: (1) early pyrite + quartz + Ag-bearing sulfides and sulfosalts; (2) main Ag-bearing sulfides and sulfosalts + calcite ± fluorite ± dolomite; and (3) late quartz + calcite + base-metal sulfides (galena, sphalerite, pyrite, chalcopyrite). Irrespective of the ore stage, the dominant Ag-bearing ore minerals are Ag-Hg amalgam, argentite, freibergite, acanthite, polybasite, pyrargyrite, and proustite. Fluid inclusion data show a trend of decreasing temperatures with time, from the main silver stage (Th = 180 ± 12 °C) to late base-metal stage (Th = 146 ± 7 °C), consistent with fluid mixing, cooling, and/or dilution. The coexistence of aqueous-rich and vapor-rich fluid inclusions together with variations in bulk salinity (NaCl + CaCl2) of the mineralizing fluids during the main silver stage, at similar temperatures, indicate that boiling and subsequent degassing occurred during the main ore-forming event due to a pressure decrease. Calculated δ18Ofluid values along with REE+Y and Sr isotope constraints suggest that the ore-forming fluids originated from a predominantly magmatic source, although incursion of meteoric waters during collapse of the hydrothermal system could have contributed to deposition. The post-ore, base-metal quartz-carbonate-dominated mineralization was deposited from dilute Ca-Na-Cl-bearing fluids at temperature below 150 °C. Overall, fluid–rock interaction with the black shales along major faults and thin permeable horizons, boiling-degassing—with subsequent fluid mixing, cooling, and/or dilution—were the main mechanisms of silver deposition. Full article
Show Figures

Graphical abstract

24 pages, 9800 KiB  
Article
Gold in the Farallones Block of the Shale-Hosted, Clastic-Dominated Castellanos Zinc-Lead Deposit (Northwest Cuba)
by David Gómez-Vivo, Fernando Gervilla, Rubén Piña, Rebeca Hernández-Díaz and Antonio Azor
Minerals 2021, 11(4), 414; https://doi.org/10.3390/min11040414 - 14 Apr 2021
Cited by 1 | Viewed by 3056
Abstract
The Zn-Pb ores of the Castellanos shale-hosted, clastic-dominated deposit in northwest Cuba average nearly 1 g/t Au, with local maximum concentrations up to 34 g/t Au. This deposit is stratiform with respect to the bedding in the host black shales and shows a [...] Read more.
The Zn-Pb ores of the Castellanos shale-hosted, clastic-dominated deposit in northwest Cuba average nearly 1 g/t Au, with local maximum concentrations up to 34 g/t Au. This deposit is stratiform with respect to the bedding in the host black shales and shows a bottom to top zoning of ore assemblages made up of a stockwork underlying the main orebody, a basal pyrite-rich zone and a disseminated to massive Zn-Pb ore zone capped by a discontinuous, thin barite-rich zone. Petrographic data and textural relations allow distinguishing five textural types of pyrite (framboidal Py I, colloform Py IIa, euhedral Py IIb, massive Py IIc and banded colloform Py III) successively formed during ore deposition. The main Zn-Pb ore formed after the crystallization of disseminated, sedimentary framboidal pyrite (Py I) in black shales by the superimposition of several crystallization events. The crystallization sequence of the main ore-forming stage evolved from the precipitation of colloform sphalerite and pyrite (Py IIa) with skeletal galena and interstitial dolomite-ankerite to similar ore assemblages but showing subhedral to euhedral crystal habits (Py IIb) and interstitial calcite-rich carbonates. This stage ended with the development of massive pyrite (Py IIc), mainly occurring at the base of the stratiform orebody. A late fracturing stage gave way to the development of a new generation of colloform banded pyrite (Py III) just preceding the crystallization of early barite. Au is mainly concentrated in pyrite showing variable contents in the different textural types of pyrite and a bottom to top enrichment trend. Minimum contents occur in massive pyrite (Py IIc) from the basal pyrite-rich zone (0.18 ppm Au average), increasing in pyrite IIa (from 0.29 to 2.86 ppm Au average) and in euhedral pyrite (Py IIb) (from 0.82 to 9.02 ppm Au average), reaching maxima in colloform banded pyrite (Py III) formed just before the crystallization of early barite at the top of the orebody. Au enrichment in pyrite correlates with that of Sb (0.08–4420 ppm), As (0.7–35,000 ppm), Ag (0.03–1560 ppm) and to a lesser extent Cu (3–25,000 ppm), Ni (0.02–1600 ppm) and Mn (0.6–5030 ppm). Au deposition should have taken place by oxidation and, probably cooling, of reduced (H2S-dominated) fluids buffered by organic matter-rich black shales of the host sedimentary sequence. The input of such reduced fluids in the ore-forming environment most probably occurred alternating with that of the main oxidized fluids which leached Zn and Pb from the large volume of sandstones and siltstones making up the enclosing sequence, thus being responsible for the precipitation of the majority Zn-Pb ore. Supply of Au-carrying reduced fluids might progressively increase over the course of ore formation, reaching a maximum at the beginning of the late fracturing stage. This evolution of Au supply is consistent with the early crystallization of barite since Ba can also only be transported at low temperature by highly reduced fluids. These results highlight the potential of medium-sized, shale-hosted, clastic-dominated deposits to contain economic (by product) Au amounts and show that ore-forming fluids can change from oxidized (SO42+ dominated) to reduced (H2S-dominated), and vice versa, throughout the evolutionary history of a single deposit. Full article
Show Figures

Figure 1

18 pages, 14610 KiB  
Article
Mineral Inventory of the Algares 30-Level Adit, Aljustrel Mine, Iberian Pyrite Belt, Portugal
by Teresa P. Silva, João X. Matos, Daniel De Oliveira, João P. Veiga, Igor Morais, Pedro Gonçalves and Luís Albardeiro
Minerals 2020, 10(10), 853; https://doi.org/10.3390/min10100853 - 27 Sep 2020
Cited by 3 | Viewed by 4632
Abstract
Mining activity in Algares (Aljustrel Mine, Portuguese sector of the Iberian Pyrite Belt, IPB) stems prior to Roman times. As the orebody is vertical and relatively thin, mining was carried out mainly along underground adits (galleries). Nowadays, the deposit is considered exhausted and [...] Read more.
Mining activity in Algares (Aljustrel Mine, Portuguese sector of the Iberian Pyrite Belt, IPB) stems prior to Roman times. As the orebody is vertical and relatively thin, mining was carried out mainly along underground adits (galleries). Nowadays, the deposit is considered exhausted and the area is being rehabilitated for a different use. The Algares +30 level adit intersects two volcanic units of the IPB Volcano-Sedimentary Complex. The massive sulphide and related stockwork zone are hosted by the Mine Tuff volcanic unit and are exposed in the walls of the gallery, showing intense hydrothermal alteration. Along the mine adit, the geological sequence is affected by strong oxidation and supergene alteration, giving rise to the formation of secondary minerals through the oxidation of the sulphides. The most common minerals found were melanterite (FeSO4·7H2O) and chalcanthite (CuSO4·5H2O), forming essentially massive or crystalline aggregates, ranging from greenish to bluish colours. Melanterite from the walls revealed to be Cu-rich by opposition to that from stalactites/stalagmites formed below the old ore storage silo revealing the low-copper-grade ores exploited underground. The mineralogy of the efflorescent salts was used to ascertain the processes involved in their formation, and moreover, the inventory of minerals is presented, as well as their principal characteristics. Full article
(This article belongs to the Special Issue The Role of Minerals in Cultural and Geological Heritage)
Show Figures

Figure 1

27 pages, 5446 KiB  
Article
Coupling Mineralogy, Textures, Stable and Radiogenic Isotopes in Identifying Ore-Forming Processes in Irish-Type Carbonate-Hosted Zn–Pb Deposits
by Lola Yesares, Drew A. Drummond, Steven P. Hollis, Aileen L. Doran, Julian F. Menuge, Adrian J. Boyce, Robert J. Blakeman and John H. Ashton
Minerals 2019, 9(6), 335; https://doi.org/10.3390/min9060335 - 29 May 2019
Cited by 14 | Viewed by 8174
Abstract
Irish-type deposits comprise carbonate-hosted sphalerite- and galena-rich lenses concentrated near normal faults. We present new data from the Tara Deep resource and overlying mineralization, at Navan, and the Island Pod deposit and associated Main zone orebodies, at Lisheen. Tara Deep mineralization predominantly replaces [...] Read more.
Irish-type deposits comprise carbonate-hosted sphalerite- and galena-rich lenses concentrated near normal faults. We present new data from the Tara Deep resource and overlying mineralization, at Navan, and the Island Pod deposit and associated Main zone orebodies, at Lisheen. Tara Deep mineralization predominantly replaces Tournasian micrites and subordinate Visean sedimentary breccias. The mineralization is mainly composed of sphalerite, galena, marcasite and pyrite. A range of Cu- and Sb-bearing minerals occur as minor phases. At Tara Deep, paragenetically early sulfides exhibit negative δ34S values, with later phases displaying positive δ34S values, indicating both bacterial sulfate reduction (BSR) and hydrothermal sulfur sources, respectively. However, maximum δ34S values are heavier (25‰) than in the Main Navan orebody (17‰). These mineralogical and isotopic features suggest that Tara Deep represents near-feeder mineralization relative to the Navan Main orebody. The subeconomic mineralization hosted in the overlying Thin Bedded Unit (TBU) comprises sphalerite replacing framboidal pyrite, both exhibiting negative δ34S values (−37.4 to −8.3‰). These features indicate a BSR source of sulfur for TBU mineralization, which may represent seafloor exhalation of mineralizing fluids that formed the Tara Deep orebody. The Island Pod orebody, at Lisheen, shows a mineralogical paragenetic sequence and δ34S values broadly similar to other Lisheen orebodies. However, the lack of minor Cu, Ni, and Sb minerals suggests a setting more distal to hydrothermal metal feeder zones than the other Lisheen orebodies. Pb isotope data indicate a very homogeneous Lower Palaeozoic Pb source for all Navan orebodies. Lower Palaeozoic metal sources are also inferred for Lisheen, but with variations both within and between orebodies. Carbon and oxygen isotopic variations at Navan and Lisheen appear to result from fluid-carbonate rock buffering. The emerging spectrum of mineralogical and isotopic variations define proximal to distal characteristics of Irish-type systems and will assist in developing geochemical vectoring tools for exploration. Full article
(This article belongs to the Special Issue Massive Sulfide Deposits all around the World)
Show Figures

Figure 1

16 pages, 7549 KiB  
Article
The Use of Univariate and Multivariate Analyses in the Geochemical Exploration, Ravanj Lead Mine, Delijan, Iran
by Mostafa Nejadhadad, Batoul Taghipour and Alireza Karimzadeh Somarin
Minerals 2017, 7(11), 212; https://doi.org/10.3390/min7110212 - 3 Nov 2017
Cited by 5 | Viewed by 5272
Abstract
A geochemical exploration program was applied to recognize the anomalous geochemical haloes at the Ravanj lead mine, Delijan, Iran. Sampling of unweathered rocks were undertaken across rock exposures on a 10 × 10 meter grid (n = 302) as well as the accessible [...] Read more.
A geochemical exploration program was applied to recognize the anomalous geochemical haloes at the Ravanj lead mine, Delijan, Iran. Sampling of unweathered rocks were undertaken across rock exposures on a 10 × 10 meter grid (n = 302) as well as the accessible parts of underground mine A (n = 42). First, the threshold values of all elements were determined using the cut-off values used in the exploratory data analysis (EDA) method. Then, for further studies, elements with lognormal distributions (Pb, Zn, Ag, As, Cd, Co, Cu, Sb, S, Sr, Th, Ba, Bi, Fe, Ni and Mn) were selected. Robustness against outliers is achieved by application of central log ratio transformation to address the closure problems with compositional data prior to principle components analysis (PCA). Results of these analyses show that, in the Ravanj deposit, Pb mineralization is characterized by a Pb-Ba-Ag-Sb ± Zn ± Cd association. The supra-mineralization haloes are characterized by barite and tetrahedrite in a Ba- Th- Ag- Cu- Sb- As- Sr association and sub-mineralization haloes are comprised of pyrite and tetrahedrite, probably reflecting a Fe-Cu-As-Bi-Ni-Co-Mo-Mn association. Using univariate and multivariate geostatistical analyses (e.g., EDA and robust PCA), four anomalies were detected and mapped in Block A of the Ravanj deposit. Anomalies 1 and 2 are around the ancient orebodies. Anomaly 3 is located in a thin bedded limestone-shale intercalation unit that does not show significant mineralization. Drilling of the fourth anomaly suggested a low grade, non-economic Pb mineralization. Full article
Show Figures

Figure 1

Back to TopTop