Coupling Mineralogy, Textures, Stable and Radiogenic Isotopes in Identifying Ore-Forming Processes in Irish-Type Carbonate-Hosted Zn–Pb Deposits
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Geology of the Deposits
4.1. The Navan Deposit and Tara Deep Orebody
- The Micrite Unit is the most important host, containing approximately 90% of the total resource [13], with stratabound mineralization occurring in fault-bounded blocks. Associated with a quiescent, sabkha-like depositional environment, the upper and lower micrites with an intervening calcitite can vary in thickness but are typically 50–60 m thick. Characteristic features include fine-grained, organic matter-rich, blue/dark grey, and abundant bird’s-eye (fenestral) textures. The lower Micrite Unit is the most strongly mineralized and includes high-grade mineralization comprising replacive, massive sphalerite, galena, and marcasite (Figure 3a). The upper Micrite Unit shows variable but lower grades. For example, fracture-infilling mineralization is typically observed as a series of sulfide veins (Figure 3b). Commonly the micrites host alternating layers of sphalerite and galena (Figure 3c).
- Sedimentary breccias located near the hanging walls of the G and S faults, towards the NW of Tara Deep, host the remainder of the mineralization. The sedimentary breccias are composed chiefly of Pale Beds clasts with minor Waulsortian Limestone, replaced and cemented by sulfide (Figure 3d,e). As in the Navan deposit, the sedimentary breccias also contain detrital sulfide clasts, again suggesting a Lower Visean age for at least some of the mineralization.
4.2. The Lisheen Deposit and the Island Pod Orebody
5. Ore Mineralogy
5.1. Tara Deep, Navan
5.2. TBU Overlying Tara Deep, Navan
5.3. Island Pod and Main Zone, Lisheen
6. Sulfur Isotope Composition
6.1. Tara Deep, Navan
6.2. TBU, Navan
6.3. Island Pod and Main Zone, Lisheen
7. C–O Isotope Composition
7.1. Navan
7.2. Lisheen
8. Pb Isotopes
8.1. Navan
8.2. Lisheen
9. Discussion
9.1. Metal sources
9.2. Sulfur Sources
9.3. C–O Isotopes
9.4. Controls on Metal Deposition
9.5. Implications for Exploration
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sample ID | Mineralization | Mineral | Texture | δ34S (‰) |
---|---|---|---|---|
Navan Deposit | ||||
Tara Deep orebody | ||||
N02437/08 | Micrite hosted | Sphalerite | Massive | −8.3 |
N02427/04 | Micrite hosted | Sphalerite | Massive | −8.2 |
N02437/01 | Micrite hosted | Sphalerite | Massive | −8.8 |
N02334/07 | Micrite hosted | Sphalerite | Massive | +8.7 |
N02370/05 | Micrite hosted | Sphalerite | Laminated | +10.5 |
N02427/04 | Micrite hosted | Galena | Coarse | −9.2 |
N02437/03 | Micrite hosted | Galena | Coarse | −6.6 |
N02334/07 | Micrite hosted | Galena | Coarse | +5.6 |
N02370/05 | Micrite hosted | Galena | Disrupted coarse | +9.4 |
N02445/05 | Micrite hosted | Galena | Disrupted interstitial | +7.7 |
N02428/06 | Micrite hosted | Pyrite | Euhedral | −17.7 |
N02428/04 | Micrite hosted | Pyrite | Colloform | −16.2 |
N02428/04 | Micrite hosted | Pyrite | Colloform | −13 |
N02437/02 | Micrite hosted | Pyrite | Veinlet | +8.8 |
N02437/03 | Micrite hosted | Pyrite | Euhedral recrystallized | +12.9 |
N02409-17a | Mineralized conglomerated | Marcasite | Colloform | −0.1 |
N02409-17b | Mineralized conglomerated | Marcasite | Radial | +15.2 |
N02409-17c | Mineralized conglomerated | Marcasite | Replacing pyrite | +24.6 |
N02439-5a | Mineralized conglomerated | Marcasite | Radial | +12.1 |
N02439-5b | Mineralized conglomerated | Marcasite | Radial | +17.2 |
TBU | ||||
N02409-1a | Laminated pyrite | Pyrite | Framboidal pyrite | −36.2 |
N02409-1b | Laminated pyrite | Pyrite | Framboidal pyrite | −37.3 |
N02409-1c | Laminated pyrite | Pyrite | Framboidal pyrite | −37.4 |
N02409-8a | Laminated pyrite | Pyrite | Framboidal pyrite | −11.9 |
N02409-8b | Laminated pyrite | Pyrite | Framboidal pyrite | −8.3 |
N02439-4a | Laminated pyrite | Pyrite | Framboidal pyrite | −30.5 |
N02439-4b | Laminated pyrite | Pyrite | Framboidal pyrite | −37.0 |
N02439-4c | Laminated pyrite | Pyrite | Framboidal pyrite partially recrystallized | −29.2 |
N02439-4d | Laminated pyrite | Pyrite | Framboidal pyrite partially recrystallized | −23.2 |
N02409-1d | Laminated pyrite | Sphalerite | Sphalerite replacing framboidal pyrite | −32.8 |
N02409-1e | Laminated pyrite | Sphalerite | Sphalerite replacing framboidal pyrite | −32.1 |
Lisheen deposit | ||||
Island Pod orebody | ||||
ALD025 | BMB | Pyrite | Coarse | −35.2 |
ALD013 | BMB | Pyrite | Recrystallized | −23.9 |
ALD002A | BMB | Pyrite | Dendritic | −14.9 |
ALD103 | BMB | Pyrite | Coarse | −30.4 |
ALD038 | BMB | Pyrite | Dendritic | −42.3 |
ALD051 | BMB | Pyrite | Colloform | −36.4 |
ALD052A | BMB | Sphalerite | Interstitial in pyrite | −11.5 |
ALD107 | BMB | Sphalerite | Interstitial in pyrite | −14.4 |
ALD002A | BMB | Sphalerite | Interstitial in pyrite | −6.8 |
ALD075 | BMB | Sphalerite | Euhedral | −4.8 |
ALD103 | BMB | Sphalerite | Interstitial in pyrite | −6.3 |
ALD013 | BMB | Galena | Interstitial in pyrite | −3.3 |
ALD106 | BMB | Galena | Interstitial in pyrite | −3.3 |
ALD015 | BMB | Galena | Interstitial in pyrite | +2.6 |
ALD016 | BMB | Galena | Interstitial in pyrite | +9.0 |
ALD051 | BMB | Galena | Interstitial in pyrite | −8.5 |
Main zone orebody | ||||
SPL086 | Oolite (Ramp zone) | Pyrite | Dendritic | −12.2 |
SPL088 | Oolite (Ramp zone) | Pyrite | Coarse | −7.4 |
SPL037 | Oolite (Ramp zone) | Pyrite | Colloform | −26.3 |
SPL040 | Oolite (Ramp zone) | Sphalerite | Colloform | −12.0 |
SPL040 | Oolite (Ramp zone) | Sphalerite | Colloform | −6.9 |
SPL040 | Oolite (Ramp zone) | Sphalerite | Interstitial in dolomite | −7.3 |
SPL025 | Oolite (Ramp zone) | Sphalerite | Interstitial in pyrite | +1.5 |
SPL086 | Oolite (Ramp zone) | Sphalerite | Replacive | −4.5 |
SPL088 | Oolite (Ramp zone) | Galena | Replacive | −4.7 |
SPL092 | Oolite (Ramp zone) | Galena | Dendritic | −13.9 |
Sample ID | Location | Carbonate Phase | Mineral | δ13C (VPDB) | δ18O (VSMOW) |
---|---|---|---|---|---|
Navan Deposit | |||||
A1 | NW of Randalstown Fault | Remobilised sphalerite vein | Calcite | 0.1 | 16.9 |
A2a | NW of Randalstown Fault | Remobilised sphalerite vein | Calcite | 0.7 | 15.9 |
A2b | NW of Randalstown Fault | Remobilised sphalerite vein | Calcite | 0.7 | 15.9 |
A2c | NW of Randalstown Fault | Remobilised sphalerite vein | Calcite | 0.7 | 16.0 |
15a | NW of Randalstown Fault | Remobilised sphalerite vein | Calcite | 1.3 | 16.6 |
15b | NW of Randalstown Fault | Remobilised sphalerite vein | Calcite | 1.3 | 16.4 |
16a | NW of Randalstown Fault | Remobilised sphalerite vein | Calcite | 1.4 | 20.6 |
16b | NW of Randalstown Fault | Remobilised sphalerite vein | Calcite | 1.4 | 20.8 |
16c | NW of Randalstown Fault | Remobilised sphalerite vein | Calcite | 1.4 | 20.8 |
25 | SWEX | E2 epigenetic halo | Calcite | 1.8 | 22.8 |
Beaupark | Beaupark | Late carbonate fill to chalcopyrite bearing quartz vein | Calcite | 1.2 | 19.1 |
2378-1540 | Basement vein | Late carbonate fill to chalcopyrite bearing quartz vein | Calcite | −2.6 | 14.7 |
2378-1520A | Basement vein | Late carbonate fill to chalcopyrite bearing quartz vein | Calcite | −0.7 | 16.6 |
2378-1520B | Basement vein | Late carbonate fill to chalcopyrite bearing quartz vein | Calcite | 0.8 | 18.5 |
Lisheen deposit | |||||
SPL053D | Main zone | White matrix breccia | Dolomite | 3.1 | 20.5 |
SPL056A | Main zone | White matrix breccia | Dolomite | 2.6 | 21.4 |
SPL056B | Main zone | White matrix breccia | Dolomite | 3.1 | 22.7 |
SPL058 | Main zone | White matrix breccia | Dolomite | 3.0 | 22.8 |
SPL060 | Main zone | White matrix breccia | Dolomite | 3.3 | 19.6 |
SPL070 | Main zone | Early calcite overprinted by massive pyrite | Calcite | −1.9 | 22.1 |
SPL053A | Main zone | Late yellow calcite | Calcite | −6.5 | 18.7 |
SPL073 | Main zone | Late yellow calcite | Calcite | −2.0 | 21.2 |
SPL053Ca | Main zone | Post ore pink dolomite | Dolomite | 2.6 | 23.6 |
SPL053Cb | Main zone | Post ore pink dolomite | Dolomite | 2.8 | 23.9 |
AFI032a | Main zone | Post ore pink dolomite | Dolomite | 2.9 | 23.5 |
AFI032b | Main zone | Post ore pink dolomite | Dolomite | 2.9 | 23.6 |
SPL049 | Main zone | Post ore pink dolomite | Dolomite | 2.7 | 22.6 |
SPL053Ba | Main zone | Late white calcite vein | Calcite | 0.5 | 17.2 |
SPL053Bb | Main zone | Late white calcite vein | Calcite | 0.5 | 17.1 |
D1A1a | 7km SE Main zone | Regional dolomite—fine replacive grey | Dolomite | 3.7 | 22.7 |
D1A1b | 7km SE Main zone | Regional dolomite—fine replacive grey | Dolomite | 3.7 | 22.6 |
D1B1 | 7km SE Main zone | Regional dolomite—coarse white | Dolomite | 3.2 | 22.4 |
SPL053Ea | Main zone | Regional dolomite—fine replacive grey | Dolomite | 3.4 | 22.1 |
SPL053Eb | Main zone | Regional dolomite—fine replacive grey | Dolomite | 3.4 | 22.1 |
Sample ID | Orebody | Unit | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb |
---|---|---|---|---|---|
Navan | |||||
Pb37 | Tatestown | Pale Beds | 18.2211 | 15.5830 | 38.0863 |
Pb38 | Tatestown | Pale Beds | 18.2206 | 15.5831 | 38.0847 |
Pb39 | Tatestown | Pale Beds | 18.2250 | 15.5836 | 38.0896 |
Pb40 | Tatestown | Pale Beds | 18.2370 | 15.5820 | 38.0934 |
Pb71 | SWEX | Epigenetic halo | 18.2030 | 15.5737 | 38.0600 |
Pb44 | Tara Deep | Pale Beds | 18.2199 | 15.5792 | 38.0819 |
Pb29 | Tara Deep | Pale Beds | 18.2249 | 15.5797 | 38.0885 |
Pb56 | Tara Deep | Pale Beds | 18.2047 | 15.5813 | 38.0684 |
Pb57 | Tara Deep | Pale Beds | 18.2158 | 15.5802 | 38.0664 |
B1 | Navan Main Orebody | 2-1 Lens | 18.2274 | 15.5789 | 38.0899 |
B2 | Navan Main Orebody | 2-2 Lens | 18.2194 | 15.5784 | 38.0813 |
B3 | Navan Main Orebody | 2-5 Lens | 18.2174 | 15.5794 | 38.0832 |
Lisheen | |||||
LK0400/205 | Main zone | Waulsortian | 18.1946 | 15.5936 | 38.0631 |
LK1884/232 | Main zone | Waulsortian | 18.1929 | 15.5945 | 38.0600 |
LK0046/189 | Main zone | Waulsortian | 18.1496 | 15.5858 | 38.0021 |
LK0100/144 | Main zone | Waulsortian | 18.1983 | 15.5957 | 38.0726 |
LK1035/157 | Main zone | Waulsortian | 18.1662 | 15.5878 | 38.0233 |
LK974/179 | Main zone | Waulsortian | 18.1986 | 15.5965 | 38.0758 |
LK0822/176 | Main zone | Waulsortian | 18.1981 | 15.5956 | 38.0708 |
LK0937/179 | Main zone | Waulsortian | 18.1932 | 15.5882 | 38.0542 |
LK0152/203 | Main zone | Waulsortian | 18.1975 | 15.5961 | 38.0662 |
LK0458/217 | Main zone | Waulsortian | 18.2155 | 15.5993 | 38.1026 |
LK0227/234 | Main zone | Waulsortian | 18.1950 | 15.5908 | 38.0589 |
LK1915/199 | Main zone | Waulsortian | 18.1960 | 15.5951 | 38.0640 |
LK0717/193 | Derryville | Waulsortian | 18.1606 | 15.5883 | 38.0164 |
LK0839/160 | Derryville | Waulsortian | 18.2095 | 15.5973 | 38.0889 |
LK0952/192 | Derryville | Waulsortian | 18.2108 | 15.6004 | 38.0854 |
LK1010/187 | Derryville | Waulsortian | 18.1472 | 15.5864 | 37.9979 |
LK0173/132 | Derryville | Waulsortian | 18.2003 | 15.5952 | 38.0729 |
LK0141/201 | Derryville | Waulsortian | 18.1937 | 15.5893 | 38.0530 |
LK0640/184 | Derryville | Waulsortian | 18.1584 | 15.5870 | 38.0125 |
LK0896/116 | Derryville | Waulsortian | 18.2137 | 15.5986 | 38.0990 |
LK0735/155 | Derryville | Waulsortian | 18.1925 | 15.5924 | 38.0594 |
LK0568/183 | Bog Zone | Waulsortian | 18.2164 | 15.5994 | 38.1032 |
LK1784/116 | Bog Zone | Waulsortian | 18.2085 | 15.5989 | 38.0939 |
LK1816/109 | Bog Zone | Waulsortian | 18.2093 | 15.5990 | 38.0955 |
LK1612/151 | Bog Zone | Waulsortian | 18.2075 | 15.6005 | 38.0834 |
LK1628/189 | Bog Zone | Waulsortian | 18.2053 | 15.5998 | 38.0834 |
LK0736/131 | Bog Zone | Waulsortian | 18.2057 | 15.5984 | 38.0824 |
ALD037 | Island Pod | Waulsortian | 18.1904 | 15.5915 | 38.0549 |
ALD015 | Island Pod | Waulsortian | 18.1917 | 15.5942 | 38.0584 |
ALD081 | Island Pod | Waulsortian | 18.1928 | 15.5921 | 38.0571 |
ALD050 | Island Pod | Waulsortian | 18.1931 | 15.5924 | 38.0551 |
ALD116 | Island Pod | Waulsortian | 18.1934 | 15.5937 | 38.0619 |
ALD068 | Island Pod | Waulsortian | 18.1940 | 15.5933 | 38.0590 |
ALD013 | Island Pod | Waulsortian | 18.1945 | 15.5932 | 38.0581 |
ALD088 | Island Pod | Waulsortian | 18.1945 | 15.5939 | 38.0593 |
ALD045 | Island Pod | Waulsortian | 18.1951 | 15.5944 | 38.0619 |
References
- Wilkinson, J.J.; Hitzman, M.W. The Irish Zn–Pb Orefield: The View from 2014. In Current Perspectives on Zinc Deposits; Archibold, S.M., Piercey, S.J., Eds.; Irish Association for Economic Geology: Dublin, Ireland, 2015; pp. 59–72. [Google Scholar]
- Derry, D.R.; Clark, G.R.; Gillatt, N. The Northgate base-metal deposit at Tynagh, County Galway, Ireland. Econ. Geol. 1965, 60, 1218–1237. [Google Scholar] [CrossRef]
- Leeder, M.R. Upper Palaeozoic basins of the British Isles—Caledonide inheritance versus Hercynian plate margin processes. J. Geol. Soc. Lond. 1982, 139, 479–491. [Google Scholar] [CrossRef]
- Monteiro, L.V.S.; Bettencourt, J.S.; Juliani, C.; de Oliveira, T.F. Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambro ́sia and Fagundes sulfide-rich carbonate-hosted Zn–(Pb) deposits, Minas Gerais, Brazil. Ore Geol. Rev. 2006, 28, 201–234. [Google Scholar] [CrossRef]
- Rajabi, A.; Rastad, E.; Canet, C. Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: Geotectonic setting and data integration for future mineral exploration. Int. Geol. Rev. 2012, 54, 1649–1672. [Google Scholar] [CrossRef]
- Andrew, C.J. The tectono-stratigraphic controls to mineralization in the Silvermines area, County Tipperary, Ireland. In Geology and Genesis of Mineral Deposits in Ireland; Andrew, C.J., Crowe, R.W.A., Finlay, S., Pennell, W.M., Pyne, J.F., Eds.; Irish Association for Economic Geology: Dublin, Ireland, 1986; pp. 377–417. [Google Scholar]
- Ashton, J.H.; Downing, D.T.; Finlay, S. The geology of the Navan Zn–Pb orebody. In Geology and genesis of mineral deposits in Ireland; Andrew, C.J., Crowe, R.W.A., Finlay, S., Pennell, W.M., Pyne, J.F., Eds.; Irish Association for Economic Geology: Dublin, Ireland, 1986; pp. 243–280. [Google Scholar]
- Boyce, A.J.; Stephen Little, C.; Russell, M. A New Fossil Vent Biota in the Ballynoe Barite Deposit, Silvermines, Ireland: Evidence for Intracratonic Sea-Floor Hydrothermal Activity About 352 Ma. Econ. Geol. 2003, 98, 649–656. [Google Scholar] [CrossRef]
- Anderson, I.K.; Ashton, J.H.; Boyce, A.J.; Fallick, A.E.; Russell, M.J. Ore depositional processes in the Navan Zn–Pb deposit, Ireland. Econ. Geol. 1998, 93, 535–563. [Google Scholar] [CrossRef]
- Hitzman, M.W.; Redmond, P.B.; Beaty, D.W. The carbonate-hosted Lisheen Zn–Pb-Ag deposits, County Tipperary, Ireland. Econ. Geol. 2002, 97, 1627–1655. [Google Scholar] [CrossRef]
- Ashton, J.H.; Blakeman, R.J.; Geraghty, J.F.; Beach, A.; Coller, D.; Philcox, M.E. The Giant Navan carbonate-hosted Zn–Pb deposit—A review. In Current Perspectives on Zinc Deposits; Archibald, S.M., Piercey, S.J., Eds.; Irish Association for Economic Geology: Dublin, Ireland, 2015; pp. 85–122. [Google Scholar]
- Wilkinson, J.J.; Eyre, S.L.; Boyce, A.J. Ore-forming processes in Irish-type carbonate-hosted Zn–Pb deposits: Evidence from mineralogy, chemistry, and isotopic composition of sulfides at the Lisheen mine. Econ. Geol. 2005, 100, 63–86. [Google Scholar] [CrossRef]
- Ashton, J.H.; Beach, I.A.; Blakeman, R.J.; Coller, D.; Henry, P.; Lee, R.; Hitzman, M.; Hope, C.; Huleatt-James, S.; O’Donovan, B.; et al. Discovery of the Tara Deep Zn–Pb Mineralization at the Boliden Tara Mine, Navan; Success with Modem Seismic Surveys; SEG Special Publications; Society of Economic Geologists: Littleton, CO, USA, 2018; pp. 365–381. [Google Scholar]
- Ashton, J.H. Boliden Summary Report Resources and Reserves, Tara Mines; Boliden: Stockholm, Sweden, 2018. [Google Scholar]
- Ashton, J.H.; Black, A.; Geraghty, J.; Holdstock, M.; Hyland, E. The geological setting and metal distribution pattems of Zn + Pb + Fe mineralization in the Navan Boulder Conglomerate. In The Irish Minerals Industry 1980–1990; Bowden, A.A., Earls, G., O’Connor, P.G., Pyne, J.F., Eds.; Irish Association for Economic Geology: Dublin, Ireland, 1992; pp. 171–210. [Google Scholar]
- Ashton, J.H.; Geraghty, J.F.; Holdstock, M.P.; O’Keeffe, W.G.; Martinez, N.; Peace, W.; Philcox, M.E. The Navan orebody-discovery and geology of the South West extension. In Europe ‘s Major Base Metal Deposits; Fusciardi, L., Earls, G., Stanley, G., Kelly, J.G., Ashton, J.H., Boland, M.B., Andrew, C.J., Eds.; Irish Association for Economic Geology: Dublin, Ireland, 2003; pp. 405–430. [Google Scholar]
- Fallick, A.E.; Ashton, J.H.; Boyce, A.J.; Ellam, R.M.; Russell, M.J. Bacteria were responsible for the magnitude of the world-class hydrothermal base-metal orebody at Navan, Ireland. Econ. Geol. 2001, 96, 885–890. [Google Scholar] [CrossRef]
- Blakeman, R.J.; Ashton, J.H.; Boyce, A.J.; Fallick, A.E.; Russell, M.J. Tirning of interplay between hydrothermal and surface fluids in the Navan Zn+Pb orebody, lreland: Evidence from metal distribution trends, mineral textures and d34S analyses. Econ. Geol. 2002, 97, 73–91. [Google Scholar] [CrossRef]
- Gagnevin, D.; Boyce, A.J.; Barrie, C.D.; Menuge, J.F.; Blakeman, R.J. Zn, Fe and S isotope fractionation in a large hydrothermal system. Geochim. et Cosmochim. Acta 2012, 88, 183–198. [Google Scholar] [CrossRef]
- Fusciardi, L.P.; Guven, J.F.; Stewart, D.R.A.; Carboni, V.; Walsh, J.J. The geology and genesis of the Lisheen Zn–Pb deposit, Co. Tipperary, Ireland. In Europe’s Major Base Metal Deposits; Kelly, J.G., Andrew, C.J., Ashton, J.H., Boland, M.B., Earls, G., Fusciardi, L., Stanley, G., Eds.; Irish Association for Economic Geology: Dublin, Ireland, 2003; pp. 455–481. [Google Scholar]
- Hitzman, M.W.; O’Connor, P.; Shearley, E.; Schaffalitzky, C.; Beaty, D.W.; Allan, J.R.; Thompson, T. Discovery and geology of the Lisheen Zn–Pb-Ag prospect, Rathdowney Trend, Ireland. In The Irish Minerals Industry 1980–1990; Bowden, A., Earls, G., O’Connor, P., Pyne, J., Eds.; Irish Association for Economic Geology: Dublin, Ireland, 1992; pp. 227–246. [Google Scholar]
- Earls, G. The Lisheen Zn–Pb deposit. Min. Mag. 1994, 6, 6–8. [Google Scholar]
- Shearley, E.; Redmond, P.; Goodman, R.; King, M. Guide to the Lisheen Zn–Pb-deposit. In Irish Carbonate-hosted Zn–Pb Deposits; Anderson, K., Ashton, J., Earls, G., Hitzman, M., Tear, S., Eds.; Society of Economic Geologists Guidebook Series; Society of Economic Geologists: Littleton, CO, USA, 1995; Volume 21, pp. 123–138. [Google Scholar]
- Wilkinson, J.J.; Everett, C.E.; Boyce, A.J.; Gleeson, S.A.; Rye, D.M. Intracratonic crustal seawater circulation and the genesis of subseafloor Zn–Pb mineralization in the Irish ore field. Geology 2005, 33, 805–808. [Google Scholar] [CrossRef]
- Torremans, K.; Kyne, R.; Doyle, R.; Guven, J.F.; Walsh, J.J. Controls on Metal Distributions at the Lisheen and Silvermines Deposits: Insights into Fluid Flow Pathways in Irish-Type Zn–Pb Deposits. Econ. Geol. 2018, 113, 1455–1477. [Google Scholar] [CrossRef]
- Philcox, M.E. Lower Carboniferous Lithostratigraphy of the Irish Midlands; Irish Association for Economic Geology: Dublin, Ireland, 1984; 89p. [Google Scholar]
- Philips, W.E.A.; Sevastopulo, G.D. Stratigraphic and structural setting of Irish mineral deposits. In Geology and Genesis of Mineral Deposits in Ireland; Andrew, C.J., Crowe, R.W.A., Finlay, S., Pennell, W.M., Pyne, J.F., Eds.; Irish Association for Economic Geology: Dublin, Ireland, 1986; pp. 1–30. [Google Scholar]
- Gagnevin, D.; Menuge, J.F.; Kronz, A.; Barrie, C.; Boyce, A.J. Minor Elements in Layered Sphalerite as a Record of Fluid Origin, Mixing, and Crystallization in the Navan Zn–Pb Ore Deposit, Ireland. Econ. Geol. 2014, 109, 1513–1528. [Google Scholar] [CrossRef]
- Fritschle, T.; Daly, J.S.; McConnell, B.; Whitehouse, M.J.; Menuge, J.F.; Buhre, S.; Mertz-Kraus, R.; Döpke, D. Peri-Gondwanan Ordovician arc magmatism in southeastern Ireland and the Isle of Man: Constraints on the timing of Caledonian deformation in Ganderia. Geol. Soc. Am. Bull. 2018, 130, 1918–1939. [Google Scholar] [CrossRef]
- Van den Berg, R.; Daly, J.S.; Salisbury, M.H. Seismic velocities of granulite-facies xenoliths from Central Ireland: Implications for lower crustal composition and anisotropy. Tectonophysics 2005, 407, 81–99. [Google Scholar] [CrossRef]
- Pannalal, S.J.; Symons, D.T.A.; Sangster, D.F. Paleomagnetic evidence for an early Permian age of the Lisheen Zn–Pb deposit, Ireland. Econ. Geol. Bull. Soc. Econ. Geol. 2008, 103, 1641–1655. [Google Scholar] [CrossRef]
- Pannalal, S.J.; Symons, D.T.A.; Sangster, D.F. Paleomagnetic evidence of a Variscan age for the epigenetic Galmoy zinc-lead deposit, Ireland. Terra Nova 2008, 20, 385–393. [Google Scholar] [CrossRef]
- Symons, D.T.A.; Smethurst, M.T.; Ashton, J.H. Paleomagnetism of the Navan Zn–Pb deposit, Ireland. Econ. Geol. Bull. Soc. Econ. Geol. 2002, 97, 997–1012. [Google Scholar] [CrossRef]
- Symons, D.T.A.; Pannalal, S.J.; Kawasaki, K.; Sangster, D.F.; Stanley, G.A. Paleomagnetic age of the Magcobar Ba deposit, Silvermines, Ireland. In Mineral Exploration and Research: Digging Deeper; Andrew, C.J., Ed.; Irish Association for Economic Geology: Dublin, Ireland, 2007; pp. 377–380. [Google Scholar]
- Hnatyshin, D.; Creaser, R.A.; Wilkinson, J.J.; Gleeson, S.A. Re-Os dating of pyrite confirms an early diagenetic onset and extended duration of mineralization in the Irish Zn–Pb ore field. Geology 2015, 43, 143–146. [Google Scholar] [CrossRef]
- Kelley, S.P.; Fallick, A.E. High-precision, spatially resolved analysis of δ34S in sulfides using a laser extraction technique. Geochim. et Cosmochim. Acta 1990, 54, 883–888. [Google Scholar] [CrossRef]
- Hollis, S.P.; Menuge, J.F.; Doran, A.; Güven, J.; Dennis, A.; Wilkinson, J.J.; Boyce, A.J.; Marks, F. Clumped C-O isotope temperature constraints for carbonate precipitation associated with Irish-type Zn–Pb orebodies. J. Trans. Inst. Min. Metall. Sect. B 2017, 126, 64–65. [Google Scholar] [CrossRef]
- Hollis, S.P.; Menuge, J.F.; Dennis, P.; Doran, A.L.; Marca, A.; Davidheiser-Kroll, B.; Wilkinson, J.J.; Turner, O.; Guven, J.; Boyce, A. Tracking fluid temperature and composition in the world class Irish Zn–Pb ore field using clumped isotopes. in prep.
- Dennis, P.F.; Myhill, D.J.; Marca, A.; Kirk, R. Clumped isotope evidence for episodic, rapid flow of fluids in a mineralized fault system in the Peak District, UK. Journal of the Geological Society London 2018. [CrossRef]
- Yuan, H.; Yuan, W.; Cheng, C.; Liang, P.; Liu, X.; Dai, M.; Bao, Z.; Zong, C.; Chen, K.; Lai, S. Evaluation of lead isotope compositions of NIST NBS 981 measured by thermal ionization mass spectrometer and multiple-collector inductively coupled plasma mass spectrometer. Solid Earth Sci. 2016, 1, 74–78. [Google Scholar][Green Version]
- Wilkinson, J.J.; Lee, M.J. Cementation, hydrothermal alteration, and Zn–Pb mineralization of carbonate breccias in the Irish Midlands: Textural evidence from the Cooleen Zone, near Silvermines, County Tipperary—A reply. Econ. Geol. 2003, 98, 194–198. [Google Scholar] [CrossRef]
- Hitzman, M.W.; Allan, J.R.; Beaty, D.W. Regional dolomitization of the Waulsortian limestone in southeastern Ireland: Evidence of large-scale fluid flow driven by the Hercynian orogeny. Geology 1998, 26, 547–550. [Google Scholar] [CrossRef]
- Wilkinson, J.J.; Earls, G. A high temperature hydrothermal origin for black dolomite matrix Breccias in the Irish Zn–Pb Orefield. Miner. Mag. 2000, 64, 1077–1096. [Google Scholar] [CrossRef]
- Kyne, R.; Torremans, K.; Güven, J.; Doyle, R.; Walsh, J. 3-D modeling of the lisheen and silvermines deposits, County Tipperary, Ireland: insights into structural controls on the formation of Irish Zn-Pb deposits. Econ. Geol. 2019, 114, 93–116. [Google Scholar] [CrossRef]
- Wilkinson, J.J.; Crowther, H.L.; Coles, B.J. Chemical mass transfer during hydrothermal alteration of carbonates: Controls of seafloor subsidence, sedimentation and Zn–Pb mineralization in the Irish Carboniferous. Chem. Geol. 2011, 289, 55–75. [Google Scholar] [CrossRef]
- Doran, A.L.; Hollis, S.P.; Menuge, J.F.; Piercey, S.J.; Boyce, A.J.; Guven, J.; Turner, O. Mineralizing Processes in the High-Grade Island Pod Zn–Pb Orebody, Lisheen, Ireland: A petrographic and S-Pb isotopic. in prep.
- Ford, C.V. The Integration of Petrologic and Isotopic Data from the Boulder Conglomerate to Determine the Age of the Navan Orebody, Ireland. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 1996; 176p. [Google Scholar]
- Braithwaite, C.J.R.; Rizzi, G. The geometry and petrogenesis of hydrothermal dolomites at Navan, Ireland. Sedimentology 1997, 44, 421–440. [Google Scholar] [CrossRef]
- Pearce, W.M. Carbonate-Hosted Zn–Pb Mineralisation within the Upper Pale Beds at Navan, Ireland. Ph.D. Thesis, University of Melbourne, Melbourne, Australia, 1999; 284p. [Google Scholar]
- Eyre, S.L. Geochemistry of Dolomitization and Zn–Pb Mineralization in the Rathdowney Trend, Ireland. Ph.D Thesis, University of London, London, UK, 1998; 414p. [Google Scholar]
- Boast, A.M.; Swainbank, I.G.; Coleman, M.L.; Halls, C. Lead isotope variation in the Tynagh, Silvermines and Navan base-metal deposits, Ireland. Trans. Inst. Min. Metall. 1981, 90, 115–119. [Google Scholar]
- Mills, H.; Halliday, A.N.; Ashton, J.H.; Anderson, I.K.; Russell, M.J. Origin of a giant orebody at Navan, Ireland. Nature 1987, 327, 223–226. [Google Scholar] [CrossRef]
- Marks, F.R. Remote Detection of Irish-Type Orebodies: An Investigation of the Navan Halo. Ph.D. Thesis, University College Dublin, Dublin, Ireland, 2015; 210p. [Google Scholar]
- Everett, C.E.; Rye, D.M.; Ellam, R.M. Source or sink? An assessment of the role of the Old Red Sandstone in the genesis of the Irish Zn–Pb deposits. Econ. Geol. 2003, 98, 31–50. [Google Scholar]
- O’Keeffe, W.G. Age and postulated source rocks for mineralisation in central Ireland, as indicated by lead isotopes. In Geology and Genesis of Mineral Deposits in Ireland; Andrew, C.J., Crowe, R.W.A., Finlay, S., Pennell, W.M., Pyne, J.F., Eds.; Irish Association for Economic Geology: Dublin, Ireland, 1986; pp. 617–624. [Google Scholar]
- Walshaw, R.D.; Menuge, J.F.; Tyrrell, S. Metal sources of the Navan carbonate-hosted base metal deposit, Ireland: Nd and Sr isotope evidence for deep hydrothermal convection. Miner. Depos. 2006, 41, 803–819. [Google Scholar] [CrossRef]
- Bischoff, J.L.; Radtke, A.S.; Rosenbauer, R.J. Hydrothermal alteration of graywacke by brine and seawater: Roles of alteration and chloride complexing on metal solubilization at 200 °C and 350 °C. Econ. Geol. 1981, 76, 659–676. [Google Scholar] [CrossRef]
- Wilkinson, J.J. A review of fluid inclusion constraints on mineralization in the Irish ore field and implications for the genesis of sediment-hosted Zn–Pb deposits. Econ. Geol. 2010, 105, 417–442. [Google Scholar] [CrossRef]
- Russell, M.J. Extension and convection: A genetic model for the Irish Carboniferous base metal and barite deposits. In Geology and Genesis of Mineral Deposits in Ireland; Andrew, C.J., Crowe, R.W.A., Finlay, S., Pennell, W.M., Pyne, J.F., Eds.; Irish Association for Economic Geology: Dublin, Ireland, 1986; pp. 545–554. [Google Scholar]
- Goodfellow, W.D.; Lydon, J.W. Sedimentary exhalative (SEDEX) deposits. In Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Special Publication No. 5; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; pp. 163–183. [Google Scholar]
- Banks, D.A.; Boyce, A.J.; Samson, I.M. Constraints on the origins of fluids forming Irish Zn–Pb–Ba deposits: Evidence from the composition of fluid inclusions. Econ. Geol. 2002, 97, 471–480. [Google Scholar] [CrossRef]
- Machel, H.G.; Krouse, H.R.; Sassen, R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl. Geochem. 1995, 10, 373–389. [Google Scholar] [CrossRef]
- Altinok, E. Zn–Pb-Fe Mineralization Process, Evolution of Sea Water Oxidation State in a Restricted Basin, and Diagenesis of Deep Water Calcareous Sediments: Geochemical and Geological Study of the Navan Deposit, Dublin Basin, Ireland. Ph.D. Thesis, Colorado School of Mines, Golden, CO, USA, 2005; 160p. [Google Scholar]
- Large, R.R.; Halpin, J.A.; Danyushevsky, L.V.; Maslennikov, V.V.; Bull, S.W.; Long, J.A.; Gregory, D.D.; Lounejeva, E.; Lyons, T.W.; Sack, P.J. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth Planet. Sci. Lett. 2014, 389, 209–220. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yesares, L.; Drummond, D.A.; Hollis, S.P.; Doran, A.L.; Menuge, J.F.; Boyce, A.J.; Blakeman, R.J.; Ashton, J.H. Coupling Mineralogy, Textures, Stable and Radiogenic Isotopes in Identifying Ore-Forming Processes in Irish-Type Carbonate-Hosted Zn–Pb Deposits. Minerals 2019, 9, 335. https://doi.org/10.3390/min9060335
Yesares L, Drummond DA, Hollis SP, Doran AL, Menuge JF, Boyce AJ, Blakeman RJ, Ashton JH. Coupling Mineralogy, Textures, Stable and Radiogenic Isotopes in Identifying Ore-Forming Processes in Irish-Type Carbonate-Hosted Zn–Pb Deposits. Minerals. 2019; 9(6):335. https://doi.org/10.3390/min9060335
Chicago/Turabian StyleYesares, Lola, Drew A. Drummond, Steven P. Hollis, Aileen L. Doran, Julian F. Menuge, Adrian J. Boyce, Robert J. Blakeman, and John H. Ashton. 2019. "Coupling Mineralogy, Textures, Stable and Radiogenic Isotopes in Identifying Ore-Forming Processes in Irish-Type Carbonate-Hosted Zn–Pb Deposits" Minerals 9, no. 6: 335. https://doi.org/10.3390/min9060335