Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = thermal scattering law

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2847 KiB  
Article
The Influence of h-BN Distribution Behavior on the Electrothermal Properties of Bismaleimide Resin
by Weizhuo Li, Xuan Wang, Mingzhe Qu, Xiaoming Wang and Jiahao Shi
Polymers 2025, 17(14), 1929; https://doi.org/10.3390/polym17141929 - 14 Jul 2025
Viewed by 349
Abstract
Thermal conductive composite materials have excellent electrical insulation properties, low cost, and are lightweight, making them a promising alternative to traditional electronic packaging materials and enhancing the heat dissipation of integrated circuits. Due to the differences in specific surface area and volume, thermal [...] Read more.
Thermal conductive composite materials have excellent electrical insulation properties, low cost, and are lightweight, making them a promising alternative to traditional electronic packaging materials and enhancing the heat dissipation of integrated circuits. Due to the differences in specific surface area and volume, thermal conductive fillers have poor interface connections between the polymer and/or thermal conductive filler, thereby increasing phonon scattering and affecting thermal conductivity. This article uses bismaleimide resin as the matrix and h-BN as the thermal conductive filler. The evolution laws of thermal conductivity and dielectric properties of thermal conductive composite materials were systematically characterized through multi-scale filler control and gradient filling design. Among them, h-BN with a diameter of 10 μm has the most significant improvement in thermal conductivity. When the filling amount is 40 wt%, the thermal conductivity reaches 1.31 W/(m·K). Full article
(This article belongs to the Special Issue Electrical Properties of Polymer Composites)
Show Figures

Figure 1

31 pages, 8652 KiB  
Article
Study on Road Performance and Ice-Breaking Effect of Rubber Polyurethane Gel Mixture
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Jingyu Yang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Deqing Tang and Jiajie Feng
Gels 2025, 11(7), 505; https://doi.org/10.3390/gels11070505 - 29 Jun 2025
Viewed by 371
Abstract
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of [...] Read more.
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of roads and ensure the safety of winter pavements. A pavement material with high efficiency, low carbon and environmental friendliness for active snow melting and ice breaking is developed. Firstly, NaOH, NaClO and KH550 were used to optimize the treatment of rubber particles. The hydrophilic properties, surface morphology and phase composition of rubber particles before and after optimization were studied, and the optimal treatment method of rubber particles was determined. Then, the optimized rubber particles were used to replace the natural aggregate in the polyurethane gel mixture by the volume substitution method, and the optimum polyurethane gel dosages and molding and curing processes were determined. Finally, the influence law of the road performance of RPGM was compared and analyzed by means of an indoor test, and the ice-breaking effect of RPGM was explored. The results showed that the contact angles of rubber particles treated with three solutions were reduced by 22.5%, 30.2% and 36.7%, respectively. The surface energy was improved, the element types on the surface of rubber particles were reduced and the surface impurities were effectively removed. Among them, the improvement effect of the KH550 solution was the most significant. With the increase in rubber particle content from 0% to 15%, the dynamic stability of the mixture gradually increases, with a maximum increase of 23.5%. The maximum bending strain increases with the increase in its content. The residual stability increases first and then decreases with the increase in rubber particle content, and the increase ranges are 1.4%, 3.3% and 0.5%, respectively. The anti-scattering performance increases with the increase in rubber content, and an excessive amount will lead to an increase in the scattering loss rate, but it can still be maintained below 5%. The fatigue life of polyurethane gel mixtures with 0%, 5%, 10% and 15% rubber particles is 2.9 times, 3.8 times, 4.3 times and 4.0 times higher than that of the AC-13 asphalt mixture, respectively, showing excellent anti-fatigue performance. The friction coefficient of the mixture increases with an increase in the rubber particle content, which can be increased by 22.3% compared with the ordinary asphalt mixture. RPGM shows better de-icing performance than traditional asphalt mixtures, and with an increase in rubber particle content, the ice-breaking ability is effectively improved. When the thickness of the ice layer exceeds 9 mm, the ice-breaking ability of the mixture is significantly weakened. Mainly through the synergistic effect of stress coupling, thermal effect and interface failure, the bonding performance of the ice–pavement interface is weakened under the action of driving load cycle, and the ice layer is loosened, broken and peeled off, achieving efficient de-icing. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

18 pages, 878 KiB  
Article
The Knudsen Layer in Modeling the Heat Transfer at Nanoscale: Bulk and Wall Contributions to the Local Heat Flux
by Carmelo Filippo Munafò, Martina Nunziata and Antonio Sellitto
Entropy 2025, 27(5), 469; https://doi.org/10.3390/e27050469 - 26 Apr 2025
Viewed by 411
Abstract
Starting from the observation that the influence of the heat carriers’ boundary scattering on the heat flux is mainly felt in the zone near the system’s boundary, the characteristic dimension of which is of the order of the mean-free path of the heat [...] Read more.
Starting from the observation that the influence of the heat carriers’ boundary scattering on the heat flux is mainly felt in the zone near the system’s boundary, the characteristic dimension of which is of the order of the mean-free path of the heat carriers, in this paper, we introduce the concept of the Knudsen layer in the heat transport at nanoscale and regard the local heat flux as the final resultant of two different contributions: the bulk heat flux and the wall heat flux. In the framework of phonon hydrodynamics, we therefore, here, derive a theoretical model in agreement with the second law of thermodynamics that accounts for those two contributions. In steady states, we then predict both how the local heat flux behaves and how the thermal conductivity depends on the characteristic dimension of the system. This analysis is performed both in the case of a nanolayer and in the case of a nanowire. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

17 pages, 9864 KiB  
Article
Evaluation of δ-Phase ZrH1.4 to ZrH1.7 Thermal Neutron Scattering Laws Using Ab Initio Molecular Dynamics Simulations
by Vedant K. Mehta, Daniel A. Rehn and Pär A. T. Olsson
J. Nucl. Eng. 2024, 5(3), 330-346; https://doi.org/10.3390/jne5030022 - 13 Sep 2024
Viewed by 1515
Abstract
Zirconium hydride is commonly used for next-generation reactor designs due to its excellent hydrogen retention capacity at temperatures below 1000 K. These types of reactors operate at thermal neutron energies and require accurate representation of thermal scattering laws (TSLs) to optimize moderator performance [...] Read more.
Zirconium hydride is commonly used for next-generation reactor designs due to its excellent hydrogen retention capacity at temperatures below 1000 K. These types of reactors operate at thermal neutron energies and require accurate representation of thermal scattering laws (TSLs) to optimize moderator performance and evaluate the safety indicators for reactor design. In this work, we present an atomic-scale representation of sub-stoichiometric ZrH2−x(0.3x0.6), which relies on ab initio molecular dynamics (AIMD) in tandem with velocity auto-correlation (VAC) analysis to generate phonon density of states (DOS) for TSL development. The novel NJOY+NCrystal tool, developed by the European Spallation Source community, was utilized to generate the TSL formulations in the A Compact ENDF (ACE) format for its utility in neutron transport software. First, stoichiometric zirconium hydride cross sections were benchmarked with experiments. Then sub-stoichiometric zirconium hydride TSLs were developed. Significant deviations were observed between the new δ-phase ZrH2−x TSLs and the TSLs in the current ENDF release. It was also observed that varying the hydrogen vacancy defect concentration and sites did not cause as significant a change in the TSLs (e.g., ZrH1.4 vs. ZrH1.7) as was caused by the lattice transformation from ϵ- to δ-phase. Full article
Show Figures

Figure 1

19 pages, 11455 KiB  
Article
The Influence of Grain Size Gradation on Deformation and the Void Structure Evolution Mechanism of Broken Rock Mass in the Goaf
by Fanfei Meng, Wang Liu, Hai Pu, Ming Li and Yanlong Chen
Appl. Sci. 2024, 14(15), 6764; https://doi.org/10.3390/app14156764 - 2 Aug 2024
Cited by 2 | Viewed by 1090
Abstract
The high porosity and high specific surface area of the broken rock mass in abandoned mine goaf make it an excellent thermal storage space. The void structure is an important factor that affects the permeability characteristics of broken rock mass, which determines the [...] Read more.
The high porosity and high specific surface area of the broken rock mass in abandoned mine goaf make it an excellent thermal storage space. The void structure is an important factor that affects the permeability characteristics of broken rock mass, which determines the efficiency of extracting geothermal water from abandoned mine shafts. To accurately describe the void structure of broken rock mass, the effect of particle erosion on the fracture of rock blocks is considered in this study, based on which an impact-induced strength corrosion calculation model was proposed. Then, this calculation model was embedded into the three-dimensional numerical simulation of broken rock mass for secondary development. A discrete element numerical calculation model was established for broken rock masses with different size grading distributions under water immersion and lateral compression conditions. On this basis, considering the strength erosion effect of impacts, this study investigated the deformation and fracture characteristics of broken rock masses with different size grading distributions and analyzed the evolution laws of porosity in the broken rock masses. The main findings are as follows: The impact effect has a significant influence on the growth of microcracks and the breakage rate of broken rock mass. When the particle size of the broken rock mass differs significantly (size grading as G3), impact-induced strength erosion exerts the greatest impact on the growth of microcracks and the breakage rate. When the particle size of the broken rock mass is uniform (size grading as G1), impact-induced strength erosion minimally impacts the secondary fracturing of the broken rock mass. When the strain of the broken rock sample is less than 0.175, the distribution of microcracks is scattered; when the strain reaches 0.275, microcrack propagation accelerates and exhibits a clustered distribution; and when the strain reaches 0.375, microcracks exhibit a reticular distribution and their connectivity is enhanced. With the increase in deformation, the broken rock mass porosity decreases, and the porosity curve fluctuates along the z-axis with a decreasing trend and gradually becomes more uniform. This study provides a theoretical foundation for assessing the efficiency of extracting and storing mine water with heat in abandoned mine geothermal mining projects. Full article
(This article belongs to the Special Issue New Insights into Digital Rock Physics)
Show Figures

Figure 1

17 pages, 4157 KiB  
Article
The Plutonium Temperature Effect Program
by Nicolas Leclaire and Vaibhav Jaiswal
J. Nucl. Eng. 2023, 4(3), 535-551; https://doi.org/10.3390/jne4030035 - 2 Aug 2023
Cited by 1 | Viewed by 1782
Abstract
Various theoretical studies have shown that highly diluted plutonium solutions could have a positive temperature effect, but up to now, no experimental program has confirmed this effect. The French Plutonium Temperature Effect Experimental Program (or PU+ in short) aims to effectively show that [...] Read more.
Various theoretical studies have shown that highly diluted plutonium solutions could have a positive temperature effect, but up to now, no experimental program has confirmed this effect. The French Plutonium Temperature Effect Experimental Program (or PU+ in short) aims to effectively show that such a positive temperature effect exists for diluted plutonium solutions. The PU+ experiments were conducted in the “Apparatus B” facility at the CEA VALDUC research center in France. It involved several sub-critical approach-type experiments using plutonium nitrate solutions with concentrations of 14.3, 15, and 20 g/L at temperatures ranging from 20 to 40 °C. Fourteen (five at 20 g/L, four at 15 g/L, and five at 14.3 g/L) phase I experiments (consisting of independent sub-critical approaches) were performed between 2006 and 2007. The impact of the uncertainties on solution acidity and plutonium concentration made it difficult to demonstrate the positive temperature effect, requiring an additional phase II experiment (with a unique plutonium solution) from 22 to 28 °C that was performed in July 2007. This phase II experiment has shown the existence of a positive temperature effect of ~+5.17 pcm/°C (from 22 to 28 °C for a plutonium concentration of 14.3 g/L). It has recently been possible to confirm the results of this program with MORET 5 calculations by generating thermal scattering data S(α,β) at the correct experimental temperatures. This paper finally presents a fully documented experimental program highlighting the Plutonium Temperature Effect theoretically described in the literature. Its high level of precision and its “one-step” approach to criticality allowed it to show a significant positive temperature effect for a rather small variation of temperature (+6 °C). The order of magnitude of the effect was confirmed with Monte Carlo calculations using thermal scattering data for hydrogen in the solution produced by IRSN for the purpose of the comparison. Full article
Show Figures

Figure 1

29 pages, 9276 KiB  
Article
Supporting Imaging of Austenitic Welds with Finite Element Welding Simulation—Which Parameters Matter?
by Michał K. Kalkowski, Zoltán Bézi, Michael J. S. Lowe, Andreas Schumm, Bernadett Spisák and Szabolcs Szavai
Appl. Sci. 2023, 13(13), 7448; https://doi.org/10.3390/app13137448 - 23 Jun 2023
Cited by 1 | Viewed by 1610
Abstract
The basic principle of ultrasound is to relate the time of flight of a received echo to the location of a reflector, assuming a known and constant velocity of sound. This assumption breaks down in austenitic welds, in which a microstructure with large [...] Read more.
The basic principle of ultrasound is to relate the time of flight of a received echo to the location of a reflector, assuming a known and constant velocity of sound. This assumption breaks down in austenitic welds, in which a microstructure with large oriented austenitic grains induces local velocity differences resulting in deviations of the ultrasonic beam. The inspection problem is further complicated by scattering at grain boundaries, which introduces structural noise and attenuation. Embedding material information into imaging algorithms usually improves image quality and aids interpretation. Imaging algorithms can take the weld structure into account if it is known. The usual way to obtain such information is by metallurgical analysis of slices of a representative mock-up fabricated using the same materials and welding procedures as in the actual component. A non-destructive alternative to predict the weld structure is based on the record of the welding procedure, using either phenomenological models or the finite element method. The latter requires detailed modelling of the welding process to capture the weld pool and the microstructure formation. Several parameters are at play, and uncertainties intrinsically affect the process owing to the limited information available. This paper reports a case study aiming to determine the most critical parameters and levels of complexity of the weld formation models from the perspective of ultrasonic imaging. By combining state-of-the-art welding simulation with time-domain finite element prediction of ultrasound in complex welds, we assess the impact of the modelling choices on the offset and spatial spreading of defect signatures. The novelty of this work is in linking welding simulation with ultrasonic imaging and quantifying the effect of the common assumptions in solidification modelling from the non-destructive examination perspective. Both aspects have not been explored in the literature to date since solidification modelling has not been used to support ultrasonic inspection extensively. The results suggest that capturing electrode tilt, welding power, and weld path correctly is less significant. Bead shape was identified as having the greatest influence on delay laws used to compute ultrasonic images. Most importantly, we show that neglecting mechanical deformation in FE, allowing for simpler thermal simulation supplemented with a phenomenological grain growth loop, does not reduce the quality of the images considerably. Our results offer a pragmatic balance between the complexity of the model and the quality of ultrasonic images and suggest a perspective on how weld formation modelling may serve inspections and guide pragmatic implementation. Full article
Show Figures

Figure 1

16 pages, 5397 KiB  
Article
The Effect of Solution Treatment on the Si Particles’ Morphology Evolution and the Thermal Conductivity and Tensile Properties of Sb-Modified Al-8Si-0.6Mg Alloys
by Xiaopeng Liang, Yihao Wang, Li Wang, Xinming Guo, Liangjie Zhang and Huizhong Li
Metals 2022, 12(3), 377; https://doi.org/10.3390/met12030377 - 22 Feb 2022
Cited by 4 | Viewed by 2098
Abstract
The effects of solution treatment time on the morphology evolution of Si particles and the thermal conductivity and tensile properties of Sb-modified alloys were studied. The results show that the evolution of Si particles follows four mechanisms: spheroidization, necking and splitting of particles [...] Read more.
The effects of solution treatment time on the morphology evolution of Si particles and the thermal conductivity and tensile properties of Sb-modified alloys were studied. The results show that the evolution of Si particles follows four mechanisms: spheroidization, necking and splitting of particles with large aspect ratios, fusion of spherical particles, and coarsening controlled by diffusion. The first three mechanisms mainly occur at the early stage of solution treatment. The addition of Sb does not change the evolution law of the Si particles, but it does change the contribution of various evolution mechanisms, including promoting spheroidization, fusion, and coalescence, as well as significantly reducing the coarsening rate, which makes the thermal modification of Sb-modified alloys more effective. The increase in thermal conductivity during solution treatment is related to the decrease of the anharmonicity of lattice vibration, lattice wave scattering, and electron scattering of Si particles. The 0.4 wt. % Sb-modified alloy exhibits excellent tensile strength and elongation under as-cast T4- and T6-heat-treated conditions, because the modification significantly reduces the stress concentration of the Si particles and delays the germination and propagation of microcracks. Full article
(This article belongs to the Special Issue Advances in Semi-solid Forming)
Show Figures

Figure 1

8 pages, 1618 KiB  
Article
Structure-Dependent Doppler Broadening Using a Generalized Thermal Scattering Law
by Nina C. Fleming and Ayman I. Hawari
J. Nucl. Eng. 2021, 2(2), 124-131; https://doi.org/10.3390/jne2020013 - 8 Apr 2021
Cited by 4 | Viewed by 3310
Abstract
The thermal scattering law (TSL), i.e., S(α,β), represents the momentum and energy exchange phase space for a material. The incoherent and coherent components of the TSL correlate an atom’s trajectory with itself and/or with other atoms in the lattice structure. This structural [...] Read more.
The thermal scattering law (TSL), i.e., S(α,β), represents the momentum and energy exchange phase space for a material. The incoherent and coherent components of the TSL correlate an atom’s trajectory with itself and/or with other atoms in the lattice structure. This structural information is especially important for low energies where the wavelength of neutrons is on the order of the lattice interatomic spacing. Both thermal neutron scattering as well as low energy resonance broadening involve processes where incoming neutron responses are lattice dependent. Traditionally, Doppler broadening for absorption resonances approximates these interactions by assuming a Maxwell–Boltzmann distribution for the neutron velocity. For high energies and high temperatures, this approximation is reasonable. However, for low temperatures or low energies, the lattice structure binding effects will influence the velocity distribution. Using the TSL to determine the Doppler broadening directly introduces the material structure into the calculation to most accurately capture the momentum and energy space. Typically, the TSL is derived assuming cubic lattice symmetry. This approximation collapses the directional lattice information, including the polarization vectors and associated energies, into an energy-dependent function called the density of states. The cubic approximation, while valid for highly symmetric and uniformly bonded materials, is insufficient to capture the true structure. In this work, generalized formulation for the exact, lattice-dependent TSL is implemented within the Full Law Analysis Scattering System Hub (FLASSH) using polarization vectors and associated energies as fundamental input. These capabilities are utilized to perform the generalized structure Doppler broadening analysis for UO2. Full article
(This article belongs to the Special Issue Selected Papers from PHYSOR 2020)
Show Figures

Figure 1

9 pages, 1348 KiB  
Article
Generation of the TSL for Zirconium Hydrides from Ab Initio Methods
by Jonathan Wormald, Michael Zerkle and Jesse Holmes
J. Nucl. Eng. 2021, 2(2), 105-113; https://doi.org/10.3390/jne2020011 - 7 Apr 2021
Cited by 14 | Viewed by 3544
Abstract
Zirconium hydride (ZrHx) is a moderator material used in TRIGA and other reactors that may exist in multiple phases with varying stoichiometry, which include the δ phase and the ϵ phase. Current ENDF/B-VIII.0 ZrHx thermal scattering law (TSL) evaluations do [...] Read more.
Zirconium hydride (ZrHx) is a moderator material used in TRIGA and other reactors that may exist in multiple phases with varying stoichiometry, which include the δ phase and the ϵ phase. Current ENDF/B-VIII.0 ZrHx thermal scattering law (TSL) evaluations do not distinguish between phases. These sub-libraries were generated with the LEAPR module of NJOY using historic phonon spectra derived from a central force model and assume incoherent elastic scattering for both bound hydrogen and zirconium, which neglects the effects of crystal structures important for scattering from zirconium bound in ZrHx. In this work, the TSLs for hydrogen and zirconium bound in δ-ZrHx and ϵ-ZrH2 were generated from phonon spectra derived from modern ab initio lattice dynamics methods and ab initio molecular dynamics. Subsequently, TSLs for hydrogen and zirconium in ZrHx and ZrH2 were generated using the Full Law Analysis Scattering System Hub (FLASSH) code. The built-in generalized coherent elastic routine was used to generate the previously neglected elastic contribution from zirconium for this material. The present TSLs provide both a re-evaluation of the current ZrH sub-libraries and expansion of the set of TSLs available for the examination of neutrons in systems with zirconium hydride, permitting explicit treatment of δ and ϵ phases. Full article
(This article belongs to the Special Issue Selected Papers from PHYSOR 2020)
Show Figures

Figure 1

10 pages, 3193 KiB  
Article
Thermal Behavior of Single-Crystal Diamonds Catalyzed by Titanium Alloy at Elevated Temperature
by Pengyu Hou, Ming Zhou and Haijun Zhang
Appl. Sci. 2020, 10(13), 4651; https://doi.org/10.3390/app10134651 - 6 Jul 2020
Cited by 3 | Viewed by 2679
Abstract
Single-crystal diamonds are considered as the best tool material for ultra-precision machining. However, due to its low thermal conductivity, small elastic modulus and strong chemical activity, titanium alloy has poor machinability and is a typically difficult-to-machine material. Excessive tool wear prevents diamonds from [...] Read more.
Single-crystal diamonds are considered as the best tool material for ultra-precision machining. However, due to its low thermal conductivity, small elastic modulus and strong chemical activity, titanium alloy has poor machinability and is a typically difficult-to-machine material. Excessive tool wear prevents diamonds from cutting titanium alloy. This study conducts a series of thermal analytic experiments under conditions of different gas atmospheres in order to research the details of thermochemical wear of diamonds catalyzed by titanium alloy at elevated temperatures. Raman scattering analysis was performed to identify the transformation of the diamond crystal structure. The change in chemical composition of the work material was detected be means of energy dispersive X-ray analysis. X-ray photoelectron spectroscopy was used to confirm the resultant interfacial thermochemical reactions. The results of the study reveal the diffusion law of the single-crystal diamond under the action of titanium in the argon and air environment. From the experimental results, the product of the chemical reaction corresponding to the interface between the diamond and the titanium alloy sheet could be found. The research results provide a theoretical basis for elucidating the wear mechanism of diamond tools in the titanium alloy cutting process and for exploring the measures to suppress tool wear. Full article
Show Figures

Figure 1

11 pages, 4639 KiB  
Article
Thermal Wave Scattering by an Elliptic Subsurface Hole Buried in a Block, Based on the Non-Fourier Equation
by Chuanping Zhou and Ban Wang
Sensors 2019, 19(8), 1878; https://doi.org/10.3390/s19081878 - 19 Apr 2019
Cited by 2 | Viewed by 2571
Abstract
With the application to engineering practice, the study of the scattering of thermal waves using innovative and comprehensive methods is becoming increasingly important. The thermal wave scattering by an elliptic subsurface hole in a block with two boundaries is discussed based on the [...] Read more.
With the application to engineering practice, the study of the scattering of thermal waves using innovative and comprehensive methods is becoming increasingly important. The thermal wave scattering by an elliptic subsurface hole in a block with two boundaries is discussed based on the non-Fourier heat conduction equation, employing the complex function method and the conformal mapping method, and a general solution for the thermal wave scattering is given. The numerical results of temperature distributions around a subsurface hole are presented and the effects of geometrical and physical parameters on the temperature distributions were analyzed. The wave number, the shape and position of the hole, the scale of the block, and the frequency of the heat load were found to have great effects on distributions and variations of temperature. The findings of this study could be helpful in providing better understandings of infrared thermal wave imaging, the physical inverse problem, and the evaluation of internal holes in materials. Full article
(This article belongs to the Special Issue Smart Structures and Materials for Sensor Applications)
Show Figures

Figure 1

15 pages, 6819 KiB  
Article
Effect of Defects on the Mechanical and Thermal Properties of Graphene
by Maoyuan Li, Tianzhengxiong Deng, Bing Zheng, Yun Zhang, Yonggui Liao and Huamin Zhou
Nanomaterials 2019, 9(3), 347; https://doi.org/10.3390/nano9030347 - 3 Mar 2019
Cited by 87 | Viewed by 6650
Abstract
In this study, the mechanical and thermal properties of graphene were systematically investigated using molecular dynamic simulations. The effects of temperature, strain rate and defect on the mechanical properties, including Young’s modulus, fracture strength and fracture strain, were studied. The results indicate that [...] Read more.
In this study, the mechanical and thermal properties of graphene were systematically investigated using molecular dynamic simulations. The effects of temperature, strain rate and defect on the mechanical properties, including Young’s modulus, fracture strength and fracture strain, were studied. The results indicate that the Young’s modulus, fracture strength and fracture strain of graphene decreased with the increase of temperature, while the fracture strength of graphene along the zigzag direction was more sensitive to the strain rate than that along armchair direction by calculating the strain rate sensitive index. The mechanical properties were significantly reduced with the existence of defect, which was due to more cracks and local stress concentration points. Besides, the thermal conductivity of graphene followed a power law of λ~L0.28, and decreased monotonously with the increase of defect concentration. Compared with the pristine graphene, the thermal conductivity of defective graphene showed a low temperature-dependent behavior since the phonon scattering caused by defect dominated the thermal properties. In addition, the corresponding underlying mechanisms were analyzed by the stress distribution, fracture structure during the deformation and phonon vibration power spectrum. Full article
(This article belongs to the Special Issue Electronic and Thermal Properties of Graphene)
Show Figures

Figure 1

Back to TopTop