Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = thermal conductivity of PVD coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8377 KiB  
Article
Study on the Corrosion and Wear Mechanism of a Core Friction Pair in Methanol-Fueled Internal Combustion Engines
by Wenjuan Zhang, Hao Gao, Qianting Wang, Dong Liu and Enlai Zhang
Materials 2025, 18(9), 1966; https://doi.org/10.3390/ma18091966 - 25 Apr 2025
Cited by 1 | Viewed by 513
Abstract
With the global shift in energy structure and the advancement of the “double carbon” strategy, methanol has gained attention as a clean low-carbon fuel in the engine sector. However, the corrosion–wear coupling failure caused by acidic byproducts, such as methanoic acid and formaldehyde, [...] Read more.
With the global shift in energy structure and the advancement of the “double carbon” strategy, methanol has gained attention as a clean low-carbon fuel in the engine sector. However, the corrosion–wear coupling failure caused by acidic byproducts, such as methanoic acid and formaldehyde, generated during combustion severely limits the durability of methanol engines. In this study, we employed a systematic approach combining the construction of a corrosion liquid concentration gradient experiment with a full-load and full-speed bench test to elucidate the synergistic corrosion–wear mechanism of core friction pairs (cylinder liner, piston, and piston ring) in methanol-fueled engines. The experiment employed corrosion-resistant gray cast iron (CRGCI), high chromium cast iron (HCCI), and nodular cast iron (NCI) cylinder liners, along with F38MnVS steel and ZL109 aluminum alloy pistons. Piston rings with DLC, PVD, and CKS coatings were also tested. Corrosion kinetic analysis was conducted in a formaldehyde/methanoic acid gradient corrosion solution, with a concentration range of 0.5–2.5% for formaldehyde and 0.01–0.10% for methanoic acid, simulating the combustion products of methanol. The results showed that the corrosion depth of CRGCI was the lowest in low-concentration corrosion solutions, measuring 0.042 and 0.055 μm. The presence of microalloyed Cr/Sn/Cu within its pearlite matrix, along with the directional distribution of flake graphite, effectively inhibited the micro-cell effect. In high-concentration corrosion solutions (#3), HCCI reduced the corrosion depth by 60.7%, resulting in a measurement of 0.232 μm, attributed to the dynamic reconstruction of the Cr2O3-Fe2O3 composite passive film. Conversely, galvanic action between spherical graphite and the surrounding matrix caused significant corrosion in NCI, with a depth reaching 1.241 μm. The DLC piston coating obstructed the permeation pathway of formate ions due to its amorphous carbon structure. In corrosion solution #3, the recorded weight loss was 0.982 mg, which accounted for only 11.7% of the weight loss observed with the CKS piston coating. Following a 1500 h bench test, the combination of the HCCI cylinder liner and DLC-coated piston ring significantly reduced the wear depth. The average wear amounts at the top and bottom dead centers were 5.537 and 1.337 μm, respectively, representing a reduction of 67.7% compared with CRGCI, where the wear amounts were 17.152 and 4.244 μm. This research confirmed that the HCCI ferrite–Cr carbide matrix eliminated electrochemical heterogeneity, while the DLC piston coating inhibited abrasive wear. Together, these components reduced the wear amount at the top dead center on the push side by 80.1%. Furthermore, mismatches between the thermal expansion coefficients of the F38MnVS steel piston (12–14 × 10−6/°C) and gray cast iron (11 × 10−6/°C) resulted in a tolerance exceeding 0.105 mm in the cylinder fitting gap after 3500 h of testing. Notably, the combination of a HCCI matrix and DLC coating successfully maintained the gap within the required range of 50–95 μm. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys)
Show Figures

Figure 1

12 pages, 5283 KiB  
Article
Failure Mechanism Analysis of Thermal Barrier Coatings Under a Service Simulation Environment
by Mourui Zhang, Yifan Wang, Yang Feng, Yong Shang, Shengkai Gong and Yuxian Cheng
Coatings 2025, 15(1), 78; https://doi.org/10.3390/coatings15010078 - 13 Jan 2025
Cited by 2 | Viewed by 868
Abstract
In this paper, the ceramic coating of thermal barrier coatings (TBCs) was prepared on the surface of the tube specimens by Electron Beam Physical Vapor Deposition (EB-PVD) process. Subsequently, a service simulation was conducted using a simulation device to analyze the failure behavior [...] Read more.
In this paper, the ceramic coating of thermal barrier coatings (TBCs) was prepared on the surface of the tube specimens by Electron Beam Physical Vapor Deposition (EB-PVD) process. Subsequently, a service simulation was conducted using a simulation device to analyze the failure behavior of the TBCs. The effects of high-temperature sintering and CaO-MgO-Al2O3-SiO2 (CMAS) corrosion on the microstructural evolution, phase structural changes, and insulation performance of the thermal barrier coatings were investigated. The results indicated that with increasing high-temperature sintering time, the “feather” structures at the boundaries of the columnar grains evolve into the “tentacle” structure that facilitates the fusion of adjacent columnar grains, resulting in increased grain diameter and wider gaps. No transformation from t’-ZrO2 to the monoclinic phase m-ZrO2 occurred during the high-temperature sintering process. Over time, CMAS wets the coating surface and infiltrates the interior of the coating, causing corrosion to the Yttria-stabilised zirconia (YSZ) and accelerating sintering. A new phase, ZrSiO4, was formed after corrosion without inducing the transition. Full article
Show Figures

Figure 1

14 pages, 2874 KiB  
Article
Evaluation of the Thermal Insulation Properties of Composites with ZrO2/Al Coatings Intended for the Construction of Protective Gloves
by Pamela Miśkiewicz, Adam K. Puszkarz and Marcin Makówka
Materials 2025, 18(2), 242; https://doi.org/10.3390/ma18020242 - 8 Jan 2025
Viewed by 1441
Abstract
The article presents research on the evaluation of the use of two four-layer textile composites with ZrO2/Al coatings of different thicknesses (deposited by magnetron sputtering PVD) with potential use in thermally insulating protective gloves designed for steelworkers, welders, or miners. The [...] Read more.
The article presents research on the evaluation of the use of two four-layer textile composites with ZrO2/Al coatings of different thicknesses (deposited by magnetron sputtering PVD) with potential use in thermally insulating protective gloves designed for steelworkers, welders, or miners. The structure of the composites was analyzed using high-resolution X-ray micro-CT. The assessment of the safety of the glove user was conducted using methods in which the composites were exposed to contact heat, radiant heat, and flame heat. The results showed that both four-layer textile composites equipped with ZrO2/Al coatings provide effective protection against contact heat, radiant heat, and flame heat and can be successfully used in the construction of metallurgical protective gloves. Both composites achieved the first performance level (for contact heat method, for contact temperature 100 °C), the fourth performance level (for radiant heat), and the third performance level (for flame heat). Full article
(This article belongs to the Special Issue Properties and Applications of Advanced Textile Materials)
Show Figures

Figure 1

19 pages, 12878 KiB  
Article
The Influence of nc-AlCrTiN/α-BN Coatings on Increasing the Durability of WC/Co Cutting Inserts in the Inconel Alloy Machining Process
by Joanna Kacprzyńska-Gołacka, Sylwia Sowa, Rafał Brudnias, Daniel Paćko, Zbigniew Słomka, Artur Piasek, Piotr Wieciński, Witold Habrat, Halina Garbacz, Agnieszka Kopia and Jerzy Smolik
Materials 2024, 17(11), 2587; https://doi.org/10.3390/ma17112587 - 28 May 2024
Viewed by 1047
Abstract
Anti-wear coatings obtained through PVD methods may significantly increase the durability of cutting tools by impacting their wear mechanisms. This study presents and discusses the results of studies on the impact of the thermal conductivity of PVD coatings on the intensity of the [...] Read more.
Anti-wear coatings obtained through PVD methods may significantly increase the durability of cutting tools by impacting their wear mechanisms. This study presents and discusses the results of studies on the impact of the thermal conductivity of PVD coatings on the intensity of the built-up edge (BUE) and built-up layer (BUL) formation in Inconel 600 alloy machining processes. The authors determine the microstructure, phase structure, mechanical properties (hardness, Young’s modulus, and adhesion), and thermal conductivity of different PVD coatings selected for the purpose of the study and varying in terms of conductivity—i.e., AlCrTiN and AlCrTiN/BN. Machining processes were carried out under controlled conditions using VBGT160404-M3 cutting inserts with AlCrTiN and AlCrTiN/BN coatings deposited on their surface. The authors prove that the adjustment of the thermal conductivity of PVD coatings to the thermal conductivity of the tool and machined materials can help change the direction of heat flow to cool the cutting zone more effectively. The study results presented in this article show that the deposition of the AlCrTiN/BN coating reduces the friction wear on the tool flank by over 70% and lowers the intensity of BUE and BUL formation processes on the face by 10%, compared to the AlCrTiN coating. Full article
Show Figures

Figure 1

14 pages, 3707 KiB  
Article
Improving the Wear Resistance Properties of 7A04 Aluminum Alloy with Three Surface Modification Coatings
by Jinmeng Hu, Cheng Zhang, Xiaodong Wang, Xiaobo Meng, Caihong Dou, Hua Yu, Changji Wang, Jun Xue, Ziping Qiao and Tao Jiang
Coatings 2024, 14(4), 476; https://doi.org/10.3390/coatings14040476 - 13 Apr 2024
Cited by 3 | Viewed by 2981
Abstract
Multiple advantages, such as good formability, high specific strength, excellent thermal conductivity, and high corrosion resistance, enable aluminum alloy wide application in various fields; however, low surface hardness and poor wear resistance limit its further development. In this study, three surface modification coatings [...] Read more.
Multiple advantages, such as good formability, high specific strength, excellent thermal conductivity, and high corrosion resistance, enable aluminum alloy wide application in various fields; however, low surface hardness and poor wear resistance limit its further development. In this study, three surface modification coatings were successfully prepared on the surface of 7A04 aluminum alloy by microarc oxidation (MAO) and a combination of hard anodizing treatment (HA) and physical vapor deposition (PVD), named MAO, HA+W+DLC, and HA+Ti+ta-C, respectively. The microstructure, hardness, and tribological properties of the three coatings and the 7A04 aluminum alloy substrate were studied. The results show that the surface quality and hardness of the coated samples were higher than those of the 7A04 aluminum alloy and that the HA+Ti+ta-C coating possessed the highest hardness of 34.23 GPa. Moreover, the wear resistance of the two multilayer coatings was significantly improved during the ring-block wear tests under oil lubrication, exhibiting a wear rate of 1.51 × 10−7 mm3/N·m for HA+W+DLC and 1.36 × 10−7 mm3/N·m for HA+Ti+ta-C. Full article
(This article belongs to the Special Issue Enhanced Mechanical Properties of Metals by Surface Treatments)
Show Figures

Figure 1

27 pages, 12548 KiB  
Article
Investigations on the Surface Integrity and Wear Mechanisms of TiAlYN-Coated Tools in Inconel 718 Milling Operations
by Francisco J. G. Silva, Naiara P. V. Sebbe, Rúben D. F. S. Costa, André F. V. Pedroso, Rita C. M. Sales-Contini, Marta L. S. Barbosa and Rui P. Martinho
Materials 2024, 17(2), 443; https://doi.org/10.3390/ma17020443 - 17 Jan 2024
Cited by 6 | Viewed by 1834
Abstract
Inconel 718 is a Ni superalloy with superior mechanical properties, even at high temperatures. However, due to its high hardness and low thermal conductivity, it is considered a difficult-to-machine material. This material is widely used in applications that require good dimensional stability, making [...] Read more.
Inconel 718 is a Ni superalloy with superior mechanical properties, even at high temperatures. However, due to its high hardness and low thermal conductivity, it is considered a difficult-to-machine material. This material is widely used in applications that require good dimensional stability, making the milling process the most used in machining this alloy. The wear resulting from this process and the quality of the machined surface are still challenging factors when it comes to Inconel 718. TiAlN-based coating has been used on cutting tools with Yttrium as a doping element to improve the process performance. Based on this, this work evaluated the machined surface integrity and wear resistance of cutting tools coated using Physical Vapor Deposition (PVD) HiPIMS with TiAlYN in the end milling of Inconel 718, varying the process parameters such as cutting speed (vc), feed per tooth (fz), and cutting length (Lcut). It was verified that the Lcut is the parameter that exerts the most significant influence since, even at small distances, Inconel 718 already generates high tool wear (TW). Furthermore, the main wear mechanisms were abrasive and adhesive wear, with the development of a built-up edge (BUE) under a125 m/min feed rate (f) and a Lcut = 15 m. Chipping, cracking, and delamination of the coating were also observed, indicating a lack of adhesion between the coating and the substrate, suggesting the need for a good interlayer or the adjustment of the PVD parameters. Full article
(This article belongs to the Special Issue Cutting Processes for Materials in Manufacturing)
Show Figures

Figure 1

16 pages, 7608 KiB  
Article
Towards Industry 4.0 and Sustainable Manufacturing Applying Environmentally Friendly Machining of a Precipitation Hardened Stainless Steel Using Hot Turning Process
by Mohammadjafar Hadad and Seyed Mohammad Ebrahimi
Appl. Sci. 2023, 13(22), 12405; https://doi.org/10.3390/app132212405 - 16 Nov 2023
Viewed by 1265
Abstract
This study aims to address the aforementioned challenges, solutions and implementation perspectives with regard to sustainable manufacturing. In this research, the conventional and hot turning of AISI630 hardened stainless steel have been investigated using PVD-(Ti,Al)N/(Al,Cr)2O3 coated carbide cutting tools at [...] Read more.
This study aims to address the aforementioned challenges, solutions and implementation perspectives with regard to sustainable manufacturing. In this research, the conventional and hot turning of AISI630 hardened stainless steel have been investigated using PVD-(Ti,Al)N/(Al,Cr)2O3 coated carbide cutting tools at various feed rates and cutting speeds. The high hardness of AISI630, along with the low thermal conductivity, has made it one of the most difficult-to-cut materials, and consequently, its machining is associated with high tool wear and poor workpiece surface quality. AISI630 stainless steel is used in the manufacture of pressure vessels and components exposed to high-stress and corrosive environments in the oil and gas industries. In the present research work, tool flank wear and crater wear mechanisms have been studied in different cutting conditions as well as different preheating temperatures using SEM microscopy. Experimental results showed that hot turning operation at temperatures up to 300 °C reduces flank wear by 33% and improves machined surface roughness by 23%. In addition, FEM simulation has been developed to predict tool tip temperature and cutting forces during turning processes. Experimental and FEM analysis shows that cutting force reduction at a preheating temperature of 300 °C is one of the reasons that reduces tool wear compared to conventional turning. Moreover, it has been shown that by increasing preheating temperature in hot turning, the hardness of the carbides in the workpiece decreases more than the hardness of the tool substrate and reduces coating materials, consequently reducing cutting tool abrasion wear phenomenon. Full article
(This article belongs to the Special Issue Advanced Processing of Steels and Their Alloys)
Show Figures

Figure 1

14 pages, 7896 KiB  
Article
Effect of Temperature on the Tribological Properties of Hafnium Carbonitrides Coatings
by Willian Aperador, Jorge Bautista-Ruiz and Jorge Sánchez-Molina
Metals 2023, 13(4), 818; https://doi.org/10.3390/met13040818 - 21 Apr 2023
Cited by 3 | Viewed by 1888
Abstract
For industrial processes in which refractory metals are necessary, hafnium carbonitride exhibits excellent performance due to its high thermal conductivity and resistance to oxidation. In this study, hafnium carbonitride was deposited on Inconel 718 steel and silicon (100) substrates. The objective was to [...] Read more.
For industrial processes in which refractory metals are necessary, hafnium carbonitride exhibits excellent performance due to its high thermal conductivity and resistance to oxidation. In this study, hafnium carbonitride was deposited on Inconel 718 steel and silicon (100) substrates. The objective was to characterize the wear properties as a function of temperature. The layers were deposited by physical vapor deposition (PVD) in an R.F. sputtering magnetron system from carbon targets and high-purity hafnium (99.99%). The wear tests were carried out at temperatures of 100 °C, 200 °C, 400 °C, and 800 °C in non-lubricated conditions. The coefficient of friction (COF) was recorded in situ. The heat treatment temperature on coatings is essential in determining anti-wear efficiency. It was determined that high temperatures (800 °C) improve resistance to wear. High-resolution XPS spectra were used to detect the chemical states of Hf 4f5/2 and Hf 4f7/2. The 4f5/2 and 4f7/2 binding energy indicates the presence of HfN and HfC. Using the TEM technique in bright field mode allowed us to know the orientation, crystallographic structure and interplanar distances of the HfCN. The topography of the coatings, by AFM, shows uniform grains and very small characteristics that determine the low surface roughness value. The SEM image of the cross-section of the HfCN coating shows homogeneity of the layer; no cracks or deformations are observed. Full article
Show Figures

Figure 1

22 pages, 6420 KiB  
Article
Wear Behavior Phenomena of TiN/TiAlN HiPIMS PVD-Coated Tools on Milling Inconel 718
by Vitor F. C. Sousa, Filipe Fernandes, Francisco J. G. Silva, Rúben D. F. S. Costa, Naiara Sebbe and Rita C. M. Sales-Contini
Metals 2023, 13(4), 684; https://doi.org/10.3390/met13040684 - 30 Mar 2023
Cited by 23 | Viewed by 2433
Abstract
Due to Inconel 718’s high mechanical properties, even at higher temperatures, tendency to work-harden, and low thermal conductivity, this alloy is considered hard to machine. The machining of this alloy causes high amounts of tool wear, leading to its premature failure. There seems [...] Read more.
Due to Inconel 718’s high mechanical properties, even at higher temperatures, tendency to work-harden, and low thermal conductivity, this alloy is considered hard to machine. The machining of this alloy causes high amounts of tool wear, leading to its premature failure. There seems to be a gap in the literature, particularly regarding milling and finishing operations applied to Inconel 718 parts. In the present study, the wear behavior of multilayered PVD HiPIMS (High-power impulse magnetron sputtering)-coated TiN/TiAlN end-mills used for finishing operations on Inconel 718 is evaluated, aiming to establish/expand the understanding of the wear behavior of coated tools when machining these alloys. Different machining parameters, such as cutting speed, cutting length, and feed per tooth, are tested, evaluating the influence of these parameters’ variations on tool wear. The sustained wear was evaluated using SEM (Scanning electron microscope) analysis, characterizing the tools’ wear and identifying the predominant wear mechanisms. The machined surface was also evaluated after each machining test, establishing a relationship between the tools’ wear and production quality. It was noticed that the feed rate parameter exerted the most influence on the tools’ production quality, while the cutting speed mostly impacted the tools’ wear. The main wear mechanisms identified were abrasion, material adhesion, cratering, and adhesive wear. The findings of this study might prove useful for future research conducted on this topic, either optimization studies or studies on the simulation of the milling of Inconel alloys, such as the one presented here. Full article
(This article belongs to the Special Issue Machining: State-of-the-Art 2022)
Show Figures

Figure 1

19 pages, 9213 KiB  
Article
Thermal Fatigue Resistance Studies of Multilayer CrN and AlTiN Coatings Deposited on Plasma Nitrided H-13 Hot Work Steel
by Chetan Gurada, Rajesh Mundotia, Umesh Mhatre, Ashwin Kale and Dushyant Kothari
Lubricants 2023, 11(1), 19; https://doi.org/10.3390/lubricants11010019 - 5 Jan 2023
Cited by 2 | Viewed by 2260
Abstract
H-13 steel surface was duplex-treated using Plasma Nitriding (PN) and PVD coatings to solve the thermal fatigue problem faced in die-casting applications. Chromium-based multilayer CrN/Cr (m-CrN) coatings and multi-component aluminium–titanium-based AlTiN (m-AlTiN) coatings were deposited using a cathodic arc deposition technique after plasma [...] Read more.
H-13 steel surface was duplex-treated using Plasma Nitriding (PN) and PVD coatings to solve the thermal fatigue problem faced in die-casting applications. Chromium-based multilayer CrN/Cr (m-CrN) coatings and multi-component aluminium–titanium-based AlTiN (m-AlTiN) coatings were deposited using a cathodic arc deposition technique after plasma nitriding the H-13 steel surface with different case-depths of 50 µm and 200 µm. The structural, tribological, corrosion, and mechanical properties of the duplex-treated samples were studied. The thermal fatigue (TF) test was conducted by heating the sample to 600 °C and rapidly cooling it to room temperature, simulating the die-casting process conditions. After multiple cycles, it was observed that the oxide layer thickness formed was lower on duplex-treated samples compared to that on the uncoated plasma nitride sample. In addition, the mechanical properties were improved with the increase in PN diffusion depth. The duplex-treated samples showed better mechanical and thermal fatigue properties compared to untreated and only coated samples. The sample with m-AlTiN deposited on plasma nitrided H-13 with 200 µm case depth displays better thermal fatigue properties compared to the other samples. Full article
(This article belongs to the Special Issue Friction and Wear of Coatings/Films)
Show Figures

Figure 1

40 pages, 6365 KiB  
Article
Development of Hybrid Intelligent Models for Prediction Machining Performance Measure in End Milling of Ti6Al4V Alloy with PVD Coated Tool under Dry Cutting Conditions
by Salah Al-Zubaidi, Jaharah A.Ghani, Che Hassan Che Haron, M. N. Mohammed, Adnan Naji Jameel Al-Tamimi, Samaher M.Sarhan, Mohd Shukor Salleh, M. Abdulrazaq and Oday I. Abdullah
Lubricants 2022, 10(10), 236; https://doi.org/10.3390/lubricants10100236 - 25 Sep 2022
Cited by 9 | Viewed by 2499
Abstract
Ti6Al4V alloy is widely used in aerospace and medical applications. It is classified as a difficult to machine material due to its low thermal conductivity and high chemical reactivity. In this study, hybrid intelligent models have been developed to predict surface roughness when [...] Read more.
Ti6Al4V alloy is widely used in aerospace and medical applications. It is classified as a difficult to machine material due to its low thermal conductivity and high chemical reactivity. In this study, hybrid intelligent models have been developed to predict surface roughness when end milling Ti6Al4V alloy with a Physical Vapor Deposition PVD coated tool under dry cutting conditions. Back propagation neural network (BPNN) has been hybridized with two heuristic optimization techniques, namely: gravitational search algorithm (GSA) and genetic algorithm (GA). Taguchi method was used with an L27 orthogonal array to generate 27 experiment runs. Design expert software was used to do analysis of variances (ANOVA). The experimental data were divided randomly into three subsets for training, validation, and testing the developed hybrid intelligent model. ANOVA results revealed that feed rate is highly affected by the surface roughness followed by the depth of cut. One-way ANOVA, including a Post-Hoc test, was used to evaluate the performance of three developed models. The hybrid model of Artificial Neural Network-Gravitational Search Algorithm (ANN-GSA) has outperformed Artificial Neural Network (ANN) and Artificial Neural Network-Genetic Algorithm (ANN-GA) models. ANN-GSA achieved minimum testing mean square error of 7.41 × 10−13 and a maximum R-value of 1. Further, its convergence speed was faster than ANN-GA. GSA proved its ability to improve the performance of BPNN, which suffers from local minima problems. Full article
Show Figures

Figure 1

21 pages, 10800 KiB  
Article
Effect of Laser Heating on the Life of Cutting Tools Coated with Single- and Multilayer Coatings Containing a TiN Layer
by Maciej Jan Kupczyk and Jerzy Józwik
Materials 2022, 15(11), 4022; https://doi.org/10.3390/ma15114022 - 6 Jun 2022
Cited by 1 | Viewed by 2639
Abstract
This study proposes a novel use of laser heating to increase the adhesion between coatings fabricated by low-temperature PVD and replaceable cemented carbide cutting inserts, thus extending the life of these cutting tools in the machining of difficult-to-machine materials. Our previous studies conducted [...] Read more.
This study proposes a novel use of laser heating to increase the adhesion between coatings fabricated by low-temperature PVD and replaceable cemented carbide cutting inserts, thus extending the life of these cutting tools in the machining of difficult-to-machine materials. Our previous studies conducted on CVD coatings showed that these coatings had higher adhesion due to a much higher process temperature. However, taking into account the fact that PVD coatings have better technological properties (e.g., lower structure porosity, higher hardness, and better tribological properties) than CVD coatings, it is fully justified to investigate ways of improving the PVD coating adhesion to the substrate. In this study, replaceable cutting inserts with different hard coatings of titanium nitride were used. Laser heating was conducted with different power densities. The adhesion strength of the tested coatings was determined via vibration spectrum analysis. In addition, 2D surface imaging, scanning electron microscopy, and X-ray fluorescence spectrometry were employed to examine the coatings after laser heating. A significant increase in the adhesion of single-layer (TiN) and double-layer (TiCN + TiN) coatings to the cemented carbide substrate, together with increased tool life, was observed after heating the samples with 40% of the maximum laser power. The application of a multilayer coating containing thermal shock-sensitive (TiAlSi) N did not increase the tool life. This paper attempts to interpret the obtained results. Full article
Show Figures

Figure 1

9 pages, 1530 KiB  
Article
The Influence of Reactive PS-PVD Process Parameters on the Microstructure and Thermal Properties of Yb2Zr2O7 Thermal Barrier Coating
by Paweł Pędrak, Marek Góral, Kamil Dychton, Marcin Drajewicz, Malgorzata Wierzbinska and Tadeusz Kubaszek
Materials 2022, 15(4), 1594; https://doi.org/10.3390/ma15041594 - 21 Feb 2022
Cited by 4 | Viewed by 2205
Abstract
Ytterbium zirconate (Yb2Zr2O7) is one of the most promising materials for yttria-stabilized zirconia (YSZ) replacement as a thermal barrier coating (TBCs) application. In the presented report, the experimental synthesis of Yb2Zr2O7 coating [...] Read more.
Ytterbium zirconate (Yb2Zr2O7) is one of the most promising materials for yttria-stabilized zirconia (YSZ) replacement as a thermal barrier coating (TBCs) application. In the presented report, the experimental synthesis of Yb2Zr2O7 coating using novel Reactive Plasma Spray Physical Vapor Deposition (Reactive PS-PVD) is described. The obtained coating, irrespective of the power current (1800, 2000 and 2200 A), was characterized by a hybrid structure and a thickness of about 80–110 μm. The results of XRD phase analysis showed the formation of ytterbium zirconate in the coating but the presence of ytterbium and zirconium oxides was also detected. The oxides were not observed in calcinated powder. The decrease in thermal conductivity with power current increase was observed. It was the result of higher thickness and better columnar structure of the coating obtained using higher power current of the plasma torch. Full article
(This article belongs to the Special Issue Thermal Barrier Coatings)
Show Figures

Figure 1

9 pages, 3410 KiB  
Brief Report
Synthesis of Gd2Zr2O7 Coatings Using the Novel Reactive PS-PVD Process
by Pawel Pędrak, Kamil Dychtoń, Marcin Drajewicz and Marek Góral
Coatings 2021, 11(10), 1208; https://doi.org/10.3390/coatings11101208 - 1 Oct 2021
Cited by 11 | Viewed by 2928
Abstract
Ceramic topcoats of thermal barrier coatings (TBCs) make it possible to increase the working temperature of the hot sections of jet engines. Yttria-stabilized zirconia oxide (YSZ) is usually used to protect the turbine blades and vanes against high temperature and oxidation. It is [...] Read more.
Ceramic topcoats of thermal barrier coatings (TBCs) make it possible to increase the working temperature of the hot sections of jet engines. Yttria-stabilized zirconia oxide (YSZ) is usually used to protect the turbine blades and vanes against high temperature and oxidation. It is necessary to develop new materials which can operate at higher temperatures in a highly oxidizing gas atmosphere. Re2Zr2O7-type pyrochlores are promising YSZ replacements. Usually, they are produced by mixing pure oxides in the calcination process at higher temperatures. In a recent article, the new concept of pyrochlore synthesis during the deposition process was presented. The new technology, called reactive plasma spray physical vapor deposition (reactive PS-PVD), was developed and a Gd2Zr2O7 (GZO) coating was achieved. The reactive PS-PVD process allowed for the use of a mixture of untreated ZrO2 and Gd2O3 powders as reactants, instead of the commercially available gadolinium zirconate powders used in other types of processes. The results of microstructure observations revealed a columnar microstructure in the produced ceramic layer. The phase composition indicated the presence of gadolinium zirconate. Thermal analysis showed a decrease in the thermal conductivity in the range of 700 to 1200 °C of the produced layers, as compared to the layer made of the currently used conventional YSZ. Full article
(This article belongs to the Special Issue Advances in Plasma Coatings)
Show Figures

Figure 1

17 pages, 5338 KiB  
Article
Microstructure Dependence of Effective Thermal Conductivity of EB-PVD TBCs
by Shi-Yi Qiu, Chen-Wu Wu, Chen-Guang Huang, Yue Ma and Hong-Bo Guo
Materials 2021, 14(8), 1838; https://doi.org/10.3390/ma14081838 - 7 Apr 2021
Cited by 15 | Viewed by 2971
Abstract
Microstructure dependence of effective thermal conductivity of the coating was investigated to optimize the thermal insulation of columnar structure electron beam physical vapor deposition (EB-PVD coating), considering constraints by mechanical stress. First, a three-dimensional finite element model of multiple columnar structure was established [...] Read more.
Microstructure dependence of effective thermal conductivity of the coating was investigated to optimize the thermal insulation of columnar structure electron beam physical vapor deposition (EB-PVD coating), considering constraints by mechanical stress. First, a three-dimensional finite element model of multiple columnar structure was established to involve thermal contact resistance across the interfaces between the adjacent columnar structures. Then, the mathematical formula of each structural parameter was derived to demonstrate the numerical outcome and predict the effective thermal conductivity. After that, the heat conduction characteristics of the columnar structured coating was analyzed to reveal the dependence of the effective thermal conductivity of the thermal barrier coatings (TBCs) on its microstructure characteristics, including the column diameter, the thickness of coating, the ratio of the height of fine column to coarse column and the inclination angle of columns. Finally, the influence of each microstructural parameter on the mechanical stress of the TBCs was studied by a mathematic model, and the optimization of the inclination angle was proposed, considering the thermal insulation and mechanical stress of the coating. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

Back to TopTop