Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,426)

Search Parameters:
Keywords = therapeutic impact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1564 KiB  
Review
COPD and Comorbid Mental Health: Addressing Anxiety, and Depression, and Their Clinical Management
by Rayan A. Siraj
Medicina 2025, 61(8), 1426; https://doi.org/10.3390/medicina61081426 (registering DOI) - 7 Aug 2025
Abstract
Anxiety and depression are common comorbidities in patients with chronic obstructive pulmonary disease (COPD), which can contribute to increased morbidity, reduced quality of life, and worse clinical outcomes. Nevertheless, these psychological conditions remain largely overlooked. This narrative review includes studies published between 1983 [...] Read more.
Anxiety and depression are common comorbidities in patients with chronic obstructive pulmonary disease (COPD), which can contribute to increased morbidity, reduced quality of life, and worse clinical outcomes. Nevertheless, these psychological conditions remain largely overlooked. This narrative review includes studies published between 1983 and 2025 to synthesise the current evidence on the risk factors, clinical impacts, and therapeutic strategies for these comorbidities. While the exact mechanisms leading to their increased prevalence are not fully understood, growing evidence implicates a combination of biological (e.g., systemic inflammation), social (e.g., isolation and stigma), and behavioural (e.g., smoking and inactivity) factors. Despite current guidelines recommending the identification and management of these comorbidities in COPD, they are not currently included in COPD assessments. Undetected and unmanaged anxiety and depression have serious consequences, including poor self-management, non-adherence to medications, increased risk of exacerbation and hospitalisations, and even mortality; thus, there is a need to incorporate screening as part of COPD assessments. There is robust evidence showing that pulmonary rehabilitation, a core non-pharmacological intervention, can improve mood symptoms, enhance functional capacity, and foster psychosocial resilience. Psychological therapies such as cognitive behavioural therapy (CBT), mindfulness-based approaches, and supportive counselling have also demonstrated value in reducing emotional distress and improving coping mechanisms. Pharmacological therapies, particularly selective serotonin reuptake inhibitors (SSRIs) and serotonin–norepinephrine reuptake inhibitors (SNRIs), are commonly prescribed in moderate to severe cases or when non-pharmacological approaches prove inadequate. However, the evidence for their efficacy in COPD populations is mixed, with concerns about adverse respiratory outcomes and high discontinuation rates due to side effects. There are also barriers to optimal care, including underdiagnosis, a lack of screening protocols, limited provider training, stigma, and fragmented multidisciplinary coordination. A multidisciplinary, biopsychosocial approach is essential to ensure early identification, integrated care, and improved outcomes for patients with COPD. Full article
(This article belongs to the Special Issue Latest Advances in Asthma and COPD)
Show Figures

Figure 1

20 pages, 1219 KiB  
Systematic Review
Can Gratitude Ease the Burden of Fibromyalgia? A Systematic Review
by Bruno Daniel Carneiro, Daniel Humberto Pozza and Isaura Tavares
Behav. Sci. 2025, 15(8), 1079; https://doi.org/10.3390/bs15081079 (registering DOI) - 7 Aug 2025
Abstract
Fibromyalgia has unclear etiopathogenesis, no curative treatment, and a severe impact on the quality of life. Gratitude practices have been shown to enhance the quality of life in chronic diseases. This systematic review, performed by searching five electronic databases, following the PRISMA guidelines, [...] Read more.
Fibromyalgia has unclear etiopathogenesis, no curative treatment, and a severe impact on the quality of life. Gratitude practices have been shown to enhance the quality of life in chronic diseases. This systematic review, performed by searching five electronic databases, following the PRISMA guidelines, is the first aiming to evaluate the impact of gratitude in fibromyalgia. Data from eligible studies was extracted and a narrative synthesis was performed. Six articles (four observational studies and two randomized clinical trials) were included. Higher levels of gratitude are associated with reduced symptom severity, an enhanced quality of life, improved well-being, and the improvement of pain-related outcomes in fibromyalgia patients. Gratitude is related to reduced stress, anxiety, and depression; better sleep patterns; and less functional impairment in FM patients. Higher levels of gratitude contribute to a better quality of life, general well-being, and higher functioning capacity in fibromyalgia patients. Based on the results gathered in this systematic review, we propose that gratitude should be investigated as a therapeutic adjuvant in the management of fibromyalgia. Full article
Show Figures

Figure 1

18 pages, 973 KiB  
Article
Normalization of Oxygen Levels Induces a Metabolic Reprogramming in Livers Exposed to Intermittent Hypoxia Mimicking Obstructive Sleep Apnea
by Miguel Á. Hernández-García, Beatriz Aldave-Orzáiz, Carlos Ernesto Fernández-García, Esther Fuertes-Yebra, Esther Rey, Ángela Berlana, Ramón Farré, Carmelo García-Monzón, Isaac Almendros, Pedro Landete and Águeda González-Rodríguez
Antioxidants 2025, 14(8), 971; https://doi.org/10.3390/antiox14080971 (registering DOI) - 7 Aug 2025
Abstract
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), is strongly associated with metabolic syndrome and metabolic dysfunction-associated steatotic liver disease (MASLD). IH exacerbates MASLD progression through oxidative stress, inflammation, and lipid accumulation. This study aims to investigate the impact of oxygen normalization [...] Read more.
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), is strongly associated with metabolic syndrome and metabolic dysfunction-associated steatotic liver disease (MASLD). IH exacerbates MASLD progression through oxidative stress, inflammation, and lipid accumulation. This study aims to investigate the impact of oxygen normalization on metabolic dysfunction in OSA patients using continuous positive airway pressure (CPAP) therapy, and in mice exposed to IH followed by a reoxygenation period. In the clinical study, 76 participants (44 OSA patients and 32 controls) were analyzed. OSA patients had higher insulin resistance, triglycerides, very low density lipoprotein (VLDL) content, and liver enzyme levels, along with a higher prevalence of liver steatosis. After 18 months of CPAP therapy, OSA patients showed significant improvements in insulin resistance, lipid profiles (total cholesterol and VLDL), liver function markers (AST and albumin), and steatosis risk scores (Fatty Liver Index and OWLiver test). In the experimental study, IH induced hepatic lipid accumulation, oxidative stress, and inflammation, and reoxygenation reversed these deleterious effects in mice. At the molecular level, IH downregulated fatty acid oxidation (FAO)-related genes, thus impairing the FAO process. Reoxygenation maintained elevated levels of lipogenic genes but restored FAO gene expression and activity, suggesting enhanced lipid clearance despite ongoing lipogenesis. Indeed, serum β hydroxybutyrate, a key marker of hepatic FAO in patients, was impaired in OSA patients but normalized after CPAP therapy, supporting improved FAO function. CPAP therapy improves lipid profiles, liver function, and MASLD progression in OSA patients. Experimental findings highlight the therapeutic potential of oxygen normalization in reversing IH-induced liver damage by FAO pathway restoration, indicating a metabolic reprogramming in the liver. Full article
(This article belongs to the Special Issue Oxidative Stress in Sleep Disorders)
15 pages, 642 KiB  
Review
Mechanism of Sepsis
by Hideaki Yamamoto, Muhammad Usman, Aristides Koutrouvelis and Satoshi Yamamoto
J. Mol. Pathol. 2025, 6(3), 18; https://doi.org/10.3390/jmp6030018 (registering DOI) - 7 Aug 2025
Abstract
Sepsis is a complex and life-threatening syndrome arising from a dysregulated immune response to infection that can lead to severe organ dysfunction and increased mortality. This multifactorial condition is marked by intricate interactions between immune, inflammatory, and coagulation pathways, which together contribute to [...] Read more.
Sepsis is a complex and life-threatening syndrome arising from a dysregulated immune response to infection that can lead to severe organ dysfunction and increased mortality. This multifactorial condition is marked by intricate interactions between immune, inflammatory, and coagulation pathways, which together contribute to systemic effects and multiorgan damage. The aberrant immune activation seen in sepsis includes profound leukocyte activation, endothelial dysfunction, imbalanced coagulation leading to disseminated intravascular coagulation (DIC), and the production of both pro-inflammatory and anti-inflammatory mediators. These events culminate in pathological alterations that extend beyond the initial site of infection, adversely impacting distant tissues and organs. Early recognition and timely intervention are crucial to mitigate the progression of sepsis and its associated complications. This review aims to explore the underlying biological mechanisms, including host–pathogen interactions, immune dysregulation, and the cascade of systemic and organ-specific effects that define sepsis. By delving into the pathophysiological processes, we intend to provide insights into the determinants of multiorgan failure and inform strategies for therapeutic intervention. Understanding these mechanisms is pivotal for advancing clinical outcomes and reducing mortality rates associated with this critical condition. Full article
Show Figures

Graphical abstract

16 pages, 2855 KiB  
Article
Cysteine Surface Engineering of Green-Synthesized Gold Nanoparticles for Enhanced Antimicrobial and Antifungal Activity
by Karen M. Soto, Angelica Gódinez-Oviedo, Adriana Romo-Pérez, Sandra Mendoza, José Mauricio López-Romero, Gerardo Torres-Delgado, Jorge Pineda-Piñón, Luis M. Apátiga-Castro, José de Jesús Pérez Bueno and Alejandro Manzano-Ramírez
Int. J. Mol. Sci. 2025, 26(15), 7645; https://doi.org/10.3390/ijms26157645 - 7 Aug 2025
Abstract
Green synthesis of gold nanoparticles (AuNPs) provides a significantly eco-friendly and low-impact counterpart to conventional chemical methods. In the present study, we synthesized gold nanoparticles using Schinus molle (P-AuNPs) aqueous extract as a reducing and stabilizing agent. The obtained nanoparticles were then stabilized [...] Read more.
Green synthesis of gold nanoparticles (AuNPs) provides a significantly eco-friendly and low-impact counterpart to conventional chemical methods. In the present study, we synthesized gold nanoparticles using Schinus molle (P-AuNPs) aqueous extract as a reducing and stabilizing agent. The obtained nanoparticles were then stabilized by another biocompatible agent, the chiral amino acids L-cysteine (L-Cys-AuNPs) and D-cysteine (D-Cys-AuNPs), to estimate the potential of the surface modification for enhancing AuNPs surface chemistry and antimicrobial action. The synthesized gold nanoparticles were confirmed by UV-Vis spectroscopy, FTIR, XRD, and circular dichroism to validate their formation, crystalline structure, surface properties, and chirality. Physicochemical characterization confirmed the formation of crystalline AuNPs with size and morphology modulated by chiral functionalization. TEM and DLS analyses showed that L-cysteine-functionalized AuNPs were smaller and more uniform, while FTIR and circular dichroism spectroscopy confirmed surface binding and the induction of optical activity, respectively. L-Cys-AuNPs exhibited the highest antimicrobial efficacy against a broad spectrum of microorganisms, including Escherichia coli, Salmonella enterica, Listeria monocytogenes, Staphylococcus aureus, Staphylococcus epidermidis, and, notably, Candida albicans. L-Cys-AuNPs showed the lowest MIC and MBC values, highlighting the synergistic effect of chirality on biological performance. These findings suggest that L-cysteine surface engineering significantly enhances the therapeutic potential of AuNPs, particularly in combating drug-resistant fungal pathogens such as C. albicans. This research paves the way for the development of next-generation antimicrobial agents, reinforcing the relevance of green nanotechnology in the field of materials science and nanotechnology. Full article
(This article belongs to the Special Issue Antimicrobial Nanomaterials: Approaches, Strategies and Applications)
Show Figures

Figure 1

12 pages, 924 KiB  
Article
Houttuynia cordata Exhibits Anti-Inflammatory Activity Against Interleukin-1β-Induced Inflammation in Human Gingival Epithelial Cells: An In Vitro Study
by Ryo Kunimatsu, Sawako Ikeoka, Yuma Koizumi, Ayaka Odo, Izumi Tanabe, Yoshihito Kawashima, Akinori Kiso, Yoko Hashii, Yuji Tsuka and Kotaro Tanimoto
Dent. J. 2025, 13(8), 360; https://doi.org/10.3390/dj13080360 - 7 Aug 2025
Abstract
Background/Objectives: Periodontitis is a chronic infectious inflammatory disorder that affects the supporting structures of the teeth. The gingival epithelium plays a crucial role as a physical and immunological barrier, producing pro-inflammatory cytokines in response to microbial pathogens. Modulation of gingival epithelial function [...] Read more.
Background/Objectives: Periodontitis is a chronic infectious inflammatory disorder that affects the supporting structures of the teeth. The gingival epithelium plays a crucial role as a physical and immunological barrier, producing pro-inflammatory cytokines in response to microbial pathogens. Modulation of gingival epithelial function has been proposed as a therapeutic strategy to prevent the progression of periodontal disease. Houttuynia cordata, a perennial herb traditionally used in Asian medicine, is recognized for its anti-inflammatory properties, with documented benefits in the cardiovascular, respiratory, and gastrointestinal systems. However, its potential therapeutic role in oral pathologies, such as periodontitis, remains underexplored. This study aimed to investigate the anti-inflammatory effects of H. cordata extract on interleukin (IL)-1β-stimulated primary gingival keratinocytes (PGKs) subjected to IL-1β-induced inflammatory stress, simulating the conditions encountered during orthodontic treatment. Methods: Inflammation was induced in PGKs using IL-1β, and the impact of H. cordata extract pretreatment was assessed using quantitative real-time reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and immunoblotting. Results: H. cordata extract significantly downregulated the mRNA and protein expression levels of tumor necrosis factor-alpha, IL-8, and intercellular adhesion molecule-1 in IL-1β-stimulated PGKs without inducing cytotoxicity. Conclusions: These findings suggest that H. cordata holds promise as a preventive agent against periodontitis by attenuating inflammatory responses in gingival epithelial tissues. We believe that our findings will inform the development of prophylactic interventions to reduce periodontitis risk in patients undergoing orthodontic therapy. Full article
(This article belongs to the Special Issue Dentistry in the 21st Century: Challenges and Opportunities)
Show Figures

Figure 1

8 pages, 215 KiB  
Article
Prospective Comparative Analysis of Simultaneous Microbiological Assessment in Septic Revision Arthroplasty: Can We Rely on Standard Diagnostics?
by Tobias Freitag, Marius Ludwig, Olivia Trappe, Moritz Oltmanns, Heiko Reichel and Michael Fuchs
J. Clin. Med. 2025, 14(15), 5582; https://doi.org/10.3390/jcm14155582 - 7 Aug 2025
Abstract
Background: Microbial analyses of tissue samples are of paramount importance for diagnostic and therapeutic purposes in the course of septic revision arthroplasty. Isolation and identification of the causative pathogens pave the way for successful treatment of periprosthetic joint infections, which necessitates a reliable [...] Read more.
Background: Microbial analyses of tissue samples are of paramount importance for diagnostic and therapeutic purposes in the course of septic revision arthroplasty. Isolation and identification of the causative pathogens pave the way for successful treatment of periprosthetic joint infections, which necessitates a reliable microbiological workup. It is unknown if there are inconsistencies in pathogen detection and differentiation between accredited laboratories in the context of septic revision arthroplasty. Methods: Tissue samples of forty consecutive patients undergoing septic total hip and knee revision surgery were sent to two different accredited and certified laboratories and tested for pathogen growth and bacterial differentiation. Results: Each institution analyzed 200 specimens. Twenty-five patients (62.5%) showed consistent results between laboratories. Diverging results were observed in 15 of 40 patients (37.5%). Of these, three individuals showed pathogen growth in only one laboratory. In 12 patients with discrepant results, laboratory analyses revealed a partly different pathogen spectrum. With regard to clinical impact and infection eradication, the respective differences implicated a therapeutic response by a change of the administered postoperative antibiotic treatment in five (12.5%) of the patients. The kappa correlation coefficient indicated a slight value in terms of data consistency between institutions (k = 0.227, p = 0.151). Conclusions: The majority of evaluated samples show comparable results with regard to microbiological evaluation. Nevertheless, a substantial number of specimens were classified differently. The observed discrepancies pose a challenge for postoperative decision-making. Against this background, standardized microbiological protocols remain mandatory for a conclusive clinical implication to eradicate PJI. Full article
(This article belongs to the Section Orthopedics)
24 pages, 1306 KiB  
Review
Targeting Dermal Fibroblast Senescence: From Cellular Plasticity to Anti-Aging Therapies
by Raluca Jipu, Ionela Lacramioara Serban, Ancuta Goriuc, Alexandru Gabriel Jipu, Ionut Luchian, Carmen Amititeloaie, Claudia Cristina Tarniceriu, Ion Hurjui, Oana Maria Butnaru and Loredana Liliana Hurjui
Biomedicines 2025, 13(8), 1927; https://doi.org/10.3390/biomedicines13081927 - 7 Aug 2025
Abstract
Dermal fibroblasts, the primary stromal cells of the dermis, exhibit remarkable plasticity in response to various stimuli, playing crucial roles in tissue homeostasis, wound healing, and ECM production. This study examines the molecular mechanisms underlying fibroblast plasticity, including key signaling pathways, epigenetic regulation, [...] Read more.
Dermal fibroblasts, the primary stromal cells of the dermis, exhibit remarkable plasticity in response to various stimuli, playing crucial roles in tissue homeostasis, wound healing, and ECM production. This study examines the molecular mechanisms underlying fibroblast plasticity, including key signaling pathways, epigenetic regulation, and microRNA-mediated control. The impact of aging on ECM synthesis and remodeling is discussed, and the diminished production of vital components such as collagen, elastin, and glycosaminoglycans are highlighted, alongside enhanced ECM degradation through upregulated matrix metalloproteinase activity and accumulation of advanced glycation end products. The process of cellular senescence in dermal fibroblasts is explored, with its role in skin aging and its effects on tissue homeostasis and repair capacity being highlighted. The senescence-associated secretory phenotype (SASP) is examined for its contribution to chronic inflammation and ECM disruption. This review also presents therapeutic perspectives, focusing on senolytics and geroprotectors as promising strategies to combat the negative effects of fibroblast senescence. Current challenges in translating preclinical findings to human therapies are addressed, along with future directions for research in this field. This comprehensive review explores the complex interplay between dermal fibroblast plasticity, cellular senescence, and extracellular matrix (ECM) remodeling in the context of skin aging. In conclusion, understanding the complex interplay between dermal fibroblast plasticity, cellular senescence, and extracellular matrix (ECM) remodeling is essential for developing effective anti-aging interventions, which highlights the need for further research into senolytic and geroprotective therapies to enhance skin health and longevity. This approach has shown promising results in preclinical studies, demonstrating improved skin elasticity and reduced signs of aging. Full article
Show Figures

Figure 1

19 pages, 4425 KiB  
Article
Multidimensional Phenotypic and Microbiome Studies Uncover an Association Between Reduced Feed Efficiency in Sheep During Mycoplasmal Pneumonia and Microbial Crosstalk Within the Rumen-Lung Axis
by Lianjun Feng, Yukun Zhang, Xiaoxue Zhang, Fadi Li, Kai Huang, Deyin Zhang, Zongwu Ma, Chengqi Yan, Qi Zhang, Mengru Pu, Ziyue Xiao, Lei Gao, Changchun Lin, Weiwei Wu, Weimin Wang and Huibin Tian
Vet. Sci. 2025, 12(8), 741; https://doi.org/10.3390/vetsci12080741 - 7 Aug 2025
Abstract
Mycoplasmal pneumonia of sheep (MPS), caused by Mesomycoplasma (Mycoplasma) ovipneumoniae, profoundly impacts ovine productivity and survival. Although gut–lung microbiota interactions are increasingly recognized in respiratory diseases, whether similar crosstalk occurs between the lung and rumen microbiota in MPS-affected sheep remains unknown. To [...] Read more.
Mycoplasmal pneumonia of sheep (MPS), caused by Mesomycoplasma (Mycoplasma) ovipneumoniae, profoundly impacts ovine productivity and survival. Although gut–lung microbiota interactions are increasingly recognized in respiratory diseases, whether similar crosstalk occurs between the lung and rumen microbiota in MPS-affected sheep remains unknown. To investigate alterations in the lung and rumen microbiota of sheep with MPS, the crosstalk between these microbial communities, and their impacts on growth phenotypes. From a cohort of 414 naturally infected six-month-old male Hu sheep, we selected 10 individuals with severe pulmonary pathology and 10 healthy controls for detailed phenotypic and microbiome analyses. Assessment of 359 phenotypic traits revealed that MPS significantly impairs feed efficiency and growth rate (p < 0.05). Through 16S rRNA gene sequencing, we found that MPS significantly altered the pulmonary microbiota community structure (p < 0.01), with a noticeable impact on the rumen microbiota composition (p = 0.059). Succinivibrionaceae_UCG-001 was significantly depleted in both the rumen and lungs of diseased sheep (p < 0.05) and strongly associated with reduced average daily feed intake (p < 0.05). In addition, pulmonary Pasteurella and ruminal Succinivibrionaceae_UCG-002 were significantly enriched in MPS-affected sheep, showed a strong positive correlation (p < 0.05), and were both negatively associated with feed efficiency (p < 0.05). Notably, Pasteurella multocida subsp. gallicida may act as a keystone species influencing feed efficiency. These findings point to a previously unrecognized rumen-lung microbial axis that may modulate host productivity in sheep affected by MPS. This work provides new insights into the pathogenesis of MPS and offers potential targets for therapeutic intervention and management. Full article
Show Figures

Figure 1

21 pages, 7477 KiB  
Article
Bidirectional Hypoxic Extracellular Vesicle Signaling Between Müller Glia and Retinal Pigment Epithelium Regulates Retinal Metabolism and Barrier Function
by Alaa M. Mansour, Mohamed S. Gad, Samar Habib and Khaled Elmasry
Biology 2025, 14(8), 1014; https://doi.org/10.3390/biology14081014 - 7 Aug 2025
Abstract
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia [...] Read more.
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood–retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD). Extracellular vesicles (EVs) play a crucial role in intercellular communication, protein homeostasis, and immune modulation, and have emerged as promising diagnostic and therapeutic tools. Understanding the role of extracellular vesicles’ (EVs’) signaling machinery of glial cells and the retinal pigment epithelium (RPE) is critical for developing effective treatments for retinal degeneration. In this study, we investigated the bidirectional EV-mediated crosstalk between RPE and Müller cells under hypoxic conditions and its impact on cellular metabolism and retinal cell integrity. Our findings demonstrate that RPE-derived extracellular vesicles (RPE EVs) induce time-dependent metabolic reprogramming in Müller cells. Short-term exposure (24 h) promotes pathways supporting neurotransmitter cycling, calcium and mineral absorption, and glutamate metabolism, while prolonged exposure (72 h) shifts Müller cell metabolism toward enhanced mitochondrial function and ATP production. Conversely, Müller cell-derived EVs under hypoxia influenced RPE metabolic pathways, enhancing fatty acid metabolism, intracellular vesicular trafficking, and the biosynthesis of mitochondrial co-factors such as ubiquinone. Proteomic analysis revealed significant modulation of key regulatory proteins. In Müller cells, hypoxic RPE-EV exposure led to reduced expression of Dyskerin Pseudouridine Synthase 1 (DKc1), Eukaryotic Translation Termination Factor 1 (ETF1), and Protein Ser/Thr phosphatases (PPP2R1B), suggesting alterations in RNA processing, translational fidelity, and signaling. RPE cells exposed to hypoxic Müller cell EVs exhibited elevated Ribosome-binding protein 1 (RRBP1), RAC1/2, and Guanine Nucleotide-Binding Protein G(i) Subunit Alpha-1 (GNAI1), supporting enhanced endoplasmic reticulum (ER) function and cytoskeletal remodeling. Functional assays also revealed the compromised barrier integrity of the outer blood–retinal barrier (oBRB) under hypoxic co-culture conditions. These results underscore the adaptive but time-sensitive nature of retinal cell communication via EVs in response to hypoxia. Targeting this crosstalk may offer novel therapeutic strategies to preserve retinal structure and function in ischemic retinopathies. Full article
Show Figures

Graphical abstract

15 pages, 894 KiB  
Article
Mediating Impact of Intranasal Oxytocin on the Interaction Between Irritability and Reactive Aggression in Youth with Severe Irritability
by Jake J. Son, Ji-Woo Suk, William F. Garvey, Ryan T. Edwards, Ellen Leibenluft, R. J. R. Blair and Soonjo Hwang
Life 2025, 15(8), 1253; https://doi.org/10.3390/life15081253 - 7 Aug 2025
Abstract
Objective: Irritability and reactive aggression are transdiagnostic features that are predictive of adverse long-term outcomes. This investigation examined whether intranasal oxytocin administration impacts the interaction between irritability and reactive aggression, and whether these effects can be detected at a neural level via a [...] Read more.
Objective: Irritability and reactive aggression are transdiagnostic features that are predictive of adverse long-term outcomes. This investigation examined whether intranasal oxytocin administration impacts the interaction between irritability and reactive aggression, and whether these effects can be detected at a neural level via a facial expression processing task during functional MRI (fMRI). Methods: In this study, 40 children and adolescents with severe irritability and psychiatric diagnoses of disruptive mood and behavioral disorders were assigned to either intranasal oxytocin or placebo administration over a 3-week period in a randomized, double-blind trial (ClinicalTrials, NCT02824627). Clinical measures and fMRI during a facial expression processing task were collected pre- and post-intervention. Brain regions sensitive to oxytocin administration were determined using whole-brain statistical analyses, with post hoc analyses to determine whether changes in the neural activity mediated the relationship between changes in irritability and reactive aggression across the intervention period. Results: Youth who received intranasal oxytocin administration exhibited significant decreases in irritability and reactive aggression compared to their counterparts in the placebo group. Further, oxytocin administration was associated with significant increases in neural activity in the right superior prefrontal cortex, which fully mediated the relationship between improvements in irritability and improvements in reactive aggression. Conclusions: Intranasal oxytocin significantly reduced irritability and reactive aggression in youth, as well as neural activity in the prefrontal cortex, such that increases in the cortical activity fully mediated the relationship between changes in irritability and reactive aggression. Taken together, these findings may reflect oxytocin-related enhancements in emotional regulation in youth with severe irritability, a potential therapeutic mechanism for mitigating reactive aggression. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

13 pages, 301 KiB  
Review
The Impact of Genital Infections on Women’s Fertility
by Sara Occhipinti, Carla Ettore, Giosuè Giordano Incognito, Chiara Gullotta, Dalila Incognito, Roberta Foti, Giuseppe Nunnari and Giuseppe Ettore
Acta Microbiol. Hell. 2025, 70(3), 33; https://doi.org/10.3390/amh70030033 - 7 Aug 2025
Abstract
Sexually transmitted infections (STIs) are a significant global health concern, affecting millions of people worldwide, particularly sexually active adolescents and young adults. These infections, caused by various pathogens, including bacteria, viruses, parasites, and fungi, can have profound implications for women’s reproductive health and [...] Read more.
Sexually transmitted infections (STIs) are a significant global health concern, affecting millions of people worldwide, particularly sexually active adolescents and young adults. These infections, caused by various pathogens, including bacteria, viruses, parasites, and fungi, can have profound implications for women’s reproductive health and fertility. This review explores the role of vaginal and uterine infections in women’s infertility, focusing on the most common pathogens and their impact on reproductive outcomes. Bacterial infections, such as those caused by intracellular bacteria (Mycoplasma, Ureaplasma, and Chlamydia), Neisseria gonorrhoeae, and bacterial vaginosis, are among the most prevalent causes of infertility in women. Studies have shown that these infections can lead to pelvic inflammatory disease, tubal occlusion, and endometrial damage, all of which can impair fertility. Mycobacterium tuberculosis, in particular, is a significant cause of genital tuberculosis and infertility in high-incidence countries. Viral infections, such as Human papillomavirus (HPV) and Herpes simplex virus (HSV), can also affect women’s fertility. While the exact role of HPV in female infertility remains unclear, studies suggest that it may increase the risk of endometrial implantation issues and miscarriage. HSV may be associated with unexplained infertility. Parasitic infections, such as trichomoniasis and schistosomiasis, can directly impact the female reproductive system, leading to infertility, ectopic pregnancy, and other complications. Fungal infections, such as candidiasis, are common but rarely have serious outcomes related to fertility. The vaginal microbiome plays a crucial role in maintaining reproductive health, and alterations in the microbial balance can increase susceptibility to STIs and infertility. Probiotics have been proposed as a potential therapeutic strategy to restore the vaginal ecosystem and improve fertility outcomes, although further research is needed to establish their efficacy. In conclusion, vaginal and uterine infections contribute significantly to women’s infertility, with various pathogens affecting the reproductive system through different mechanisms. Early diagnosis, appropriate treatment, and preventive measures are essential to mitigate the impact of these infections on women’s reproductive health and fertility. Full article
16 pages, 1769 KiB  
Review
SGLT2 Inhibitors and GLP-1 Receptor Agonists in Cardiovascular–Kidney–Metabolic Syndrome
by Aryan Gajjar, Arvind Kumar Raju, Amani Gajjar, Mythili Menon, Syed Asfand Yar Shah, Sourbha Dani and Andrew Weinberg
Biomedicines 2025, 13(8), 1924; https://doi.org/10.3390/biomedicines13081924 - 7 Aug 2025
Abstract
Cardiovascular–Kidney–Metabolic (CKM) syndrome symbolizes a single pathophysiologic entity including obesity, type 2 diabetes, chronic kidney disease, and cardiovascular disease. These conditions altogether accelerate adverse outcomes when they coexist. Recent evidence has shown that the function of glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium–glucose [...] Read more.
Cardiovascular–Kidney–Metabolic (CKM) syndrome symbolizes a single pathophysiologic entity including obesity, type 2 diabetes, chronic kidney disease, and cardiovascular disease. These conditions altogether accelerate adverse outcomes when they coexist. Recent evidence has shown that the function of glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium–glucose cotransporter-2 inhibitors (SGLT2i) alleviate stress on multiple organs. SGLT2i has been demonstrated to benefit heart failure, hemodynamic regulation, and renal protection while GLP-1RA on the other hand has been shown to demonstrate a strong impact on glycemic management, weight loss, and atherosclerotic cardiovascular disease. This review will aim to understand and evaluate the mechanistic rationalization, clinical evidence, and the potential therapeutic treatment of SGLT2 inhibitors and GLP-1 receptor agonists to treat individuals who have CKM syndrome. This analysis also assesses whether combination therapy can be a synergistic approach that may benefit patients but is still underutilized because of the lack of clear guidelines, the associated costs, and disparities in accessibility. Therefore, in this review, we will be discussing the combination therapy’s additive and synergistic effects, current recommendations and clinical evidence, and mechanistic insights of these GLT2 inhibitors and GLP-1 receptor agonists in CKM syndrome patients. Overall, early and combination usage of GLP-1RA and SGLT2i may be essential to demonstrating a significant shift in modern cardiometabolic therapy toward patient-centered care. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

14 pages, 759 KiB  
Article
Vitamin D Deficiency and Exocrine Pancreatic Insufficiency: An Analysis Carried Out in Orthogeriatric Patients (VIDEP.org)
by Pavol Mikula, Matthias Unseld and Hans Jürgen Heppner
J. Clin. Med. 2025, 14(15), 5558; https://doi.org/10.3390/jcm14155558 - 7 Aug 2025
Abstract
Introduction: Vitamin D deficiency, a reversible cause of osteoporosis, is increasingly prevalent, showing varying degrees of severity that are notably pronounced among the growing population of multimorbid elderly patients. Given that the aging pancreas undergoes senescent processes leading to impaired function—which negatively impacts [...] Read more.
Introduction: Vitamin D deficiency, a reversible cause of osteoporosis, is increasingly prevalent, showing varying degrees of severity that are notably pronounced among the growing population of multimorbid elderly patients. Given that the aging pancreas undergoes senescent processes leading to impaired function—which negatively impacts enteral vitamin D absorption and, consequently, elderly bone metabolism—a specific diagnostic and treatment approach is crucial. Our study aimed to determine the prevalence of vitamin D deficiency and exocrine pancreatic insufficiency (EPI) in orthogeriatric patients. We also evaluated differences in vitamin D deficiency severity between patients with normal and impaired pancreatic function. Furthermore, a short-term monitoring of vitamin D level increases after 12 days of substitution therapy in both groups aimed to inform osteoanabolic therapy for specific high-fracture-risk patients, assessing the influence of pancreatic function on substitution efficacy. Methods: We conducted a retrospective, monocentric cohort study, evaluating data from all patients hospitalized with manifest osteoporosis in an orthogeriatric department during a six-month spring/summer period. Demographic data, relevant comorbidities, the type of fracture, the amount of faecal elastase 1 (CALEX® Cap Bühlmann), and the serum levels of 25-hydroxyvitamin D (25(OH)D) were assessed. Results: We found a high prevalence (70.6%) of vitamin D deficiency (25(OH)D < 30 µg/L) among all orthogeriatric patients. Of these, 16% met the criteria for mild to severe EPI. The group with normal exocrine pancreatic function showed a higher average vitamin D value, and their increase in vitamin D levels following short-term substitution was up to 100% greater compared to the group with impaired pancreatic function. Notably, 69% of women and 20% of men met the therapeutic threshold for specific osteoanabolic osteoporosis therapy, even without a T-score. Conclusions: Our findings reveal a very high prevalence of vitamin D deficiency and a high prevalence of EPI in orthogeriatric patients. Those with impaired exocrine pancreatic function exhibit lower baseline vitamin D levels and a diminished capacity for vitamin D absorption during short-term monitoring. These results have significant clinical implications for osteoporotic therapy, given that a substantial proportion of patients, particularly women, meet the criteria for specific osteoanabolic treatment. Full article
(This article belongs to the Special Issue The “Orthogeriatric Fracture Syndrome”—Issues and Perspectives)
Show Figures

Figure 1

41 pages, 2949 KiB  
Review
Nanocarriers Containing Curcumin and Derivatives for Arthritis Treatment: Mapping the Evidence in a Scoping Review
by Beatriz Yurie Sugisawa Sato, Susan Iida Chong, Nathalia Marçallo Peixoto Souza, Raul Edison Luna Lazo, Roberto Pontarolo, Fabiane Gomes de Moraes Rego, Luana Mota Ferreira and Marcel Henrique Marcondes Sari
Pharmaceutics 2025, 17(8), 1022; https://doi.org/10.3390/pharmaceutics17081022 - 6 Aug 2025
Abstract
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water [...] Read more.
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water solubility, physicochemical instability, and low bioavailability. These limitations have led to innovative formulations, with nanocarriers emerging as a promising alternative. For this reason, this study aimed to address the potential advantages of associating CUR with nanocarrier systems in managing arthritis through a scoping review. Methods: A systematic literature search of preclinical (in vivo) and clinical studies was performed in PubMed, Scopus, and Web of Science (December 2024). General inclusion criteria include using CUR or natural derivatives in nano-based formulations for arthritis treatment. These elements lead to the question: “What is the impact of the association of CUR or derivatives in nanocarriers in treating arthritis?”. Results: From an initial 536 articles, 34 were selected for further analysis (31 preclinical investigations and three randomized clinical trials). Most studies used pure CUR (25/34), associated with organic (30/34) nanocarrier systems. Remarkably, nanoparticles (16/34) and nanoemulsions (5/34) were emphasized. The formulations were primarily presented in liquid form (23/34) and were generally administered to animal models through intra-articular injection (11/31). Complete Freund’s Adjuvant (CFA) was the most frequently utilized among the various models to induce arthritis-like joint damage. The findings indicate that associating CUR or its derivatives with nanocarrier systems enhances its pharmacological efficacy through controlled release and enhanced solubility, bioavailability, and stability. Moreover, the encapsulation of CUR showed better results in most cases than in its free form. Nonetheless, most studies were restricted to the preclinical model, not providing direct evidence in humans. Additionally, inadequate information and clarity presented considerable challenges for preclinical evidence, which was confirmed by SYRCLE’s bias detection tools. Conclusions: Hence, this scoping review highlights the anti-arthritic effects of CUR nanocarriers as a promising alternative for improved treatment. Full article
(This article belongs to the Special Issue Advances in Polymer-Based Devices and Platforms for Pain Management)
Back to TopTop