Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = theragnostic (therapeutics & diagnostics)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 374 KB  
Review
Redefining Prostate Cancer Precision: Radiogenomics, Theragnostics, and AI-Driven Biomarkers
by Cristina Quicios Dorado, Ana Sánchez Ramírez, Marta Pérez Pérez, Manuel Saavedra Centeno, Lira Pelari Mici, Carlos Márquez Güemez, Eduardo Albers Acosta, Guillermo Celada Luis, Martin Costal, Patricia Toquero Diez, Nuria Romero Laorden, Raquel Jover Díaz, Clara Velasco Balanza and Luis San José Manso
Cancers 2025, 17(23), 3747; https://doi.org/10.3390/cancers17233747 - 24 Nov 2025
Viewed by 959
Abstract
Background/Objectives: Prostate cancer is the most prevalent malignancy in men and remains a leading cause of cancer-related mortality worldwide. Conventional imaging modalities exhibit limited sensitivity, particularly in the context of disease recurrence and advanced disease. Methods: A narrative review was conducted [...] Read more.
Background/Objectives: Prostate cancer is the most prevalent malignancy in men and remains a leading cause of cancer-related mortality worldwide. Conventional imaging modalities exhibit limited sensitivity, particularly in the context of disease recurrence and advanced disease. Methods: A narrative review was conducted of studies published between 2015 and 2025, identified through PubMed, Embase, and Cochrane. Eligible publications addressed advanced imaging techniques, PSMA-targeted diagnostics and therapies, radiogenomics, liquid biopsy approaches, and artificial intelligence applications and personalized medicine. Preclinical studies, single case reports, and conference abstracts without full text were excluded. Results: PSMA PET/CT outperforms conventional imaging for detection, and restaging, influencing clinical management across disease stages. Lutetium-177–PSMA-617 has become the standard radioligand therapy for metastatic castration-resistant prostate cancer, whereas alpha-emitting agents remain under clinical investigation. Radiogenomics and liquid biopsy assays (ctDNA, CTCs, AR-V7) provide complementary molecular insights. Artificial intelligence enhances imaging interpretations, standardization, and reproducibility, while multimodal data integration supports individualized risk stratification. Integrative models combining imaging, genomic, and liquid biopsy data pave the way toward precision oncology and personalized therapeutic decision-making. Conclusions: Advances in imaging and theragnostics are reshaping prostate cancer management, bridging the gap between molecular biology and clinical practice to enable precision oncology. Full article
21 pages, 555 KB  
Review
Beyond Visualization: Advanced Imaging, Theragnostics and Biomarker Integration in Urothelial Bladder Cancer
by Eduardo Albers Acosta, Lira Pelari Mici, Carlos Márquez Güemez, Clara Velasco Balanza, Manuel Saavedra Centeno, Marta Pérez Pérez, Guillermo Celada Luis, Cristina Quicios Dorado, José Daniel Subiela, Rodrigo España Navarro, Patricia Toquero Diez, Nuria Romero Laorden and Luis San José Manso
Cancers 2025, 17(19), 3261; https://doi.org/10.3390/cancers17193261 - 8 Oct 2025
Cited by 1 | Viewed by 1302
Abstract
Background/Objectives: Bladder cancer is characterized by high recurrence and progression rates, posing a challenge to current diagnostic and treatment strategies. This review aims to provide a comprehensive overview of emerging technologies, including novel PET tracers, AI-assisted cystoscopy, theragnostics, and molecular biomarkers. Methods: [...] Read more.
Background/Objectives: Bladder cancer is characterized by high recurrence and progression rates, posing a challenge to current diagnostic and treatment strategies. This review aims to provide a comprehensive overview of emerging technologies, including novel PET tracers, AI-assisted cystoscopy, theragnostics, and molecular biomarkers. Methods: We performed a narrative review of the recent literature focusing on innovations in imaging, AI, theragnostics, and biomarker research relevant to bladder cancer diagnosis and management. Results: Several novel PET tracers, such as 68Ga-PSMA and fibroblast activation protein inhibitor (FAPI), demonstrated potential in improving detection sensitivity. AI-enhanced cystoscopy has shown promise in real-time lesion detection, while theragnostic agents enable combined diagnostic and therapeutic applications. Advances in molecular biomarkers, including circulating Tumor DNA (ctDNA) and gene expression signatures, offer new avenues for patient stratification and monitoring. Conclusions: Integration of advanced imaging, AI, theragnostics, and biomarker analysis may transform bladder cancer management, supporting personalized and more effective care strategies. Full article
Show Figures

Figure 1

33 pages, 6805 KB  
Review
Diatom Biosilica: A Useful Natural Material for Biomedical Engineering
by Daehyeon Yoo, Minyoung Lee, Yoseph Seo, Jinwook Yoon, Eunseok Jang, Gaeun Lee, Daeryul Kwon, Sang Deuk Lee, Junhong Min and Taek Lee
Water 2025, 17(16), 2373; https://doi.org/10.3390/w17162373 - 11 Aug 2025
Viewed by 4434
Abstract
Silica-based materials are recognized as effective functional materials across diverse industrial fields, including biomedicine (e.g., drug delivery systems (DDS), biosensors, and tissue engineering), owing to their excellent stability and physicochemical characteristics. Among them, diatom biosilica (DB), which constitutes a major part of aquatic [...] Read more.
Silica-based materials are recognized as effective functional materials across diverse industrial fields, including biomedicine (e.g., drug delivery systems (DDS), biosensors, and tissue engineering), owing to their excellent stability and physicochemical characteristics. Among them, diatom biosilica (DB), which constitutes a major part of aquatic biomass, recently gained significant attention as a valuable biomaterial following breakthroughs in its innovative surface structure, superior biocompatibility and multifunctionality. Therefore, DB is emerging as an alternative to synthetic materials used in the biomedical field. This review comprehensively examines the diverse biological properties of DB, followed by an analysis of harvesting and purification strategies. Then, the current application status of DB in two principal biomedical domains, DDS and biosensors, is evaluated. Furthermore, the convergence of these domains into theragnostic applications addresses a significant unmet clinical need for simultaneous therapeutic intervention and diagnostic monitoring, positioning DB as a transformative biomaterial solution. The unique combination of natural hierarchical architecture, tunable surface properties, and excellent biocompatibility make DB promising candidates for next-generation integrated biomedical platforms to address the growing demand of personalized medicine and precision healthcare solutions. Full article
(This article belongs to the Special Issue Advances in Diatom Research in Freshwater)
Show Figures

Graphical abstract

33 pages, 2309 KB  
Review
Recent Progress of Nanomedicine for the Synergetic Treatment of Radiotherapy (RT) and Photothermal Treatment (PTT)
by Maria-Eleni Zachou, Ellas Spyratou, Nefeli Lagopati, Kalliopi Platoni and Efstathios P. Efstathopoulos
Cancers 2025, 17(14), 2295; https://doi.org/10.3390/cancers17142295 - 10 Jul 2025
Cited by 2 | Viewed by 2255
Abstract
Nanotechnology has significantly advanced cancer therapy, particularly through the development of multifunctional nanoparticles (NPs) capable of acting as both therapeutic and diagnostic agents. This review focuses on the synergistic integration of radiotherapy (RT) and photothermal therapy (PTT) mediated by engineered NPs—a rapidly evolving [...] Read more.
Nanotechnology has significantly advanced cancer therapy, particularly through the development of multifunctional nanoparticles (NPs) capable of acting as both therapeutic and diagnostic agents. This review focuses on the synergistic integration of radiotherapy (RT) and photothermal therapy (PTT) mediated by engineered NPs—a rapidly evolving strategy that enhances tumor specificity, minimizes healthy tissue damage, and enables real-time imaging. By analyzing the recent literature, we highlight the dual role of NPs in amplifying radiation-induced DNA damage and converting near-infrared (NIR) light into localized thermal energy. The review classifies various metal-based and composite nanomaterials (e.g., Au, Pt, Bi, Cu, and Fe) and evaluates their performance in preclinical RT–PTT settings. We also discuss the physicochemical properties, targeting strategies, and theragnostic applications that contribute to treatment efficiency. Unlike conventional combinatorial therapies, NP-mediated RT–PTT enables high spatial–temporal control, immunogenic potential, and integration with multimodal imaging. We conclude with the current challenges, translational barriers, and outlooks for clinical implementation. This work provides a comprehensive, up-to-date synthesis of NP-assisted RT–PTT as a powerful approach within the emerging field of nano-oncology. Full article
(This article belongs to the Special Issue Nanomedicine’s Role in Oncology)
Show Figures

Figure 1

28 pages, 742 KB  
Review
Current Approaches of Nuclear Molecular Imaging in Breast Cancer
by Laura Schäfer, Betül Altunay, Amelie Heesch, Thiemo van Nijnatten, Sofia Vaz, Malik Eid Juweid and Felix Manuel Mottaghy
Cancers 2025, 17(13), 2105; https://doi.org/10.3390/cancers17132105 - 23 Jun 2025
Viewed by 2596
Abstract
In this narrative review, we aim to summarize recent advancements in nuclear molecular imaging techniques and their applications in BCa management. The main focus of this review is on the most relevant clinical investigations from the past 2–3 years that highlight the enhanced [...] Read more.
In this narrative review, we aim to summarize recent advancements in nuclear molecular imaging techniques and their applications in BCa management. The main focus of this review is on the most relevant clinical investigations from the past 2–3 years that highlight the enhanced diagnostic and therapeutic value of these imaging modalities. A variety of radiolabeled probes introduced in molecular imaging is explored, detailing their roles in the accurate diagnosis and characterization of BCa, as well as their integration into radioligand therapy and theragnostic strategies. Full article
Show Figures

Figure 1

41 pages, 10319 KB  
Review
BODIPY Dyes: A New Frontier in Cellular Imaging and Theragnostic Applications
by Panangattukara Prabhakaran Praveen Kumar, Shivanjali Saxena and Rakesh Joshi
Colorants 2025, 4(2), 13; https://doi.org/10.3390/colorants4020013 - 2 Apr 2025
Cited by 5 | Viewed by 8936
Abstract
BODIPY (Boron-Dipyrromethene) dyes have emerged as versatile fluorescent probes in cellular imaging and therapeutic applications owing to their unique chemical properties, including high fluorescence quantum yield, strong extinction coefficients, and remarkable photostability. This review synthesizes the recent advancements in BODIPY dyes, focusing on [...] Read more.
BODIPY (Boron-Dipyrromethene) dyes have emerged as versatile fluorescent probes in cellular imaging and therapeutic applications owing to their unique chemical properties, including high fluorescence quantum yield, strong extinction coefficients, and remarkable photostability. This review synthesizes the recent advancements in BODIPY dyes, focusing on their deployment in biological imaging and therapy. The exceptional ability of BODIPY dyes to selectively stain cellular structures enables precise visualization of lipids, proteins, and nucleic acids within live and tumor cells, thereby facilitating enhanced understanding of biochemical processes. Moreover, BODIPY derivatives are increasingly utilized in Photodynamic therapy (PDT) and Photothermal therapies (PTT) for targeting cancer cells, where their capability to generate cytotoxic reactive oxygen species upon light activation offers a promising approach to tumor treatment. Recently, BODIPY derivatives have been used for Boron Neutron Capture Therapy (BNCT) for various tumors, and it is a growing research field. Advancements in nanotechnology have allowed the fabrication of BODIPY dye-based nanomedicines, either alone or with the use of metallic nanoparticles as a matrix offering the development of a new class of bioimaging and theragnostic agents. This review also discusses innovative BODIPY-based formulations and strategies that amplify therapeutic efficacy while minimizing adverse effects, underscoring the potential of these dyes as integral components in next-generation diagnostic and therapeutic modalities. By summarizing current research and future perspectives, this review highlights the critical importance of BODIPY dyes in advancing the fields of cellular imaging and treatment methodologies. Full article
Show Figures

Graphical abstract

20 pages, 4965 KB  
Review
Application of Metal Oxide Nanoparticles in Different Carcinomas
by Nutan Rani, Yousuf Khan, Sapna Yadav, Kalawati Saini and Dipak Maity
J. Nanotheranostics 2024, 5(4), 253-272; https://doi.org/10.3390/jnt5040015 - 20 Dec 2024
Cited by 4 | Viewed by 3479
Abstract
Metal oxide nanoparticles (MONPs) have recently attracted much attention from researchers due to their use in cancer chemotherapy, targeted drug delivery, and diagnosis/MRI imaging. Various studies have demonstrated that different metal oxide NPs show cytotoxic effects by inducing apoptosis in cancerous cells and [...] Read more.
Metal oxide nanoparticles (MONPs) have recently attracted much attention from researchers due to their use in cancer chemotherapy, targeted drug delivery, and diagnosis/MRI imaging. Various studies have demonstrated that different metal oxide NPs show cytotoxic effects by inducing apoptosis in cancerous cells and do not have any toxic impact on normal cells. The mechanism of cytotoxicity is shown through reactive oxygen species (ROS) generated by (MONPs) in the cancerous cell. In vitro and in vivo studies reveal that in some cases metal oxide NPs are used alone and somewhere these NPs are used in combination with other therapies such as photodynamic therapy and with anticancer nanomedicines as drug carriers or drug conjugates. The phenomenon of enhanced permeability and retention (EPR) effect has been the basis of targeted drug delivery to cancerous tumors. Finally, we also provide a simple and comparative analysis of the major apoptosis pathways proposed to increase beginner understanding of anti-cancer nanomaterials. Herein, we have reviewed the most important antitumor results obtained with different metal oxide nanoparticles such as ZnO, Fe2O3/Fe3O4, CuO/Cu2O, TiO2, CeO2, and HfO2, respectively. These NPs can be applied to treat cancer by either passive or active processes. A passive process uses the enhanced permeability and retention (EPR) effect. Superparamagnetic iron oxide nanoparticles (SPIONs), due to their unique magnetic and physiochemical properties have been used in magnetic fluid hyperthermia (MFH) and magnetic resonance imaging (MRI) in vitro as well as in vivo. Now, the research has reached the stage of clinical trials for the treatment of various types of cancer. ZnO NPs have been used very vastly in cytotoxic as well as in targeted drug delivery. These NPs are also used for loading anticancer drugs such as doxorubicin. Herein, in this review, we have examined current advances in utilizing MONPs and their analogs as cancer therapeutic, diagnostic, and drug-delivery agents. Full article
Show Figures

Graphical abstract

15 pages, 897 KB  
Article
Oldie but Goldie: The Fundamental Role of Radioiodine in the Management of Thyroid Cancer
by Alfredo Campennì, Massimiliano Siracusa and Rosaria Maddalena Ruggeri
J. Clin. Med. 2024, 13(21), 6400; https://doi.org/10.3390/jcm13216400 - 25 Oct 2024
Cited by 3 | Viewed by 2239
Abstract
Background/Objectives: The management of differentiated thyroid cancer (DTC) patients has undergone a major paradigm shift in past years, especially regarding the role of a careful postoperative disease assessment both in deciding for or against the use of iodine-131 therapy (i.e., patients’ selection) [...] Read more.
Background/Objectives: The management of differentiated thyroid cancer (DTC) patients has undergone a major paradigm shift in past years, especially regarding the role of a careful postoperative disease assessment both in deciding for or against the use of iodine-131 therapy (i.e., patients’ selection) and in selecting the correct goal of the treatment: ablative, adjuvant or therapeutic. Furthermore, diagnostic and risk-oriented uses of iodine isotopes (i.e., 123/124/131I) should always be considered during both postoperative assessment and follow-up of DTC patients to improve early staging and response assessment to initial treatments, respectively. The present review summarizes current (and real-life-related) evidence and the emerging perspectives on the therapeutic, diagnostic, and theragnostic use of radioiodine isotopes. Methods: A review of the pertinent literature was performed in PubMed, Web of Science, and Scopus without language restrictions or time limits and using one or more fitting search criteria and terms. Results: According to the literature evidence and real-life clinical practice, a risk-oriented postoperative iodine-131 therapy remains pivotal for most DTC patients and improves early disease staging through post-therapy functional imaging (i.e., theragnostic aim). Accordingly, the goal of iodine-131 therapy, the optimal strategy (empiric vs. dosimetric approach), the appropriate stimulation method [i.e., levothyroxine (L-T4) withdrawal vs. recombinant human thyrotropin (rhTSH) administration] and, finally, the suggested radioiodine activity to deliver for iodine-131 therapy (RIT) should be personalized, especially in metastatic DTC patients. Conclusions: The evidence related to the diagnostic and theragnostic use of iodine isotopes leads to a significant improvement in the postoperative risk stratification and staging of DTC patients in addition to a more accurate assessment of the response to initial treatments. In conclusion, radioiodine is really an oldie but goldie radiotracer. It has both a current fundamental role and a future perspective for the more careful management of DTC patients. Full article
(This article belongs to the Special Issue Thyroid Disease: Updates from Diagnosis to Treatment)
Show Figures

Figure 1

29 pages, 17140 KB  
Article
The Integrated Bioinformatic Approach Reveals the Prognostic Significance of LRP1 Expression in Ovarian Cancer
by Tesfaye Wolde, Vipul Bhardwaj, Md. Reyad-ul-Ferdous, Peiwu Qin and Vijay Pandey
Int. J. Mol. Sci. 2024, 25(14), 7996; https://doi.org/10.3390/ijms25147996 - 22 Jul 2024
Cited by 14 | Viewed by 3659
Abstract
A hyperactive tumour microenvironment (TME) drives unrestricted cancer cell survival, drug resistance, and metastasis in ovarian carcinoma (OC). However, therapeutic targets within the TME for OC remain elusive, and efficient methods to quantify TME activity are still limited. Herein, we employed an integrated [...] Read more.
A hyperactive tumour microenvironment (TME) drives unrestricted cancer cell survival, drug resistance, and metastasis in ovarian carcinoma (OC). However, therapeutic targets within the TME for OC remain elusive, and efficient methods to quantify TME activity are still limited. Herein, we employed an integrated bioinformatics approach to determine which immune-related genes (IRGs) modulate the TME and further assess their potential theragnostic (therapeutic + diagnostic) significance in OC progression. Using a robust approach, we developed a predictive risk model to retrospectively examine the clinicopathological parameters of OC patients from The Cancer Genome Atlas (TCGA) database. The validity of the prognostic model was confirmed with data from the International Cancer Genome Consortium (ICGC) cohort. Our approach identified nine IRGs, AKT2, FGF7, FOS, IL27RA, LRP1, OBP2A, PAEP, PDGFRA, and PI3, that form a prognostic model in OC progression, distinguishing patients with significantly better clinical outcomes in the low-risk group. We validated this model as an independent prognostic indicator and demonstrated enhanced prognostic significance when used alongside clinical nomograms for accurate prediction. Elevated LRP1 expression, which indicates poor prognosis in bladder cancer (BLCA), OC, low-grade gliomas (LGG), and glioblastoma (GBM), was also associated with immune infiltration in several other cancers. Significant correlations with immune checkpoint genes (ICGs) highlight the potential importance of LRP1 as a biomarker and therapeutic target. Furthermore, gene set enrichment analysis highlighted LRP1’s involvement in metabolism-related pathways, supporting its prognostic and therapeutic relevance also in BLCA, OC, low-grade gliomas (LGG), GBM, kidney cancer, OC, BLCA, kidney renal clear cell carcinoma (KIRC), stomach adenocarcinoma (STAD), and stomach and oesophageal carcinoma (STES). Our study has generated a novel signature of nine IRGs within the TME across cancers, that could serve as potential prognostic predictors and provide a valuable resource to improve the prognosis of OC. Full article
(This article belongs to the Special Issue New Insights in Translational Bioinformatics)
Show Figures

Figure 1

18 pages, 2135 KB  
Review
Emerging Applications of Nanoparticles in the Diagnosis and Treatment of Breast Cancer
by Josephine B. Oehler, Weranga Rajapaksha and Hugo Albrecht
J. Pers. Med. 2024, 14(7), 723; https://doi.org/10.3390/jpm14070723 - 4 Jul 2024
Cited by 37 | Viewed by 10459
Abstract
Breast cancer remains the most prevalent cancer among women worldwide, driving the urgent need for innovative approaches to diagnosis and treatment. This review highlights the pivotal role of nanoparticles in revolutionizing breast cancer management through advancements of interconnected approaches including targeted therapy, imaging, [...] Read more.
Breast cancer remains the most prevalent cancer among women worldwide, driving the urgent need for innovative approaches to diagnosis and treatment. This review highlights the pivotal role of nanoparticles in revolutionizing breast cancer management through advancements of interconnected approaches including targeted therapy, imaging, and personalized medicine. Nanoparticles, with their unique physicochemical properties, have shown significant promise in addressing current treatment limitations such as drug resistance and nonspecific systemic distribution. Applications range from enhancing drug delivery systems for targeted and sustained release to developing innovative diagnostic tools for early and precise detection of metastases. Moreover, the integration of nanoparticles into photothermal therapy and their synergistic use with existing treatments, such as immunotherapy, illustrate their transformative potential in cancer care. However, the journey towards clinical adoption is fraught with challenges, including the chemical feasibility, biodistribution, efficacy, safety concerns, scalability, and regulatory hurdles. This review delves into the current state of nanoparticle research, their applications in breast cancer therapy and diagnosis, and the obstacles that must be overcome for clinical integration. Full article
(This article belongs to the Special Issue Nanomedicine in Cancer Therapy: What's New)
Show Figures

Figure 1

15 pages, 3060 KB  
Review
Current Advances in Radioactive Iodine-Refractory Differentiated Thyroid Cancer
by Fabio Volpe, Carmela Nappi, Emilia Zampella, Erica Di Donna, Simone Maurea, Alberto Cuocolo and Michele Klain
Curr. Oncol. 2024, 31(7), 3870-3884; https://doi.org/10.3390/curroncol31070286 - 3 Jul 2024
Cited by 15 | Viewed by 11036
Abstract
Background: Differentiated thyroid cancer (DTC) patients have an outstanding overall long-term survival rate, and certain subsets of DTC patients have a very high likelihood of disease recurrence. Radioactive iodine (RAI) therapy is a cornerstone in DTC management, but cancer cells can eventually develop [...] Read more.
Background: Differentiated thyroid cancer (DTC) patients have an outstanding overall long-term survival rate, and certain subsets of DTC patients have a very high likelihood of disease recurrence. Radioactive iodine (RAI) therapy is a cornerstone in DTC management, but cancer cells can eventually develop resistance to RAI. Radioactive iodine-refractory DTC (RAIR-DTC) is a condition defined by ATA 2015 guidelines when DTC cannot concentrate RAI ab initio or loses RAI uptake ability after the initial therapy. The RAIR condition implies that RAI cannot reveal new met-astatic foci, so RAIR-DTC metabolic imaging needs new tracers. 18F-FDG PET/CT has been widely used and has demonstrated prognostic value, but 18F-FDG DTC avidity may remain low. Fibroblast activation protein inhibitors (FA-Pi)s, prostatic-specific membrane antigen (PSMA), and somatostatin receptor (SSTR) tracers have been proposed as theragnostic agents in experimental settings and Arg-Gly-Asp (RGD) peptides in the diagnostic trial field. Multi-targeted tyrosine kinase inhibitors are relatively new drugs approved in RAIR-DTC therapy. Despite the promising targeted setting, they relate to frequent adverse-event onset. Sorafenib and trametinib have been included in re-differentiation protocols aimed at re-inducing RAI accumulation in DTC cells. Results appear promising, but not excellent. Conclusions: RAIR-DTC remains a challenging nosological entity. There are still controversies on RAIR-DTC definition and post-RAI therapy evaluation, with post-therapy whole-body scan (PT-WBS) the only validated criterion of response. The recent introduction of multiple diagnostic and therapeutic agents obliges physicians to pursue a multidisciplinary approach aiming to correct drug introduction and timing choice. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies)
Show Figures

Figure 1

17 pages, 2196 KB  
Article
Biological Response Following the Systemic Injection of PEG–PAMAM–Rhodamine Conjugates in Zebrafish
by Beatriz Custódio, Patrícia Carneiro, Joana Marques, Victoria Leiro, Ana M. Valentim, Mafalda Sousa, Sofia D. Santos, José Bessa and Ana P. Pêgo
Pharmaceutics 2024, 16(5), 608; https://doi.org/10.3390/pharmaceutics16050608 - 30 Apr 2024
Cited by 3 | Viewed by 4270
Abstract
Numerous therapeutic and diagnostic approaches used within a clinical setting depend on the administration of compounds via systemic delivery. Biomaterials at the nanometer scale, as dendrimers, act as delivery systems by improving cargo bioavailability, circulation time, and the targeting of specific tissues. Although [...] Read more.
Numerous therapeutic and diagnostic approaches used within a clinical setting depend on the administration of compounds via systemic delivery. Biomaterials at the nanometer scale, as dendrimers, act as delivery systems by improving cargo bioavailability, circulation time, and the targeting of specific tissues. Although evaluating the efficacy of pharmacological agents based on nanobiomaterials is crucial, conducting toxicological assessments of biomaterials is essential for advancing clinical translation. Here, a zebrafish larvae model was explored to assess the biocompatibility of poly(amido amine) (PAMAM), one of the most exploited dendrimers for drug delivery. We report the impact of a systemic injection of polyethylene glycol (PEG)-modified G4 PAMAM conjugated with rhodamine (Rho) as a mimetic drug (PEG–PAMAM–Rho) on survival, animal development, inflammation, and neurotoxicity. A concentration- and time-dependent effect was observed on mortality, developmental morphology, and innate immune system activation (macrophages). Significant effects in toxicological indicators were reported in the highest tested concentration (50 mg/mL PEG–PAMAM–Rho) as early as 48 h post-injection. Additionally, a lower concentration of PEG–PAMAM–Rho (5 mg/mL) was found to be safe and subsequently tested for neurotoxicity through behavioral assays. In accordance, no significative signs of toxicity were detected. In conclusion, the dose response of the animal was assessed, and the safe dosage for future use in theragnostics was defined. Additionally, new methodologies were established that can be adapted to further studies in toxicology using other nanosystems for systemic delivery. Full article
Show Figures

Graphical abstract

32 pages, 6414 KB  
Review
Peptide Therapeutics: Unveiling the Potential against Cancer—A Journey through 1989
by Othman Al Musaimi
Cancers 2024, 16(5), 1032; https://doi.org/10.3390/cancers16051032 - 2 Mar 2024
Cited by 25 | Viewed by 12038
Abstract
The United States Food and Drug Administration (FDA) has approved a plethora of peptide-based drugs as effective drugs in cancer therapy. Peptides possess high specificity, permeability, target engagement, and a tolerable safety profile. They exhibit selective binding with cell surface receptors and proteins, [...] Read more.
The United States Food and Drug Administration (FDA) has approved a plethora of peptide-based drugs as effective drugs in cancer therapy. Peptides possess high specificity, permeability, target engagement, and a tolerable safety profile. They exhibit selective binding with cell surface receptors and proteins, functioning as agonists or antagonists. They also serve as imaging agents for diagnostic applications or can serve a dual-purpose as both diagnostic and therapeutic (theragnostic) agents. Therefore, they have been exploited in various forms, including linkers, peptide conjugates, and payloads. In this review, the FDA-approved prostate-specific membrane antigen (PSMA) peptide antagonists, peptide receptor radionuclide therapy (PRRT), somatostatin analogs, antibody–drug conjugates (ADCs), gonadotropin-releasing hormone (GnRH) analogs, and other peptide-based anticancer drugs are analyzed in terms of their chemical structures and properties, therapeutic targets and mechanisms of action, development journey, administration routes, and side effects. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Graphical abstract

22 pages, 2073 KB  
Review
Emerging Role of Nuclear Medicine in Prostate Cancer: Current State and Future Perspectives
by Fabio Volpe, Carmela Nappi, Leandra Piscopo, Emilia Zampella, Ciro Gabriele Mainolfi, Andrea Ponsiglione, Massimo Imbriaco, Alberto Cuocolo and Michele Klain
Cancers 2023, 15(19), 4746; https://doi.org/10.3390/cancers15194746 - 27 Sep 2023
Cited by 9 | Viewed by 3970
Abstract
Prostate cancer is the most frequent epithelial neoplasia after skin cancer in men starting from 50 years and prostate-specific antigen (PSA) dosage can be used as an early screening tool. Prostate cancer imaging includes several radiological modalities, ranging from ultrasonography, computed tomography (CT), [...] Read more.
Prostate cancer is the most frequent epithelial neoplasia after skin cancer in men starting from 50 years and prostate-specific antigen (PSA) dosage can be used as an early screening tool. Prostate cancer imaging includes several radiological modalities, ranging from ultrasonography, computed tomography (CT), and magnetic resonance to nuclear medicine hybrid techniques such as single-photon emission computed tomography (SPECT)/CT and positron emission tomography (PET)/CT. Innovation in radiopharmaceutical compounds has introduced specific tracers with diagnostic and therapeutic indications, opening the horizons to targeted and very effective clinical care for patients with prostate cancer. The aim of the present review is to illustrate the current knowledge and future perspectives of nuclear medicine, including stand-alone diagnostic techniques and theragnostic approaches, in the clinical management of patients with prostate cancer from initial staging to advanced disease. Full article
Show Figures

Figure 1

19 pages, 3600 KB  
Review
Polymeric Theragnostic Nanoplatforms for Bone Tissue Engineering
by Kaushita Banerjee and Harishkumar Madhyastha
J. Nanotheranostics 2023, 4(3), 280-298; https://doi.org/10.3390/jnt4030013 - 20 Jul 2023
Cited by 2 | Viewed by 3160
Abstract
Nanomaterial-based tissue engineering strategies are precisely designed and tweaked to contest specific patient needs and their end applications. Though theragnostic is a radical term very eminent in cancer prognosis, of late, theragnostic approaches have been explored in the fields of tissue remodulation and [...] Read more.
Nanomaterial-based tissue engineering strategies are precisely designed and tweaked to contest specific patient needs and their end applications. Though theragnostic is a radical term very eminent in cancer prognosis, of late, theragnostic approaches have been explored in the fields of tissue remodulation and reparation. The engineering of theragnostic nanomaterials has opened up avenues for disease diagnosis, imaging, and therapeutic treatments. The instantaneous monitoring of therapeutic strategy is expected to co-deliver imaging and pharmaceutical agents at the same time, and nanoscale carrier moieties are convenient and efficient platforms in theragnostic applications, especially in soft and hard tissue regeneration. Furthermore, imaging modalities have extensively contributed to the signal-to-noise ratio. Simultaneously, there is an accumulation of high concentrations of therapeutic mediators at the defect site. Given the confines of contemporary bone diagnostic systems, the clinical rationale demands nano/biomaterials that can localize to bone-diseased sites to enhance the precision and prognostic value for osteoporosis, non-healing fractures, and/or infections, etc. Furthermore, bone theragnostics may have an even greater clinical impact and multimodal imaging procedures can overcome the restrictions of individual modalities. The present review introduces representative theragnostic polymeric nanomaterials and their advantages and disadvantages in practical use as well as their unique properties. Full article
Show Figures

Figure 1

Back to TopTop