Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (239)

Search Parameters:
Keywords = the gadget

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2794 KiB  
Article
Medical Data over Sound—CardiaWhisper Concept
by Radovan Stojanović, Jovan Đurković, Mihailo Vukmirović, Blagoje Babić, Vesna Miranović and Andrej Škraba
Sensors 2025, 25(15), 4573; https://doi.org/10.3390/s25154573 - 24 Jul 2025
Viewed by 339
Abstract
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the [...] Read more.
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the DoS concept to the medical domain by using a medical data-over-sound (MDoS) framework. CardiaWhisper integrates wearable biomedical sensors with home care systems, edge or IoT gateways, and telemedical networks or cloud platforms. Using a transmitter device, vital signs such as ECG (electrocardiogram) signals, PPG (photoplethysmogram) signals, RR (respiratory rate), and ACC (acceleration/movement) are sensed, conditioned, encoded, and acoustically transmitted to a nearby receiver—typically a smartphone, tablet, or other gadget—and can be further relayed to edge and cloud infrastructures. As a case study, this paper presents the real-time transmission and processing of ECG signals. The transmitter integrates an ECG sensing module, an encoder (either a PLL-based FM modulator chip or a microcontroller), and a sound emitter in the form of a standard piezoelectric speaker. The receiver, in the form of a mobile phone, tablet, or desktop computer, captures the acoustic signal via its built-in microphone and executes software routines to decode the data. It then enables a range of control and visualization functions for both local and remote users. Emphasis is placed on describing the system architecture and its key components, as well as the software methodologies used for signal decoding on the receiver side, where several algorithms are implemented using open-source, platform-independent technologies, such as JavaScript, HTML, and CSS. While the main focus is on the transmission of analog data, digital data transmission is also illustrated. The CardiaWhisper system is evaluated across several performance parameters, including functionality, complexity, speed, noise immunity, power consumption, range, and cost-efficiency. Quantitative measurements of the signal-to-noise ratio (SNR) were performed in various realistic indoor scenarios, including different distances, obstacles, and noise environments. Preliminary results are presented, along with a discussion of design challenges, limitations, and feasible applications. Our experience demonstrates that CardiaWhisper provides a low-power, eco-friendly alternative to traditional RF or Bluetooth-based medical wearables in various applications. Full article
Show Figures

Graphical abstract

33 pages, 946 KiB  
Review
Intelligence and Moral Development: A Critical Historical Review and Future Directions
by Frank Fair and Daniel Fasko
J. Intell. 2025, 13(7), 72; https://doi.org/10.3390/jintelligence13070072 - 22 Jun 2025
Viewed by 933
Abstract
This paper is a critical, historical review of the literature on intelligence and moral development. In this review we come to a number of conclusions. For example, we identify methodological issues in past research on intelligence in relation to moral development, from Wiggam’s [...] Read more.
This paper is a critical, historical review of the literature on intelligence and moral development. In this review we come to a number of conclusions. For example, we identify methodological issues in past research on intelligence in relation to moral development, from Wiggam’s paper in 1941 through the first quarter of the 21st century, and we commend research done with methodological improvements we specify. Also, we conclude that Heyes’ evolutionary psychology that humans have a specifiable “starter kit” of processes that produce “cognitive gadgets,” including those used in normative thinking, should be given further attention. But, importantly, we note that these “gadgets” may be “malware” or be missing. Another conclusion is that Gert’s account of harms and benefits, of the moral rules, of how the rules are justified, and of how violations are justified, can be a fruitful component of the study of moral development. Furthermore, we argue that the work on wisdom by Sternberg, Kristjansson, and others is important to grasp for its relevance to putting morality into action. Lastly, we discuss areas for future research, especially in neuroscience, and we recommend paying attention to practices for the building of practical wisdom and morality. Full article
(This article belongs to the Section Changes in Intelligence Across the Lifespan)
18 pages, 963 KiB  
Article
Accuracy of Analytic Potentials for Orbits of Satellites Around a Milky Way-like Galaxy: Comparison with N-Body Simulations
by Rubens E. G. Machado, Giovanni C. Tauil and Nicholas Schweder-Souza
Universe 2025, 11(6), 191; https://doi.org/10.3390/universe11060191 - 17 Jun 2025
Viewed by 288
Abstract
To study the orbits of satellites, a galaxy can be modeled either by means of a static gravitational potential or by live N-body particles. Analytic potentials allow for fast calculations but are idealized and non-responsive. On the other hand, N-body simulations [...] Read more.
To study the orbits of satellites, a galaxy can be modeled either by means of a static gravitational potential or by live N-body particles. Analytic potentials allow for fast calculations but are idealized and non-responsive. On the other hand, N-body simulations are more realistic but demand higher computational cost. Our goal is to characterize the regimes in which analytic potentials provide a sufficient approximation and those where N-bodies are necessary. We perform two sets of simulations, using both Gala and Gadget, in order to closely compare the orbital evolution of satellites around a Milky Way-like galaxy. Focusing on the periods when the satellite has not yet been severely disrupted by tidal forces, we find that the orbits of satellites up to 108M can be reliably computed with analytic potentials to within 5% error if they are circular or moderately eccentric. If the satellite is as massive as 109M then errors of 9% are to be expected. However, if the orbital radius is smaller than 30 kpc then the results may not be relied upon with the same accuracy beyond 1–2 Gyr. Full article
Show Figures

Graphical abstract

29 pages, 4847 KiB  
Article
Enhancing Power Generation: PIV Analysis of Flow Structures’ Impact on Concentrated Solar Sphere Parameters
by Hassan Abdulmouti
Energies 2025, 18(12), 3162; https://doi.org/10.3390/en18123162 - 16 Jun 2025
Viewed by 329
Abstract
The flow velocity field of the oil-filled acrylic solar sphere is assessed using flow visualization, which includes image processing and Particle Image Velocimetry (PIV) measurements. The temperature, sphere size, and thickness all have an impact on the generated convection flow. The acrylic sphere, [...] Read more.
The flow velocity field of the oil-filled acrylic solar sphere is assessed using flow visualization, which includes image processing and Particle Image Velocimetry (PIV) measurements. The temperature, sphere size, and thickness all have an impact on the generated convection flow. The acrylic sphere, a contemporary concentrated photovoltaic technology, collects solar energy and concentrates it into a small focal region. This focus point is positioned precisely above a multi-junction apparatus that serves as an appliance for concentrator cells. Instead of producing the same amount of electricity as a typical photovoltaic panel (PV), this gadget can generate an enormous power rate directly. There are numerous industrial uses for acrylic spheres as well. This study paper aims to examine the flow properties inside a sphere and investigate the impact of the sphere’s temperature, size, and thickness on the fluid motion’s flow velocity. Furthermore, the goal of this research is to elucidate the correlation between these variables to enhance power-generating performance by achieving higher efficiency. The findings demonstrated that the flow structure value is greatly affected by the sphere size, thickness, and temperature. It is discovered that when the spherical thickness lowers, the velocity rises. As a result, the sphere performs better at lower liquid temperatures (35–40 °C), larger sizes (15–30 cm diameter), and reduced acrylic thickness (3–4 mm), leading to up to a 23% increase in power output and a 35–50% rise in internal flow velocity compared to thicker and smaller configurations. Therefore, reducing the sphere thickness by 1 mm results in approximately a 10% increase in average flow velocity at the top of the sphere, corresponding to an increase of about 0.0001 m/s. Notably, the sphere with a 3 mm thickness demonstrates superior power and efficiency compared to other thicknesses. As the sphere’s thickness decreases, the solar sphere’s output power and efficiency rise. The amount of sunlight absorbed by the acrylic photons increases with decreasing acrylic layer thickness; hence, the greater the output power, the higher the efficiency that follows. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

22 pages, 632 KiB  
Article
Enhancing Multi-Key Fully Homomorphic Encryption with Efficient Key Switching and Batched Multi-Hop Computations
by Liang Zhou, Ruwei Huang and Bingbing Wang
Appl. Sci. 2025, 15(10), 5771; https://doi.org/10.3390/app15105771 - 21 May 2025
Viewed by 505
Abstract
Multi-Key Fully Homomorphic Encryption (MKFHE) offers a powerful solution for secure multi-party computations, where data encrypted under different keys can be jointly computed without decryption. However, existing MKFHE schemes still face challenges such as large parameter sizes, inefficient evaluation key generation, complex homomorphic [...] Read more.
Multi-Key Fully Homomorphic Encryption (MKFHE) offers a powerful solution for secure multi-party computations, where data encrypted under different keys can be jointly computed without decryption. However, existing MKFHE schemes still face challenges such as large parameter sizes, inefficient evaluation key generation, complex homomorphic multiplication processes, and limited scalability in multi-hop scenarios. In this paper, we propose an enhanced multi-hop MKFHE scheme based on the Brakerski-Gentry-Vaikuntanathan (BGV) framework. Our approach eliminates the need for an auxiliary Gentry-Sahai-Waters (GSW)-type scheme, simplifying the design and significantly reducing the public key size. We propose novel algorithms for evaluation key generation and key switching that simplify the computation while allowing each party to independently precompute and share its evaluation keys, thereby reducing both computational overhead and storage costs. Additionally, we combine the tensor product and key switching processes through homomorphic gadget decomposition, developing a new homomorphic multiplication algorithm and achieving linear complexity with respect to the number of parties. Furthermore, by leveraging the Polynomial Chinese Remainder Theorem (Polynomial CRT), we design a ciphertext packing technique that transforms our BGV-type MKFHE scheme into a batched scheme with improved amortized performance. Our schemes feature stronger multi-hop properties and operate without requiring a predefined maximum number of parties, offering enhanced flexibility and scalability compared to existing similar schemes. Full article
Show Figures

Figure 1

13 pages, 3953 KiB  
Article
Investigating the Effectiveness of a Simple Water-Purifying Gadget Using Moringa oleifera Seeds as the Active Beads
by Dineo G. Raphasha, Ashwell R. Ndhlala and Zivanai Tsvuura
Processes 2025, 13(4), 1172; https://doi.org/10.3390/pr13041172 - 12 Apr 2025
Viewed by 1037
Abstract
Clean water scarcity in developing countries like South Africa poses significant health risks. This study investigated the effectiveness of a simple water purification device using Moringa oleifera Lam. seeds as active beads, offering a novel, low-cost, and sustainable solution for water treatment in [...] Read more.
Clean water scarcity in developing countries like South Africa poses significant health risks. This study investigated the effectiveness of a simple water purification device using Moringa oleifera Lam. seeds as active beads, offering a novel, low-cost, and sustainable solution for water treatment in resource-limited settings. The device combined M. oleifera seed powder with activated charcoal and cotton wool, providing a locally adaptable and environmentally friendly solution. Water samples were collected from three sites along the Pienaars River during winter and summer, and M. oleifera seeds were ground into three particle sizes (710 µm, 1000 µm, and 2000 µm) for testing. Results showed that the device significantly reduced microbial loads, with the total coliforms decreasing by 60–85%, E. coli by 50–75%, Salmonella spp. by 40–70%, and Shigella spp. by 30–65% across sampling points. However, filtered samples still exceeded the WHO and SANS guidelines, with microbial counts remaining above 0 CFU/100 mL. Physicochemical properties, including pH (6.02–7.73), electrical conductivity (17.8–109.5 mS/m), and ion concentrations (e.g., nitrate: 0.21–39.55 mg/L; chloride: 8.57–73.55 mg/L), complied with the SANS 241:2015 and WHO drinking water standards. The finest particle size (710 µm) demonstrated the highest microbial reduction and increased magnesium concentrations by up to 30%. Seasonal variations influenced the performance, with summer samples showing a better microbial removal efficiency (70–85%) compared to winter (50–70%). This study highlights the potential of M. oleifera-based filtration as a low-cost, sustainable solution for reducing microbial contamination, though further refinement is needed to meet drinking water standards. This research introduces a novel approach to water purification by combining M. oleifera seed powder with activated charcoal and cotton wool, providing a locally adaptable and environmentally friendly solution. The findings contribute to the development of scalable, natural water treatment systems for resource-limited communities. Full article
(This article belongs to the Special Issue Recent Advances in Wastewater Treatment and Water Reuse)
Show Figures

Figure 1

10 pages, 1684 KiB  
Proceeding Paper
Design and Implementation of Novel Dynamic Voltage Restorer Configuration for Electric Vehicle Charging Applications
by Kesav Sanadhan Saikumar, Thenmozhi Mutharasan, Vijayaraja Loganathan, Dhanasekar Ravikumar, Vishal Thirumalai Nambi and Sudhesh Kumar Ezhilarasan
Eng. Proc. 2025, 87(1), 39; https://doi.org/10.3390/engproc2025087039 - 8 Apr 2025
Viewed by 268
Abstract
Electric vehicles are replacing conventional vehicles in today’s world due to their eco-friendly operation and reduced maintenance. Although EVs offer advantages over conventional vehicles, there is a limited number of charging stations, and numerous power quality issues have emerged at these locations. This [...] Read more.
Electric vehicles are replacing conventional vehicles in today’s world due to their eco-friendly operation and reduced maintenance. Although EVs offer advantages over conventional vehicles, there is a limited number of charging stations, and numerous power quality issues have emerged at these locations. This is due to the voltage, current, or frequencies being abnormal, which leads to sudden voltage drops, voltage swells, long interruptions, and short interruptions occurring at the charging stations. To address issues arising from client-side anomalies, we attach conventional FACTS devices closer to the load end. One such dependable custom power gadget for dealing with voltage sag is the one developed in this article, and it is called an enhanced dynamic voltage restorer (DVR). The proposed device continuously monitors the load voltage waveform and injects (or absorbs) the balance (or surplus) voltage into (or away from) the load voltage whenever a sag occurs. We develop a reference voltage waveform to achieve the aforementioned capabilities. In this paper, the methods of compensation for these problems at charging stations are discussed. Furthermore, the power quality problems are compensated for by the proposed system using an SVPWM controller. Simulation and real-time implementation are carried out, and the results are discussed. The inclusion of SVPWM control significantly improves voltage regulation and reduces THD by 60–70% compared to conventional PWM methods, which achieve only 40–50% reduction. The proposed DVR is designed for single-phase applications, making it suitable for low-voltage distribution systems and sensitive industrial loads. The proposed model provides a rapid response time (<10 ms), and the efficiency of the proposed DVR is found to be 92%, which is greater than that of conventional designs (86%). Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

22 pages, 251 KiB  
Article
English in a Post-Pandemic Context: The Case of Multilingual Filipino Day Care Children
by Aireen Barrios
Languages 2025, 10(3), 53; https://doi.org/10.3390/languages10030053 - 18 Mar 2025
Viewed by 1101
Abstract
Day care centers in Zamboanga City in western Mindanao, Philippines use the home language as a medium of communication as they carry out daily lessons for young children through songs, stories, games, and various social activities. Workers at the study’s day care site [...] Read more.
Day care centers in Zamboanga City in western Mindanao, Philippines use the home language as a medium of communication as they carry out daily lessons for young children through songs, stories, games, and various social activities. Workers at the study’s day care site disclosed that the pandemic has significantly impacted language use among children in the community in favor of English. Internet connection and access to popular programs, particularly YouTube, have provided very young children easy access to English. As guardians and parents were forced to work from home at the height of the pandemic, the home became an extension of work, with most homes having a space for work using a laptop, a tablet, a cellphone, or other similar gadgets. It is within this set-up that children who were born between 2019 and 2020, who grew up within the lockdown period imposed by the deadly spread of COVID-19, and attended day care for the first time when they were around three to four years of age were observed to speak in English. Data from an experimental task where 3–4-year-old children were asked to describe animals using target language forms in Chabacano reveal that young Zamboangueño children spoke English most of the time. Excerpts from the data demonstrate how children generally spoke in English even while the task was delivered primarily in Chabacano. Demographic data and linguistic background of both the children and adults as provided by the parents or guardians of these children through a questionnaire help explain this phenomenon in greater detail. A closer look at the data reveals translanguaging at work among these multilingual children. Full article
23 pages, 2539 KiB  
Article
Ensemble Learning for Network Intrusion Detection Based on Correlation and Embedded Feature Selection Techniques
by Ghalia Nassreddine, Mohamad Nassereddine and Obada Al-Khatib
Computers 2025, 14(3), 82; https://doi.org/10.3390/computers14030082 - 25 Feb 2025
Cited by 4 | Viewed by 3087
Abstract
Recent advancements across various sectors have resulted in a significant increase in the utilization of smart gadgets. This augmentation has resulted in an expansion of the network and the devices linked to it. Nevertheless, the development of the network has concurrently resulted in [...] Read more.
Recent advancements across various sectors have resulted in a significant increase in the utilization of smart gadgets. This augmentation has resulted in an expansion of the network and the devices linked to it. Nevertheless, the development of the network has concurrently resulted in a rise in policy infractions impacting information security. Finding intruders immediately is a critical component of maintaining network security. The intrusion detection system is useful for network security because it can quickly identify threats and give alarms. In this paper, a new approach for network intrusion detection was proposed. Combining the results of machine learning models like the random forest, decision tree, k-nearest neighbors, and XGBoost with logistic regression as a meta-model is what this method is based on. For the feature selection technique, the proposed approach creates an advanced method that combines the correlation-based feature selection with an embedded technique based on XGBoost. For handling the challenge of an imbalanced dataset, a SMOTE-TOMEK technique is used. The suggested algorithm is tested on the NSL-KDD and CIC-IDS datasets. It shows a high performance with an accuracy of 99.99% for both datasets. These results prove the effectiveness of the proposed approach. Full article
(This article belongs to the Special Issue Using New Technologies in Cyber Security Solutions (2nd Edition))
Show Figures

Figure 1

37 pages, 5810 KiB  
Systematic Review
Modern Smart Gadgets and Wearables for Diagnosis and Management of Stress, Wellness, and Anxiety: A Comprehensive Review
by Aman Jolly, Vikas Pandey, Manoj Sahni, Ernesto Leon-Castro and Luis A. Perez-Arellano
Healthcare 2025, 13(4), 411; https://doi.org/10.3390/healthcare13040411 - 14 Feb 2025
Cited by 3 | Viewed by 2677
Abstract
The increasing development of gadgets to evaluate stress, wellness, and anxiety has garnered significant attention in recent years. These technological advancements aim to expedite the identification and subsequent treatment of these prevalent conditions. This study endeavors to critically examine the latest smart gadgets [...] Read more.
The increasing development of gadgets to evaluate stress, wellness, and anxiety has garnered significant attention in recent years. These technological advancements aim to expedite the identification and subsequent treatment of these prevalent conditions. This study endeavors to critically examine the latest smart gadgets and portable techniques utilized for diagnosing depression, stress, and emotional trauma while also exploring the underlying biochemical processes associated with their identification. Integrating various detectors within smartphones and smart bands enables continuous monitoring and recording of user activities. Given their widespread use, smartphones, smartwatches, and smart wristbands have become indispensable in our daily lives, prompting the exploration of their potential in stress detection and prevention. When individuals experience stress, their nervous system responds by releasing stress hormones, which can be easily identified and quantified by smartphones and smart bands. The study in this paper focused on the examination of anxiety and stress and consistently employed “heart rate variability” (HRV) characteristics for diagnostic purposes, with superior outcomes observed when HRV was combined with “electroencephalogram” (EEG) analysis. Recent research indicates that electrodermal activity (EDA) demonstrates remarkable precision in identifying anxiety. Comparisons with HRV, EDA, and breathing rate reveal that the mean heart rate employed by several commercial wearable products is less accurate in identifying anxiety and stress. This comprehensive review article provides an evidence-based evaluation of intelligent gadgets and wearable sensors, highlighting their potential to accurately assess stress, wellness, and anxiety. It also identifies areas for further research and development. Full article
(This article belongs to the Special Issue Smart and Digital Health)
Show Figures

Figure 1

43 pages, 112805 KiB  
Article
Real-Time Farm Surveillance Using IoT and YOLOv8 for Animal Intrusion Detection
by Tahesin Samira Delwar, Sayak Mukhopadhyay, Akshay Kumar, Mangal Singh, Yang-won Lee, Jee-Youl Ryu and A. S. M. Sanwar Hosen
Future Internet 2025, 17(2), 70; https://doi.org/10.3390/fi17020070 - 6 Feb 2025
Cited by 1 | Viewed by 4261
Abstract
This research proposes a ground-breaking technique for protecting agricultural fields against animal invasion, addressing a key challenge in the agriculture industry. The suggested system guarantees real-time intrusion detection and quick reactions by combining cutting-edge sensor technologies, image processing capabilities, and the Internet of [...] Read more.
This research proposes a ground-breaking technique for protecting agricultural fields against animal invasion, addressing a key challenge in the agriculture industry. The suggested system guarantees real-time intrusion detection and quick reactions by combining cutting-edge sensor technologies, image processing capabilities, and the Internet of Things (IoT), successfully safeguarding crops and reducing agricultural losses. This study involves a thorough examination of five models—Inception, Xception, VGG16, AlexNet, and YoloV8—against three different datasets. The YoloV8 model emerged as the most promising, with exceptional accuracy and precision, exceeding 99% in both categories. Following that, the YoloV8 model’s performance was compared to previous study findings, confirming its excellent capabilities in terms of intrusion detection in agricultural settings. Using the capabilities of the YoloV8 model, an IoT device was designed to provide real-time intrusion alarms on farms. The ESP32cam module was used to build this gadget, which smoothly integrated this cutting-edge model to enable efficient farm security measures. The incorporation of this technology has the potential to transform farm monitoring by providing farmers with timely, actionable knowledge to prevent possible threats and protect agricultural production. Full article
Show Figures

Figure 1

34 pages, 15553 KiB  
Review
Advances in Conductive Polymer-Based Flexible Electronics for Multifunctional Applications
by Md. Abdus Shahid, Md. Mostafizur Rahman, Md. Tanvir Hossain, Imam Hossain, Md. Sohan Sheikh, Md. Sunjidur Rahman, Nasir Uddin, Scott W. Donne and Md. Ikram Ul Hoque
J. Compos. Sci. 2025, 9(1), 42; https://doi.org/10.3390/jcs9010042 - 16 Jan 2025
Cited by 13 | Viewed by 6160
Abstract
The rapid developments in conductive polymers with flexible electronics over the past years have generated noteworthy attention among researchers and entrepreneurs. Conductive polymers have the distinctive capacity to conduct electricity while still maintaining the lightweight, flexible, and versatile characteristics of polymers. They are [...] Read more.
The rapid developments in conductive polymers with flexible electronics over the past years have generated noteworthy attention among researchers and entrepreneurs. Conductive polymers have the distinctive capacity to conduct electricity while still maintaining the lightweight, flexible, and versatile characteristics of polymers. They are crucial for the creation of flexible electronics or gadgets that can stretch, bend, and adapt to different surfaces have sparked momentous interest in electronics, energy storage, sensors, smart textiles, and biomedical applications. This review article offers a comprehensive overview of recent advancements in conductive polymers over the last 15 years, including a bibliometric analysis. The properties of conductive polymers are summarized. Additionally, the fabrication processes of conductive polymer-based materials are discussed, including vacuum filtering, hydrothermal synthesis, spray coating, electrospinning, in situ polymerization, and electrochemical polymerization. The techniques have been presented along with their advantages and limitations. The multifunctional applications of conductive polymers are also discussed, including their roles in energy storage and conversion (e.g., supercapacitors, lithium-ion batteries (LIBs), and sodium-ion batteries (SIBs)), as well as in organic light-emitting diodes (OLEDs), organic solar cells (OSCs), conductive textiles, healthcare monitoring, and sensors. Future scope and associated challenges have also been mentioned for further development in this field. Full article
(This article belongs to the Special Issue Composite Materials Containing Conjugated and Conductive Polymers)
Show Figures

Graphical abstract

28 pages, 1833 KiB  
Review
A Review on Metal–Organic Frameworks as Technological Excipients: Synthesis, Characterization, Toxicity, and Application in Drug Delivery Systems
by Pedrita A. Sampaio, Emanuella C. V. Pereira, Pedro G. S. Sá, José Marcos T. Alencar Filho, Leslie R. M. Ferraz, Rodolfo H. V. Nishimura, Aline S. Ferreira, Pedro J. Rolim Neto, Evando S. Araújo and Larissa A. Rolim
Compounds 2025, 5(1), 1; https://doi.org/10.3390/compounds5010001 - 2 Jan 2025
Cited by 1 | Viewed by 3057
Abstract
Metal–organic frameworks (MOFs) are also known as porous coordination polymers. This kind of material is constructed with inorganic nodes (metal ions or clusters) with organic linkers and has emerged as a promising class of materials with several unique properties. Well-known applications of MOFs [...] Read more.
Metal–organic frameworks (MOFs) are also known as porous coordination polymers. This kind of material is constructed with inorganic nodes (metal ions or clusters) with organic linkers and has emerged as a promising class of materials with several unique properties. Well-known applications of MOFs include their use as gas storage and in separation, catalysis, carbon dioxide capture, sensing, slender film gadgets, photodynamic therapy, malignancy biomarkers, treatment, and biomedical imaging. Over the past 15 years, an increasing amount of research has been directed to MOFs due to their advanced applications in fuel cells, supercapacitors, catalytic conversions, and drug delivery systems. Various synthesis methods have been proposed to achieve MOFs with nanometric size and increased surface area, controlled surface topology, and chemical activity for industrial use. In this context, the pharmaceutical industry has been watching the accelerated development of these materials with great attention. Thus, the objective of this work is to study the synthesis, characterization, and toxicity of MOFs as potential technological excipients for the development of drug carriers. This work highlights the use of MOFs not only as delivery systems (DDSs) but also in advanced diagnostics and therapies, such as photodynamic therapy and targeted delivery to tumors. Bibliometric analyses showed a growing interest in the topic, emphasizing its contemporary relevance. Full article
Show Figures

Figure 1

22 pages, 1666 KiB  
Article
CoAP/DTLS Protocols in IoT Based on Blockchain Light Certificate
by David Khoury, Samir Haddad, Patrick Sondi, Patrick Balian, Hassan Harb, Kassem Danach, Joseph Merhej and Jinane Sayah
IoT 2025, 6(1), 4; https://doi.org/10.3390/iot6010004 - 2 Jan 2025
Cited by 1 | Viewed by 1694
Abstract
The Internet of Things (IoT) is expanding rapidly, but the security of IoT devices remains a noteworthy concern due to resource limitations and existing security conventions. This research investigates and proposes the use of a Light certificate with the Constrained Application Protocol (CoAP) [...] Read more.
The Internet of Things (IoT) is expanding rapidly, but the security of IoT devices remains a noteworthy concern due to resource limitations and existing security conventions. This research investigates and proposes the use of a Light certificate with the Constrained Application Protocol (CoAP) instead of the X509 certificate based on traditional PKI/CA. We start by analyzing the impediments of current CoAP security over DTLS with the certificate mode based on CA root in the constrained IoT device and suggest the implementation of LightCert4IoT for CoAP over DTLS. The paper also describes a new modified handshake protocol in DTLS applied for IoT devices and Application server certificate authentication verification by relying on a blockchain without the complication of the signed certificate and certificate chain. This approach streamlines the DTLS handshake process and reduces cryptographic overhead, making it particularly suitable for resource-constrained environments. Our proposed solution leverages blockchain to reinforce IoT gadget security through immutable device characters, secure device registration, and data integrity. The LightCert4IoT is smaller in size and requires less power consumption. Continuous research and advancement are pivotal to balancing security and effectiveness. This paper examines security challenges and demonstrates the effectiveness of giving potential solutions, guaranteeing the security of IoT networks by applying LightCert4IoT and using the CoAP over DTLS with a new security mode based on blockchain. Full article
Show Figures

Figure 1

17 pages, 346 KiB  
Article
Investigating the Effectiveness of a Virtual-Reality-Based Mindfulness Intervention on Internet Gaming Disorder
by Selma Tvrtković-Hasandić and Pınar Ünal-Aydın
Behav. Sci. 2024, 14(12), 1137; https://doi.org/10.3390/bs14121137 - 27 Nov 2024
Viewed by 1928
Abstract
Novel treatment approaches for Internet Gaming Disorder (IGD) include the use of mindfulness and technology-based interventions. Mindfulness has been shown as a protective factor against IGD, but the treatment dropout rates are high due to long sessions and treatment duration. Pathological gamers show [...] Read more.
Novel treatment approaches for Internet Gaming Disorder (IGD) include the use of mindfulness and technology-based interventions. Mindfulness has been shown as a protective factor against IGD, but the treatment dropout rates are high due to long sessions and treatment duration. Pathological gamers show approach bias towards technological gadgets, and the inclusion of Virtual Reality has been effective in IGD treatment. Due to the effectiveness of mindfulness and the attractiveness of VR, a combined intervention could decrease treatment time and willingness for treatment. Therefore, the aim of this study was to examine the effectiveness of a brief VR-based mindfulness intervention on IGD symptomatology. Nine participants meeting the IGD symptom criteria, ten recreational game users, and eight healthy controls without a gaming history participated in the study. The intervention consisted of four weekly 20-min-long Attentional Focus Mindfulness sessions. The results indicate a significant reduction in IGD symptoms and weekend gaming time in the treatment group. Despite the small sample size in the treatment group (n = 9) and lack of randomization, the findings constitute a valuable starting point. As a cost- and time-effective intervention, this approach could reduce dropout rates and increase treatment adherence, especially in younger gamers. Additional studies with a larger sample size, randomization, and a longitudinal approach are needed to further validate the found results. Full article
Back to TopTop