Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,424)

Search Parameters:
Keywords = the effects of ambient temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2836 KB  
Article
Investigation of the Optimum Solar Insolation for PV Systems Considering the Effect of Tilt Angle and Ambient Temperature
by Raghed Melhem, Yomna Shaker, Fatma Mazen Ali Mazen and Ali Abou-Elnour
Energies 2025, 18(19), 5257; https://doi.org/10.3390/en18195257 (registering DOI) - 3 Oct 2025
Abstract
As interest in PV installation has spiked in recent years, the need for optimizing several factors of PV performance has become crucial. These are tilt angle and solar cell temperature (taking into account ambient temperature) and their effect on solar insolation for solar [...] Read more.
As interest in PV installation has spiked in recent years, the need for optimizing several factors of PV performance has become crucial. These are tilt angle and solar cell temperature (taking into account ambient temperature) and their effect on solar insolation for solar photovoltaic (PV) systems. The objective of this study is to achieve the optimal tilt angle and cell temperature accordingly by developing a MATLAB program to reach the target of maximizing the received solar insolation. To achieve this, additional solar angles such as the azimuth, hour, latitude angle, declination angle, hour angle, and azimuth angle need to be calculated. By computing the solar insolation for specific regions of interest, specifically the Gulf Cooperation Council (GCC) countries, the desired results can be obtained. Additionally, the study aims to assess the influence of PV cell temperature on the I–V curves of commercially available PV modules, which will provide insights into the impact of temperature on the performance characteristics of PV cells. By employing a developed model, the study examined the combined collective influences of solar received radiation, tilt angle, and ambient temperature on the output power of PV systems in five different cities. The annual optimal tilt angles were found to be as follows: Mecca (21.4° N)—21.48°, Fujairah (25.13° N)—25.21°, Kuwait (29.3° N)—29.38°, Baghdad (33.3° N)—33.38°, and Mostaganem (35.9° N)—2535.98°. Notably, the estimated yearly optimal tilt angles closely corresponded to the latitudes of the respective cities. Additionally, the study explored the impact of ambient temperature on PV module performance. It was observed that an increase in ambient temperature resulted in a corresponding rise in the temperature of the PV cells, indicating the significant influence of environmental temperature on PV module efficiency. Overall, the findings demonstrate that adjusting the tilt angle of PV modules on a monthly basis led to higher solar power output compared to yearly adjustments. These results underscore the importance of considering both solar radiation and ambient temperature when optimizing PV power generation. Full article
(This article belongs to the Collection Featured Papers in Solar Energy and Photovoltaic Systems Section)
Show Figures

Figure 1

20 pages, 703 KB  
Article
Fast Trace Detection of Chlorpyrifos Vapors Using a Handheld Ion Mobility Spectrometer Operated near Ambient Temperature
by Victor Bocoș-Bințințan, Ancuța-Maria Dodea, Tomáš Rozsypal, Adrian Pătruț, Gheorghe Roșian, Aurel-Vasile Martiniuc, Alin-Gabriel Moraru, Simina Vasc and Maria-Paula Bocoș-Bințințan
Toxics 2025, 13(10), 843; https://doi.org/10.3390/toxics13100843 - 2 Oct 2025
Abstract
Chlorpyrifos CPF (O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate), known also as Chlorpyrifos-ethyl, is one of the most utilized organophosphorus pesticides worldwide. Additionally, CPF could be used as a chemical warfare agent surrogate. Although its acute toxicity is not high, it is responsible for both a large [...] Read more.
Chlorpyrifos CPF (O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate), known also as Chlorpyrifos-ethyl, is one of the most utilized organophosphorus pesticides worldwide. Additionally, CPF could be used as a chemical warfare agent surrogate. Although its acute toxicity is not high, it is responsible for both a large number of intoxications and chronic, delayed neurological effects. In this work, it is reported for the first time the qualitative and quantitative response produced by CPF vapors, using a pocket-held Time-of-Flight Ion Mobility Spectrometer (ToF IMS) with a non-radioactive ionization source and ammonia doping, model LCD-3.2E (Smiths Detection Ltd.), operated near ambient temperature (below 30 °C). Spectra of CPF in positive ion mode included two distinct product ion peaks; thus, identification of CPF vapors by IMS relies on these peaks—the monomer M·NH4+ with reduced ion mobility K0 = ca. 1.76 cm2V−1s−1 and the dimer M2·NH4+ with K0 = ca. 1.47 cm2V−1s−1 (where M may be assignable to CPF molecule)—and positive reactant ions (Pos RIP) have K0 = ca. 2.25 cm2V−1s−1. Excellent sensitivity, with a limit of detection LOD of 0.72 ppbv (10.5 μg m−3) and a limit of quantification LOQ of 2.41 ppbv (35.1 μg m−3), has been noticed; linear response was up to 100 ppbv, while saturation occurs over ca. 1000 ppbv (14.6 mg m−3). Our results demonstrate that this method provides a robust tool for both off-site and on-site detecting and quantifying CPF vapors at trace levels, which has strong implications for either industrial hygiene or forensic investigations concerning the pesticide Chlorpyrifos, as well as for monitoring of environmental contamination by organophosphorus pesticides. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
20 pages, 1355 KB  
Article
Under the Covers: The Effect of a Temperature-Controlled Mattress Cover on Sleep and Perceptual Measures in Healthy Adults
by Shauna Stevenson, Haresh Suppiah, Toby Mündel and Matthew Driller
Clocks & Sleep 2025, 7(4), 55; https://doi.org/10.3390/clockssleep7040055 - 1 Oct 2025
Abstract
Ambient temperature and thermoregulation influence sleep quality. This study investigated the effects of a temperature-controlled mattress cover on sleep and perceptual outcomes in healthy adults. In a randomised, counterbalanced, crossover design, 34 healthy adults (20 F, 14 M; age, 30 ± 5 y) [...] Read more.
Ambient temperature and thermoregulation influence sleep quality. This study investigated the effects of a temperature-controlled mattress cover on sleep and perceptual outcomes in healthy adults. In a randomised, counterbalanced, crossover design, 34 healthy adults (20 F, 14 M; age, 30 ± 5 y) used a temperature-controlled mattress cover for 14 nights, following ≥3 nights of familiarisation. The temperature feature was on for 7 nights (POD) and off for 7 nights (CON). Sleep was assessed via wrist actigraphy, while heart rate (HR), heart rate variability (HRV), and respiratory rate (RR) were recorded by embedded sensors in the mattress cover. Participants completed daily and weekly questionnaires evaluating sleep quality, thermal comfort, and thermal sensation. Linear mixed models showed significant main effects of condition favouring POD over CON for all daily perceived outcomes (all p < 0.05). A large, significant improvement in perceived sleep quality was observed (p = 0.001, d = 0.92). No significant differences were found in objective sleep metrics or biometric measures (all p ≥ 0.05). A temperature-controlled mattress cover was associated with improved subjective sleep quality and thermal-related perceptions despite minimal changes in objective or biometric outcomes, which may in part reflect expectancy, or placebo effects. Further research is needed to explore whether these perceptual benefits lead to physiological improvements over time. Full article
(This article belongs to the Section Human Basic Research & Neuroimaging)
13 pages, 2001 KB  
Article
Effect of Geothermal Heating on Deep-Water Temperature in Lake Baikal
by Bair O. Tsydenov
Hydrology 2025, 12(10), 256; https://doi.org/10.3390/hydrology12100256 - 30 Sep 2025
Abstract
Geothermal heating that emanates from the interior of the Earth, including the Baikal Rift Zone, produces potential energy for water movement. The basic concept behind the mechanism of deep-water renewal in Lake Baikal is conditional instability, which is a consequence of the joint [...] Read more.
Geothermal heating that emanates from the interior of the Earth, including the Baikal Rift Zone, produces potential energy for water movement. The basic concept behind the mechanism of deep-water renewal in Lake Baikal is conditional instability, which is a consequence of the joint effects of temperature and pressure on water density. However, an exact trigger of this instability is unknown. In this study, based on a non-hydrostatic 2.5D numerical model taking into account the intraday variability of atmospheric conditions, it was shown that, due to geothermal heating, the water column near the lake bed becomes slightly warmer (0.1–0.2 °C) than ambient waters, which can lead to instability. Simulated temperature distributions showed that 3.4 °C waters gradually shifted along the bed slope to ~650 m on day 1, ~750 m on day 3, ~830 m on day 5, and >1200 m on day 10 in the presence of geothermal heat flux; however, in its absence these waters remained at the level of ~600 m. In view of these findings, a conceptual model of deep convection and a map with potential zones of high ventilation processes in Lake Baikal are proposed. According to the map developed, deep-water renewal is expected to be the most intense at the eastern shore of Lake Baikal because of abnormally high heat release. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

25 pages, 1196 KB  
Review
Microbial Electrosynthesis: The Future of Next-Generation Biofuel Production—A Review
by Radu Mirea, Elisa Popescu and Traian Zaharescu
Energies 2025, 18(19), 5187; https://doi.org/10.3390/en18195187 - 30 Sep 2025
Abstract
Microbial electrosynthesis (MES) has emerged as a promising bio-electrochemical technology for sustainable CO2 conversion into valuable organic compounds since it uses living electroactive microbes to directly convert CO2 into value-added products. This review synthesizes advancements in MES from 2010 to 2025, [...] Read more.
Microbial electrosynthesis (MES) has emerged as a promising bio-electrochemical technology for sustainable CO2 conversion into valuable organic compounds since it uses living electroactive microbes to directly convert CO2 into value-added products. This review synthesizes advancements in MES from 2010 to 2025, focusing on the electrode materials, microbial communities, reactor engineering, performance trends, techno-economic evaluations, and future challenges, especially on the results reported between 2020 and 2025, thus highlighting that MES technology is now a technology to be reckoned with in the spectrum of biofuel technology production. While the current productivity and scalability of microbial electrochemical systems (MESs) remain limited compared to conventional CO2 conversion technologies, MES offers distinct advantages, including process simplicity, as it operates under ambient conditions without the need for high pressures or temperatures; modularity, allowing reactors to be stacked or scaled incrementally to match varying throughput requirements; and seamless integration with circular economy strategies, enabling the direct valorization of waste streams, wastewater, or renewable electricity into valuable multi-carbon products. These features position MES as a promising platform for sustainable and adaptable CO2 utilization, particularly in decentralized or resource-constrained settings. Recent innovations in electrode materials, such as conductive polymers and metal–organic frameworks, have enhanced electron transfer efficiency and microbial attachment, leading to improved MES performance. The development of diverse microbial consortia has expanded the range of products achievable through MES, with studies highlighting the importance of microbial interactions and metabolic pathways in product formation. Advancements in reactor design, including continuous-flow systems and membrane-less configurations, have addressed scalability issues, enhancing mass transfer and system stability. Performance metrics, such as the current densities and product yields, have improved due to exceptionally high product selectivity and surface-area-normalized production compared to abiotic systems, demonstrating the potential of MES for industrial applications. Techno-economic analyses indicate that while MES offers promising economic prospects, challenges related to cost-effective electrode materials and system integration remain. Future research should focus on optimizing microbial communities, developing advanced electrode materials, and designing scalable reactors to overcome the existing limitations. Addressing these challenges will be crucial for the commercialization of MES as a viable technology for sustainable chemical production. Microbial electrosynthesis (MES) offers a novel route to biofuels by directly converting CO2 and renewable electricity into energy carriers, bypassing the costly biomass feedstocks required in conventional pathways. With advances in electrode materials, reactor engineering, and microbial performance, MES could achieve cost-competitive, carbon-neutral fuels, positioning it as a critical complement to future biofuel technologies. Full article
Show Figures

Figure 1

14 pages, 1971 KB  
Article
Experimental Study on the Growth Pattern and Flexural Strength Characteristics of Rafted Ice
by Ying Xu, Wei Li, Kuankuan Wu, Sichong Ma, Guojun Wang, Yuepeng Li and Dayong Zhang
Oceans 2025, 6(4), 62; https://doi.org/10.3390/oceans6040062 - 29 Sep 2025
Abstract
As a critical factor in ice load calculation for marine structures in cold regions, the growth mechanism and mechanical properties of rafted ice urgently require clarification. This study systematically investigated the growth patterns and flexural strength characteristics of rafted ice through laboratory-prepared specimens. [...] Read more.
As a critical factor in ice load calculation for marine structures in cold regions, the growth mechanism and mechanical properties of rafted ice urgently require clarification. This study systematically investigated the growth patterns and flexural strength characteristics of rafted ice through laboratory-prepared specimens. Experimental results indicate that the thickness of rafted ice exhibits a negative correlation with both ambient temperature and initial ice thickness during growth. Due to the higher porosity of its frozen layer, the density of rafted ice decreases by approximately 8% on average compared to single-layer ice. Three-point bending tests demonstrate that, under the combined effect of high tensile strength in the lower ice layer and energy absorption by the porosity of the frozen layer, the flexural strength of rafted ice ranges from 1.12 to 1.34 times that of single-layer ice. Full article
(This article belongs to the Special Issue Oceans in a Changing Climate)
Show Figures

Figure 1

18 pages, 5858 KB  
Article
Research on Deformation Behavior and Mechanisms of Concrete Under Hygrothermal Coupling Effects
by Mingyu Li, Chunxiao Zhang, Aiguo Dang, Xiang He, Jingbiao Liu and Xiaonan Liu
Buildings 2025, 15(19), 3514; https://doi.org/10.3390/buildings15193514 - 29 Sep 2025
Abstract
This study elucidated the evolution and catastrophic failure mechanisms of concrete’s mechanical properties under high-temperature and moisture-coupled environments. Specimens underwent hygrothermal shock simulation via constant-temperature drying (100 °C/200 °C, 4 h) followed by water quenching (20 °C, 30 min). Uniaxial compression tests were [...] Read more.
This study elucidated the evolution and catastrophic failure mechanisms of concrete’s mechanical properties under high-temperature and moisture-coupled environments. Specimens underwent hygrothermal shock simulation via constant-temperature drying (100 °C/200 °C, 4 h) followed by water quenching (20 °C, 30 min). Uniaxial compression tests were performed using a uniaxial compression test machine with synchronized multi-scale damage monitoring that integrated digital image correlation (DIC), acoustic emission (AE), and infrared thermography. The results demonstrated that hygrothermal coupling reduced concrete ductility significantly, in which the peak strain decreased from 0.36% (ambient) to 0.25% for both the 100 °C and 200 °C groups, while compressive strength declined to 42.8 MPa (−2.9%) and 40.3 MPa (−8.6%), respectively, with elevated elastic modulus. DIC analysis revealed the temperature-dependent failure mode reconstruction: progressive end cracking (max strain 0.48%) at ambient temperature transitioned to coordinated dual-end cracking with jump-type damage (abrupt principal strain to 0.1%) at 100 °C and degenerated to brittle fracture oriented along a singular path (principal strain band 0.015%) at 200 °C. AE monitoring indicated drastically reduced micro-damage energy barriers at 200 °C, where cumulative energy (4000 mV·ms) plummeted to merely 2% of the ambient group (200,000 mV·ms). Infrared thermography showed that energy aggregation shifted from “centralized” (ambient) to “edge-to-center migration” (200 °C), with intensified thermal shock effects in fracture zones (ΔT ≈ −7.2 °C). The study established that hygrothermal coupling weakens the aggregate-paste interfacial transition zone (ITZ) by concentrating the strain energy along singular weak paths and inducing brittle failure mode degeneration, which thereby provides theoretical foundations for fire-resistant design and catastrophic failure warning systems in concrete structures exposed to coupled environmental stressors. Full article
Show Figures

Figure 1

20 pages, 3320 KB  
Article
Towards Sustainable Greenhouse Design: A Numerical Study on Temperature Control in Multi-Span Hoop Structures
by Ramadas Narayanan, Sai Ruthwick Madas and Rohit Singh
Sustainability 2025, 17(19), 8712; https://doi.org/10.3390/su17198712 - 28 Sep 2025
Abstract
A greenhouse with properly managed temperature can provide 5 to 10 times greater yield than conventional methods for crops such as blueberries, cucumbers, and tomatoes; the yield is also of higher quality. However, existing designs in Australia often follow practices developed for cooler [...] Read more.
A greenhouse with properly managed temperature can provide 5 to 10 times greater yield than conventional methods for crops such as blueberries, cucumbers, and tomatoes; the yield is also of higher quality. However, existing designs in Australia often follow practices developed for cooler regions, making them less effective under local high-radiation conditions. To determine the design parameters for the local condition, this study develops and validates a numerical model of a commercial blueberry greenhouse, applying it to examine how structural parameters, including overall height, arch height, and number of spans, influence indoor temperature distribution in multi-span hoop structures. Results show that increasing greenhouse height by 0.40 m reduced average temperature by up to 0.62%, whereas raising arch height by the same increment led to a marginal increase of 0.15%. In contrast, expanding span numbers from 2 to 12 resulted in a maximum temperature difference of 6 °C (approximately 20% above ambient temperature) across the structure, posing significant risks to plant growth. These findings provide a theoretical basis for optimising design parameters that minimise heat stress while reducing reliance on fossil-fuel-based cooling. The study highlights how tailoring greenhouse design to local conditions can improve productivity and support both environmental and economic sustainability. Full article
Show Figures

Figure 1

21 pages, 6171 KB  
Article
Detailed Transient Study of a Transcritical CO2 Heat Pump for Low-Carbon Building Heating
by Jierong Liang and Tingxun Li
Buildings 2025, 15(19), 3489; https://doi.org/10.3390/buildings15193489 - 26 Sep 2025
Abstract
This study presents the development and experimental validation of a dynamic simulation model for a transcritical CO2 heat pump system coupled with a stratified water tank, with particular focus on strong transient behavior and detailed heat exchanger characteristics. Due to the unique [...] Read more.
This study presents the development and experimental validation of a dynamic simulation model for a transcritical CO2 heat pump system coupled with a stratified water tank, with particular focus on strong transient behavior and detailed heat exchanger characteristics. Due to the unique thermophysical properties of CO2 under transcritical conditions, conventional modeling approaches are insufficient. The model was validated against experimental results under a range of operating conditions. It accurately predicted outlet water temperatures within ±3.2 °C and system COP within ±6.8% deviation from measurements. In contrast to previous models, this approach offers improved accuracy in capturing dynamic system responses, including startup transients, and demonstrates high adaptability across varying ambient temperatures and load profiles. Importantly, the model also considers the vertical installation layout of components, enabling analysis of gravitational effects on system dynamics and offering insights into optimal configuration strategies. The validated model serves as a powerful tool for system optimization and advanced control design in residential CO2 heat pump applications. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

13 pages, 2217 KB  
Article
Characteristics and Sources of Atmospheric Formaldehyde in a Coastal City in Southeast China
by Yiling Lin, Qiaoling Chen, Youwei Hong, Yanting Chen, Liqian Yin, Jinfang Chen, Gongren Hu, Dan Liao and Ruilian Yu
Atmosphere 2025, 16(10), 1131; https://doi.org/10.3390/atmos16101131 - 26 Sep 2025
Abstract
Atmospheric formaldehyde (HCHO) is a major component of oxygenated volatile organic compounds (OVOCs) and plays an important role in O3 formation and atmospheric oxidation capacity. In this study, seasonal observations of gaseous pollutants (HCHO, O3, peroxyacetyl nitrate (PAN), CO, NOx, [...] Read more.
Atmospheric formaldehyde (HCHO) is a major component of oxygenated volatile organic compounds (OVOCs) and plays an important role in O3 formation and atmospheric oxidation capacity. In this study, seasonal observations of gaseous pollutants (HCHO, O3, peroxyacetyl nitrate (PAN), CO, NOx, and VOCs) and ambient conditions (JHCHO, JNO2, solar radiation, temperature, relative humidity, wind speed, and wind direction) were conducted in a coastal city in southeast China. The average HCHO concentrations were 2.54 ppbv, 3.38 ppbv, 2.53 ppbv, and 1.98 ppbv in spring, summer, autumn, and winter, respectively. Diurnal variations were high in the daytime and low in the nighttime, and the peak times varied in different seasons. The correlation between HCHO and O3 was not significant in spring and winter, which is likely related to the effects of photochemical reactions and diffusion conditions. The contributions of background (23.0%), primary (47.6%), and secondary (29.4%) sources to HCHO were quantified using multiple linear regression (MLR) models, revealing that secondary formation was the most significant contributor in summer, whereas primary emissions were predominant in spring. These findings help to improve the understanding of the influence of atmospheric formaldehyde on photochemical pollution control in coastal cities. Full article
(This article belongs to the Special Issue Air Pollution in China (4th Edition))
Show Figures

Figure 1

16 pages, 3204 KB  
Article
Emissivity Measurements of Metals Used in Wire-Arc-Directed Energy Deposition Processes
by Kevin Mullaney and Ralph P. Tatam
Metals 2025, 15(10), 1078; https://doi.org/10.3390/met15101078 - 26 Sep 2025
Abstract
Accurate temperature measurement is a key parameter that determines the quality of additive manufactured components in directed energy deposition processes. Optical pyrometers which are used to provide in-process temperature data require accurate emissivity data of the metal surface. Process-specific emissivity data for metals [...] Read more.
Accurate temperature measurement is a key parameter that determines the quality of additive manufactured components in directed energy deposition processes. Optical pyrometers which are used to provide in-process temperature data require accurate emissivity data of the metal surface. Process-specific emissivity data for metals used in these processes is not readily available. This paper provides the emissivity of a variety of metals used in wire-arc directed energy deposition processes. For the first time, the test samples were fabricated using typical deposition processes and systems. The metals evaluated were titanium alloy (Ti-6Al-4V), Inconel 718, mild steel, aluminum alloy 2319, and nickel aluminum bronze. At ambient temperature, the measured normal emissivity was 0.26–0.28 for Ti-6Al-4V; for Inconel 718, it was 0.45–0.54; for mild steel, it was 0.4–0.72; for aluminum 2319, it was 0.14; and for nickel aluminum bronze, it was 0.35. The approximate emissivity values are also given over the temperature range 20–1400 °C. The effect of residual oxygen in the shield gas on emissivity is explored for the first time. The spectrophotometric technique was used to measure the metal thermo-optical properties. Full article
Show Figures

Figure 1

22 pages, 9328 KB  
Article
Experimental Comparison of Ventilation Strategies for Condensation Risk in Underground Wheat Granaries
by Xi Chen, Yaning Li, Shuai Jiang, Liu Yang, Yang Liu, Yahui Gao and Hao Zhang
Buildings 2025, 15(19), 3483; https://doi.org/10.3390/buildings15193483 - 26 Sep 2025
Abstract
Underground granaries offer natural insulation for long-term grain storage, yet spatial heterogeneity in temperature and humidity can drive condensation and degrade grain quality. To address this issue, mechanical ventilation is commonly employed, yet evidence remains limited on whether pretreating the inlet air before [...] Read more.
Underground granaries offer natural insulation for long-term grain storage, yet spatial heterogeneity in temperature and humidity can drive condensation and degrade grain quality. To address this issue, mechanical ventilation is commonly employed, yet evidence remains limited on whether pretreating the inlet air before ventilation can further reduce the risk of condensation. In order to bridge this gap, a custom-designed small-scale underground granary was employed, in which temperature and relative humidity of the grain pile, surrounding soil, and ambient air were monitored at 28 sampling points. The effectiveness of mechanical ventilation and ventilation pretreatment in reducing condensation was also assessed. Results demonstrated that during static storage, the granary was minimally affected by external conditions. Yet, a high temperature and humidity area developed at the top of the grain pile over the 24-day period of static storage. Under mechanical ventilation, local relative humidity decreased but grain temperature still responded to ambient conditions. In contrast, ventilation pretreatment stabilized inlet air, lowered peak grain temperature by 1 °C, and improved relative humidity reduction from 6% to 12%. This produced a more uniform temperature–humidity profile and markedly reduced condensation risk. Full article
(This article belongs to the Special Issue Advances in Green Building and Environmental Comfort)
Show Figures

Figure 1

23 pages, 12353 KB  
Article
Cross-Media Infrared Measurement and Temperature Rise Characteristic Analysis of Coal Mine Electrical Equipment
by Xusheng Xue, Jianxin Yang, Hongkui Zhang, Yuan Tian, Qinghua Mao, Enqiao Zhang and Fandong Chen
Energies 2025, 18(19), 5122; https://doi.org/10.3390/en18195122 - 26 Sep 2025
Abstract
With the advancement of coal mine electrical equipment toward larger scale, higher complexity, and greater intelligence, traditional temperature rise monitoring methods have revealed critical limitations such as intrusive measurement, low spatial resolution, and delayed response. This study proposes a novel cross-media infrared measurement [...] Read more.
With the advancement of coal mine electrical equipment toward larger scale, higher complexity, and greater intelligence, traditional temperature rise monitoring methods have revealed critical limitations such as intrusive measurement, low spatial resolution, and delayed response. This study proposes a novel cross-media infrared measurement method combined with temperature rise characteristic analysis to overcome these challenges. First, a cross-media measurement principle is introduced, which uses the enclosure surface temperature as a proxy for the internal heat source temperature, thereby enabling non-invasive internal temperature rise measurement. Second, a non-contact, infrared thermography-based array-sensing measurement approach is adopted, facilitating the transition from traditional single-point temperature measurement to full-field thermal mapping with high spatial resolution. Furthermore, a multi-source data perception method is established by integrating infrared thermography with real-time operating current and ambient temperature, significantly enhancing the comprehensiveness and timeliness of thermal state monitoring. A hybrid prediction model combining Support Vector Regression (SVR) and Random Forest Regression (RFR) is developed, which effectively improves the prediction accuracy of the maximum internal temperature—particularly addressing the issue of weak surface temperature features during low heating stages. The experimental results demonstrate that the proposed method achieves high accuracy and stability across varying operating currents, with a root mean square error of 0.741 °C, a mean absolute error of 0.464 °C, and a mean absolute percentage error of 0.802%. This work provides an effective non-contact solution for real-time temperature rise monitoring and risk prevention in coal mine electrical equipment. Full article
Show Figures

Figure 1

17 pages, 4073 KB  
Article
Pore Structure and Fractal Characteristics of Kelasu Ultra-Deep Tight Sandstone Gas Reservoirs
by Liandong Tang, Yongbin Zhang, Xingyu Tang, Qihui Zhang, Mingjun Chen, Xuehao Pei, Yili Kang, Yiguo Zhang, Yuting Liu, Bihui Zhou, Jun Li, Pandong Tian and Di Wu
Processes 2025, 13(10), 3074; https://doi.org/10.3390/pr13103074 - 25 Sep 2025
Abstract
Ultra-deep tight sandstone gas reservoirs are key targets for natural gas exploration, yet their pore structures under high temperature, pressure, and stress greatly affect gas occurrence and flow. This study investigates representative reservoirs in the Kelasu structural belt, Tarim Basin. Porosity–permeability were measured [...] Read more.
Ultra-deep tight sandstone gas reservoirs are key targets for natural gas exploration, yet their pore structures under high temperature, pressure, and stress greatly affect gas occurrence and flow. This study investigates representative reservoirs in the Kelasu structural belt, Tarim Basin. Porosity–permeability were measured under in situ conditions, and multi-scale pore structures were analyzed using thin sections, a SEM, mercury intrusion, and nitrogen adsorption. The results show that (1) the median permeability of cores at an ambient temperature and a confining stress of 3 MPa is 13.33–29.63 times that under the in situ temperature and pressure conditions. When the core permeability is lower than 0.1 mD, the stress sensitivity effect is significantly enhanced; (2) nanopores and micron-fractures are well developed yet exhibit poor connectivity. The majority of a core’s porosity is derived from the intergranular pores in clay minerals; (3) the volume of nano-sized pores within the 100 nm diameter range is mainly composed of mesopores, with an average proportion of 73.37%, while the average proportions of macropores and micropores are 22.29% and 4.34%, respectively; (4) full-scale pore sizes show bimodal peaks at 100–1000 nm and >100 μm, which are poorly connected; (5) the pore structure exhibits distinct fractal characteristics. The fractal dimension Df1 (2.65 on average) corresponds to the larger pore diameters of the primary intergranular pores, residual intergranular pores, and intragranular dissolution pores. The fractal dimension Df2 (2.10 on average) corresponds to the grain margin fractures, micron-fractures and partial throats. The pore types corresponding to the fractal dimensions Df3 (2.36 on average) and Df4 (2.58 on average) are mainly intercrystalline pores of clay minerals and a small number of intraparticle dissolution pores. These findings clarify the pore structure of ultra-deep tight sandstones and provide insights into their gas occurrence and flow mechanisms. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

28 pages, 4706 KB  
Article
Comparative Performance Analysis of Machine Learning-Based Annual and Seasonal Approaches for Power Output Prediction in Combined Cycle Power Plants
by Asiye Aslan and Ali Osman Büyükköse
Energies 2025, 18(19), 5110; https://doi.org/10.3390/en18195110 - 25 Sep 2025
Abstract
This study develops an innovative framework that utilizes real-time operational data to forecast electrical power output (EPO) in Combined Cycle Power Plants (CCPPs) by employing a temperature segmentation-based modeling approach. Instead of using a single general prediction model, which is commonly seen in [...] Read more.
This study develops an innovative framework that utilizes real-time operational data to forecast electrical power output (EPO) in Combined Cycle Power Plants (CCPPs) by employing a temperature segmentation-based modeling approach. Instead of using a single general prediction model, which is commonly seen in the literature, three separate prediction models were created to explicitly capture the nonlinear effect of ambient temperature (AT) on efficiency (AT < 12 °C, 12 °C ≤ AT < 20 °C, AT ≥ 20 °C). Linear Ridge, Medium Tree, Rational Quadratic Gaussian Process Regression (GPR), Support Vector Machine (SVM) Kernel, and Neural Network methods were applied. In the modeling, the variables considered were AT, relative humidity (RH), atmospheric pressure (AP), and condenser vacuum (V). The highest performance was achieved with the Rational Quadratic GPR method. In this approach, the weighted average Mean Absolute Error (MAE) was found to be 2.225 with seasonal segmentation, while it was calculated as 2.417 in the non-segmented model. By applying seasonal prediction models, the hourly EPO prediction error was reduced by 192 kW, achieving a 99.77% average convergence of the predicted power output values to the actual values. This demonstrates the contribution of the proposed approach to enhancing operational efficiency. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

Back to TopTop