Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = the disintegrating ability of melt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3139 KiB  
Communication
Comparison of Shallow (−20 °C) and Deep Cryogenic Treatment (−196 °C) to Enhance the Properties of a Mg/2wt.%CeO2 Nanocomposite
by Shwetabh Gupta, Gururaj Parande and Manoj Gupta
Technologies 2024, 12(2), 14; https://doi.org/10.3390/technologies12020014 - 23 Jan 2024
Cited by 5 | Viewed by 2452
Abstract
Magnesium and its composites have been used in various applications owing to their high specific strength properties and low density. However, the application is limited to room-temperature conditions owing to the lack of research available on the ability of magnesium alloys to perform [...] Read more.
Magnesium and its composites have been used in various applications owing to their high specific strength properties and low density. However, the application is limited to room-temperature conditions owing to the lack of research available on the ability of magnesium alloys to perform in sub-zero conditions. The present study attempted, for the first time, the effects of two cryogenic temperatures (−20 °C/253 K and −196 °C/77 K) on the physical, thermal, and mechanical properties of a Mg/2wt.%CeO2 nanocomposite. The materials were synthesized using the disintegrated melt deposition method followed by hot extrusion. The results revealed that the shallow cryogenically treated (refrigerated at −20 °C) samples display a reduction in porosity, lower ignition resistance, similar microhardness, compressive yield, and ultimate strength and failure strain when compared to deep cryogenically treated samples in liquid nitrogen at −196 °C. Although deep cryogenically treated samples showed an overall edge, the extent of the increase in properties may not be justified, as samples exposed at −20 °C display very similar mechanical properties, thus reducing the overall cost of the cryogenic process. The results were compared with the data available in the open literature, and the mechanisms behind the improvement of the properties were evaluated. Full article
(This article belongs to the Special Issue Advanced Processing Technologies of Innovative Materials)
Show Figures

Figure 1

31 pages, 13388 KiB  
Article
Primary Composition of Kimberlite Melt
by Sergey Kostrovitsky, Anna Dymshits, Dmitry Yakovlev, Jing Sun, Tatiana Kalashnikova, Igor Ashchepkov and Olga Belozerova
Minerals 2023, 13(11), 1404; https://doi.org/10.3390/min13111404 - 1 Nov 2023
Cited by 3 | Viewed by 3040
Abstract
The compositions (mineralogy, major- and trace-element chemistry of rocks and minerals, and Sr-Nd-Hf isotope systematics) of two kimberlite bodies, the Obnazhennaya pipe and the Velikan dyke from the Kuoika field, Yakutian kimberlite province (YaKP), which are close to each other (1 km distance) [...] Read more.
The compositions (mineralogy, major- and trace-element chemistry of rocks and minerals, and Sr-Nd-Hf isotope systematics) of two kimberlite bodies, the Obnazhennaya pipe and the Velikan dyke from the Kuoika field, Yakutian kimberlite province (YaKP), which are close to each other (1 km distance) and of the same Upper Jurassic age, are presented. The kimberlites of the two bodies are contrastingly different in composition. The Obnazhennaya pipe is composed of pyroclastic kimberlite of high Mg and low Ti composition and is characterized by high saturation of clastic material of the lithospheric mantle (CMLM). The pyroclastic kimberlite contains rare inclusions of coherent kimberlite from previous intrusion phases. The Velikan dyke is represented by coherent kimberlite of relatively high Fe and high Ti composition, having neither mantle xenoliths nor olivine xenocrysts. The similarity of the isotopic geochemical characteristics for kimberlites from both bodies and their spatial and temporal proximity suggest that their formation is associated with the presence of a single primary magmatic source located in the asthenosphere. It is proposed that the asthenospheric melt differentiated into two parts: (1) a predominantly carbonate composition and (2) a carbonate–silicate composition, which, respectively, formed (a) low Fe and (b) Mg-Fe and high Fe-Ti petrochemical types of kimberlites. Both parts of the melt had different capabilities to capture the xenogenic material of the mantle rocks. The greater ability to destroy and, subsequently, capture CMLM belongs to the melt, which formed a high Mg type of kimberlite and which, according to the structural–textural classification, more often corresponds to the pyroclastic kimberlite. It is suggested that the primary kimberlite melt of asthenospheric origin is similar in composition to the high Fe, high Ti, coherent kimberlite from the Velikan dyke (in wt. %: SiO2–21.8, TiO2–3.5, Al2O3–4.0, FeO–10.6, MnO–0.19, MgO–21.0, CaO–17.2, Na2O–0.24, K2O–0.78, P2O5–0.99, CO2–12.6). It is concluded that the pyroclastic kimberlite contains only xenogenic Ol, whereas some of the Ol macrocrysts with high FeO content in the coherent kimberlite have crystallized from the melt. The similarity of Sr-Nd-Hf isotope systematics and trace element compositions for kimberlites of different ages (from Devonian to Upper Jurassic) in different parts of the YaKP (in the Kuoika, Daldyn and Mirny fields) indicates a single long-lived homogeneous magmatic asthenospheric source. Full article
Show Figures

Figure 1

17 pages, 6533 KiB  
Article
Novel Epoxidized Brazil Nut Oil as a Promising Plasticizing Agent for PLA
by Aina Perez-Nakai, Alejandro Lerma-Canto, Ivan Dominguez-Candela, Jose Miguel Ferri and Vicent Fombuena
Polymers 2023, 15(9), 1997; https://doi.org/10.3390/polym15091997 - 23 Apr 2023
Cited by 16 | Viewed by 2592
Abstract
This work evaluates for the first time the potential of an environmentally friendly plasticizer derived from epoxidized Brazil nut oil (EBNO) for biopolymers, such as poly(lactic acid) (PLA). EBNO was used due to its high epoxy content, reaching an oxirane oxygen content of [...] Read more.
This work evaluates for the first time the potential of an environmentally friendly plasticizer derived from epoxidized Brazil nut oil (EBNO) for biopolymers, such as poly(lactic acid) (PLA). EBNO was used due to its high epoxy content, reaching an oxirane oxygen content of 4.22% after 8 h of epoxidation for a peroxide/oil ratio of 2:1. Melt extrusion was used to plasticize PLA formulations with different EBNO contents in the range of 0–10 phr. The effects of different amounts of EBNO in the PLA matrix were studied by performing mechanical, thermal, thermomechanical, and morphological characterizations. The tensile test demonstrated the feasibility of EBNO as a plasticizer for PLA by increasing the elongation at break by 70.9% for the plasticized PLA with 7.5 phr of EBNO content in comparison to the unplasticized PLA. The field-emission scanning electron microscopy (FESEM) of the fractured surfaces from the impact tests showed an increase in porosity and roughness in the areas with EBNO addition, which was characteristic of ductile failure. In addition, a disintegration test was performed, and no influence on the PLA biodegradation process was observed. The overall results demonstrate the ability of EBNO to compete with other commercial plasticizers in improving the ductile properties of PLA. Full article
(This article belongs to the Special Issue Macromolecules Derived from Vegetable Oils)
Show Figures

Figure 1

25 pages, 19240 KiB  
Article
Evaluation of Micro-Mechanism and High- and Low-Temperature Rheological Properties of Disintegrated High Volume Crumb Rubber Asphalt (DHVRA)
by Wei Li, Sen Han, Xiaokang Fu and Ke Huang
Materials 2021, 14(5), 1145; https://doi.org/10.3390/ma14051145 - 28 Feb 2021
Cited by 3 | Viewed by 2037
Abstract
The aims of this paper are to prepare disintegrated high volume crumb rubber asphalt (DHVRA) with low viscosity, good workability and low-temperature performance by adding disintegrating agent (DA) in the preparation process, and to further analyze the disintegrating mechanism and evaluated high-temperature and [...] Read more.
The aims of this paper are to prepare disintegrated high volume crumb rubber asphalt (DHVRA) with low viscosity, good workability and low-temperature performance by adding disintegrating agent (DA) in the preparation process, and to further analyze the disintegrating mechanism and evaluated high-temperature and low-temperature rheological properties. To obtain DHVRA with excellent comprehensive performance, the optimum DA dosage was determined. Based on long-term disintegrating tests and the Fluorescence Microscopy (FM) method, the correlations between key indexes and crumb rubber (CR) particle diameter was analyzed, and the evaluation indicator and disintegrating stage division standard were put forward. Furthermore, Fourier transform infrared spectroscopy (FT-IR) and Gel Permeation Chromatography (GPC) was used to reveal the reaction mechanism, and the contact angle test method was adopted to evaluate the surface free energy (SFE). In addition, the high-temperature and low-temperature rheological properties were measured, and the optimum CR content was proposed. Results indicated that the optimum DA dosage was 7.5‰, and the addition of DA promoted the melt decomposition of CR, reduced the viscosity and improved the storage stability. The 135 °C rotational viscosity (RV) of DHVRA from mixing for 3 h could be reduced to 1.475 Pa·s, and the softening point difference was even less than 2 °C. The linear correlation between 135 °C RV and the diameter of CR particle in rubber asphalt system was as high as 0.968, and the viscosity decay rate (VDR) was used as the standard to divide the disintegrating process into a fast disintegrating stage, stable disintegrating stage and slight disintegrating stage. Compared to common rubber asphalt (CRA), DHVRA has an absorption peak at 960 cm−1 caused by trans olefin = C-H, and higher molecular weight and polar component of surface energy. Compared with CRA, although the high-temperature performance of DHVRA decreases slightly, the low-temperature relaxation ability can be greatly improved. Full article
Show Figures

Graphical abstract

17 pages, 4102 KiB  
Article
Hybrid Biocomposites Based on Poly(Lactic Acid) and Silica Aerogel for Food Packaging Applications
by Alejandro Aragón-Gutierrez, Marina P. Arrieta, Mar López-González, Marta Fernández-García and Daniel López
Materials 2020, 13(21), 4910; https://doi.org/10.3390/ma13214910 - 31 Oct 2020
Cited by 35 | Viewed by 4408
Abstract
Bionanocomposites based on poly (lactic acid) (PLA) and silica aerogel (SiA) were developed by means of melt extrusion process. PLA-SiA composite films were plasticized with 15 wt.% of acetyl (tributyl citrate) (ATBC) to facilitate the PLA processability as well as to attain flexible [...] Read more.
Bionanocomposites based on poly (lactic acid) (PLA) and silica aerogel (SiA) were developed by means of melt extrusion process. PLA-SiA composite films were plasticized with 15 wt.% of acetyl (tributyl citrate) (ATBC) to facilitate the PLA processability as well as to attain flexible polymeric formulations for films for food packaging purposes. Meanwhile, SiA was added in four different proportions (0.5, 1, 3 and 5 wt.%) to evaluate the ability of SiA to improve the thermal, mechanical, and barrier performance of the bionanocomposites. The mechanical performance, thermal stability as well as the barrier properties against different gases (carbon dioxide, nitrogen, and oxygen) of the bionanocomposites were evaluated. It was observed that the addition of 3 wt.% of SiA to the plasticized PLA-ATBC matrix showed simultaneously an improvement on the thermal stability as well as the mechanical and barrier performance of films. Finally, PLA-SiA film formulations were disintegrated in compost at the lab-scale level. The combination of ATBC and SiA sped up the disintegration of PLA matrix. Thus, the bionanocomposites produced here show great potential as sustainable polymeric formulations with interest in the food packaging sector. Full article
Show Figures

Graphical abstract

22 pages, 5788 KiB  
Article
Bio-Based Poly(butylene succinate)/Microcrystalline Cellulose/Nanofibrillated Cellulose-Based Sustainable Polymer Composites: Thermo-Mechanical and Biodegradation Studies
by Oskars Platnieks, Sergejs Gaidukovs, Anda Barkane, Aleksandrs Sereda, Gerda Gaidukova, Liga Grase, Vijay Kumar Thakur, Inese Filipova, Velta Fridrihsone, Marite Skute and Marianna Laka
Polymers 2020, 12(7), 1472; https://doi.org/10.3390/polym12071472 - 30 Jun 2020
Cited by 71 | Viewed by 10033
Abstract
Biodegradable polymer composites from renewable resources are the next-generation of wood-like materials and are crucial for the development of various industries to meet sustainability goals. Functional applications like packaging, medicine, automotive, construction and sustainable housing are just some that would greatly benefit. Some [...] Read more.
Biodegradable polymer composites from renewable resources are the next-generation of wood-like materials and are crucial for the development of various industries to meet sustainability goals. Functional applications like packaging, medicine, automotive, construction and sustainable housing are just some that would greatly benefit. Some of the existing industries, like wood plastic composites, already encompass given examples but are dominated by fossil-based polymers that are unsustainable. Thus, there is a background to bring a new perspective approach for the combination of microcrystalline cellulose (MCC) and nanofibrillated cellulose (NFC) fillers in bio-based poly (butylene succinate) matrix (PBS). MCC, NFC and MCC/NFC filler total loading at 40 wt % was used to obtain more insights for wood-like composite applications. The ability to tailor the biodegradable characteristics and the mechanical properties of PBS composites is indispensable for extended applications. Five compositions have been prepared with MCC and NFC fillers using melt blending approach. Young’s modulus in tensile test mode and storage modulus at 20 °C in thermo-mechanical analysis have increased about two-fold. Thermal degradation temperature was increased by approximately 60 °C compared to MCC and NFC. Additionally, to estimate the compatibility of the components and morphology of the composite’s SEM analysis was performed for fractured surfaces. The contact angle measurements testified the developed matrix interphase. Differential scanning calorimetry evidenced the trans-crystallization of the polymer after filler incorporation; the crystallization temperature shifted to the higher temperature region. The MCC has a stronger effect on the crystallinity degree than NFC filler. PBS disintegrated under composting conditions in a period of 75 days. The NFC/MCC addition facilitated the specimens’ decomposition rate up to 60 days Full article
(This article belongs to the Special Issue Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

14 pages, 6331 KiB  
Article
Fe3O4 Nanoparticle-Reinforced Magnesium Nanocomposites Processed via Disintegrated Melt Deposition and Turning-Induced Deformation Techniques
by Michael Johanes, Sravya Tekumalla and Manoj Gupta
Metals 2019, 9(11), 1225; https://doi.org/10.3390/met9111225 - 16 Nov 2019
Cited by 20 | Viewed by 3157
Abstract
Magnesium nanocomposites, with nano-scale ceramic reinforcements, have attracted a great deal of attention for several engineering and biomedical applications in the recent past. In this work, superparamagnetic iron oxide nanoparticles, Fe3O4, with their unique magnetic properties and the ability [...] Read more.
Magnesium nanocomposites, with nano-scale ceramic reinforcements, have attracted a great deal of attention for several engineering and biomedical applications in the recent past. In this work, superparamagnetic iron oxide nanoparticles, Fe3O4, with their unique magnetic properties and the ability of being bio-compatible and non-toxic, are reinforced to magnesium to form Mg/(1, 2, and 3 wt %) Fe3O4 nanocomposites. These nanocomposites were fabricated using the conventional disintegrated melt deposition (DMD) technique followed by extrusion. Further, the materials were also processed using the novel turning-induced-deformation technique where the chips from turning process are collected, cold compacted, and hot extruded. The materials processed via the two techniques were compared in terms of microstructure and properties. Overall, the Mg/Fe3O4 nanocomposites, processed via both routes, exhibited a superior property profile. Further, the turning-induced deformation method showed promising results in terms of improved properties of the nanocomposites and serves as a great route for the recycling of metallic materials. Full article
(This article belongs to the Special Issue Production and Properties of Light Metal Matrix Nanocomposites)
Show Figures

Figure 1

27 pages, 60906 KiB  
Article
Material Considerations for Fused-Filament Fabrication of Solid Dosage Forms
by Evert Fuenmayor, Martin Forde, Andrew V. Healy, Declan M. Devine, John G. Lyons, Christopher McConville and Ian Major
Pharmaceutics 2018, 10(2), 44; https://doi.org/10.3390/pharmaceutics10020044 - 2 Apr 2018
Cited by 125 | Viewed by 12189
Abstract
Material choice is a fundamental consideration when it comes to designing a solid dosage form. The matrix material will ultimately determine the rate of drug release since the physical properties (solubility, viscosity, and more) of the material control both fluid ingress and disintegration [...] Read more.
Material choice is a fundamental consideration when it comes to designing a solid dosage form. The matrix material will ultimately determine the rate of drug release since the physical properties (solubility, viscosity, and more) of the material control both fluid ingress and disintegration of the dosage form. The bulk properties (powder flow, concentration, and more) of the material should also be considered since these properties will influence the ability of the material to be successfully manufactured. Furthermore, there is a limited number of approved materials for the production of solid dosage forms. The present study details the complications that can arise when adopting pharmaceutical grade polymers for fused-filament fabrication in the production of oral tablets. The paper also presents ways to overcome each issue. Fused-filament fabrication is a hot-melt extrusion-based 3D printing process. The paper describes the problems encountered in fused-filament fabrication with Kollidon® VA64, which is a material that has previously been utilized in direct compression and hot-melt extrusion processes. Formulation and melt-blending strategies were employed to increase the printability of the material. The paper defines for the first time the essential parameter profile required for successful 3D printing and lists several pre-screening tools that should be employed to guide future material formulation for the fused-filament fabrication of solid dosage forms. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of Hot-melt Extrusion)
Show Figures

Graphical abstract

Back to TopTop