Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = the Baotou site

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6633 KiB  
Article
Nioboixiolite-(□),(Nb0.8□0.2)4+O2, a New Mineral Species from the Bayan Obo World-Class REE-Fe-Nb Deposit, Inner Mongolia, China
by Yike Li, Changhui Ke, Denghong Wang, Zidong Peng, Yonggang Zhao, Ruiping Li, Zhenyu Chen, Guowu Li, Hong Yu, Li Zhang, Bin Guo and Yupu Gao
Minerals 2025, 15(1), 88; https://doi.org/10.3390/min15010088 - 17 Jan 2025
Cited by 3 | Viewed by 799
Abstract
Nioboixiolite-(□) is a new mineral found in a carbonatite sill from the Bayan Obo mine, Baotou City, Inner Mongolia, China. It occurs as anhedral to subhedral grains (100 to 500 μm in diameter) that are disseminated in carbonatite rock composed of dolomite, calcite, [...] Read more.
Nioboixiolite-(□) is a new mineral found in a carbonatite sill from the Bayan Obo mine, Baotou City, Inner Mongolia, China. It occurs as anhedral to subhedral grains (100 to 500 μm in diameter) that are disseminated in carbonatite rock composed of dolomite, calcite, magnetite, apatite, biotite, actionlike, zircon, and columbite-(Fe). Most of these grains are highly serrated, with numerous inclusions of columbite-(Fe). The mineral is gray to deep black in color; is opaque, with a semi-metallic luster; has a black streak; and is brittle, with an uneven conchoidal splintery. The Mohs hardness is 6–6½, and the calculated density is 6.05 g/cm3. The reflection color is gray with a blue tone, and there is no double reflection color. The measured reflectivity of nioboixiolite-(□) is about 10.6%~12.1%, close to that of ixiolite (11%–13%). Nioboixiolite-(□) is non-fluorescent under 254 nm (short-wave) and 366 nm (long-wave) ultraviolet light. The average chemical analysis results (wt.%) of twelve electron microprobe analyses are F 0.01, MnO 0.12, MgO 0.15, BaO 0.62, PbO 0.91, SrO 1.49, CaO 2.76, Al2O3 0.01, TREE2O3 1.58, Fe2O3 3.57, ThO2 0.11, SiO2 1.69, TiO2 3.68, Ta2O5 13.95, Nb2O5 47.04, and UO3 21.56, with a total of 99.25. The simplified formula is [Nb5+, Ta5+,Ti4+, Fe3+,□,]O2. X-ray diffraction data show that nioboixiolite-(□) is orthorhombic, belonging to the space group Pbcn (#60). The refined unit cell parameters are a = 4.7071(5) Å, b = 5.7097(7) Å, c = 5.1111(6) Å, V = 138.31(3), and β = 90(1) °Å3 with Z = 4. In the crystal structure of nioboixiolite-(□), all cations occupy a single M1 site. In these minerals, edge-sharing M1O6 octahedra form chains along the c direction. In this direction, the chains are connected with each other via common vertices of the octahedra. The strongest measured X-ray powder diffraction lines are [d in Å, (I/I0), (hkl)]: 3.662(20) (110), 2.975(100) (111), 2.501(20) (021), 1.770(20) (122), 1.458(20) (023). A type specimen was deposited in the Geological Museum of China with catalogue number M16118, No. 15, Yangrou Hutong, Xisi, Beijing 100031, People’s Republic of China. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

15 pages, 8544 KiB  
Article
Pollution Characteristics and Ecological Risk Assessment of Typical Heavy Metals in the Soil of the Heavy Industrial City Baotou
by Xiangmei Chen, Yongqiang Ren, Chi Li, Yan Shang, Rui Ji, De Yao and Yingchun He
Processes 2025, 13(1), 170; https://doi.org/10.3390/pr13010170 - 9 Jan 2025
Cited by 2 | Viewed by 1075
Abstract
Urban soil samples were collected from the major heavy industrial city of Baotou in Inner Mongolia, China, to investigate the concentration, spatial distribution, and pollution levels of heavy metals. The study employed the geoaccumulation index (Igeo), ecological risk index, and spatial interpolation methods [...] Read more.
Urban soil samples were collected from the major heavy industrial city of Baotou in Inner Mongolia, China, to investigate the concentration, spatial distribution, and pollution levels of heavy metals. The study employed the geoaccumulation index (Igeo), ecological risk index, and spatial interpolation methods to comprehensively assess urban soil pollution. The results indicated that apart from arsenic (As) and nickel (Ni), the concentrations of heavy metals such as cadmium (Cd), chromium (Cr), manganese (Mn), mercury (Hg), copper (Cu), zinc (Zn), and lead (Pb) were significantly higher than the corresponding background values in the study areas. According to the geoaccumulation index (Igeo), the overall pollution level in the study area ranged from uncontaminated to low pollution. However, variations existed among different urban districts. Among Baotou’s four main urban areas, the soil pollution level in Kundulun District was notably higher compared to the other three urban areas. Mercury (Hg), lead (Pb), zinc (Zn), and copper (Cu) exhibited relatively higher pollution levels across the four district sites. The observed pollution characteristics are closely linked to the distinct industrial attributes of the urban districts: the Kundulun District of Baotou, Inner Mongolia, is renowned for its significant presence of industrial activities such as steel manufacturing, power generation, and coal combustion. These industries play a crucial role in the local economy but also contribute substantially to heavy metal emissions, leading to notable environmental impacts. Similar to the Kundulun District, the Qingshan District of Baotou, Inner Mongolia, is significantly influenced by industrial activities, which have led to elevated concentrations of certain heavy metals and formed higher potential ecological risk index (PERI) hotspots. Implications and Recommendations. The disparity in industrial activities across the four urban districts of Baotou is a principal factor contributing to variations in pollution levels and ecological risks. In conclusion, this research highlights the necessity of aligning industrial zoning with effective environmental management strategies to combat heavy metal pollution in urban soils. By implementing these integrated approaches, Baotou can safeguard its environment and public health, paving the way for a sustainable future. Full article
(This article belongs to the Special Issue Advances in Remediation of Contaminated Sites: 2nd Edition)
Show Figures

Figure 1

21 pages, 10992 KiB  
Article
Radiometric Cross-Calibration of HJ-2A/CCD3 Using the Random Forest Algorithm and a Spectral Interpolation Convolution Method with Sentinel-2/MSI
by Xiang Zhou, Yidan Chen, Yong Xie, Jie Han and Wen Shao
Remote Sens. 2024, 16(22), 4337; https://doi.org/10.3390/rs16224337 - 20 Nov 2024
Cited by 1 | Viewed by 1113
Abstract
In the process of radiometric calibration, the corrections for bidirectional reflectance distribution functions (BRDFs) and spectral band adjustment factors (SBAFs) are crucial. Time-series MODIS images are commonly used to construct BRDFs by using the Ross–Li model in current research. However, the Ross–Li BRDF [...] Read more.
In the process of radiometric calibration, the corrections for bidirectional reflectance distribution functions (BRDFs) and spectral band adjustment factors (SBAFs) are crucial. Time-series MODIS images are commonly used to construct BRDFs by using the Ross–Li model in current research. However, the Ross–Li BRDF model is based on the linear relationship between the kernel models and is unable to take into account the nonlinear relationship between them. Furthermore, when using SBAF to account for spectral difference, a radiative transfer model is often used, but it requires many parameters to be set, which may introduce more errors and reduce the calibration accuracy. To address these issues, the random forest algorithm and a spectral interpolation convolution method using the Sentinel-2/multispectral instrument (MSI) are proposed in this study, in which the HuanJing-2A (HJ-2A)/charge-coupled device (CCD3) sensor is taken as an example, and the Dunhuang radiometric calibration site (DRCS) is used as a radiometric delivery platform. Firstly, a BRDF model by using the random forest algorithm of the DRCS is constructed using time-series MODIS images, which corrects the viewing geometry difference. Secondly, the BRDF correction coefficients, MSI reflectance, and relative spectral responses (RSRs) of CCD3 are used to correct the spectral differences. Finally, with the validation results, the maximum relative error between the calibration results of the proposed method and the official calibration coefficients (OCCs) published by the China Centre for Resources Satellite Data and Application (CRESDA) is 3.38%. When tested using the Baotou sandy site, the proposed method is better than the OCCs of the average relative errors calculated for all the bands except for the near-infrared (NIR) band, which has a larger error. Additionally, the effects of the light-matching method and the radiative transfer method, different approaches to constructing the BRDF model, using SBAF to account for spectral differences, different BRDF sources, as well as the imprecise viewing geometrical parameters, spectral interpolation method, and geometric positioning error, on the calibration results are analyzed. Results indicate that the cross-calibration coefficients obtained using the random forest algorithm and the proposed spectral interpolation method are more applicable to the CCD3; thus, they also account for the nonlinear relationships between the kernel models and reduce the error due to the radiative transfer model. The total uncertainty of the proposed method in all bands is less than 5.16%. Full article
Show Figures

Figure 1

19 pages, 6974 KiB  
Article
Estimation of Land Surface Temperature from Chinese ZY1-02E IRS Data
by Xianhui Dou, Kun Li, Qi Zhang, Chenyang Ma, Hongzhao Tang, Xining Liu, Yonggang Qian, Jun Chen, Jinglun Li, Yichao Li, Tao Wang, Feng Wang and Juntao Yang
Remote Sens. 2024, 16(2), 383; https://doi.org/10.3390/rs16020383 - 18 Jan 2024
Cited by 3 | Viewed by 2459
Abstract
The role of land surface temperature (LST) is of the utmost importance in multiple academic disciplines, such as climatology, hydrology, ecology, and meteorology. To date, many methods have been proposed to estimate LST from satellite thermal infrared data. The single-channel (SC) algorithm can [...] Read more.
The role of land surface temperature (LST) is of the utmost importance in multiple academic disciplines, such as climatology, hydrology, ecology, and meteorology. To date, many methods have been proposed to estimate LST from satellite thermal infrared data. The single-channel (SC) algorithm can provide an accurate result in retrieving LST based on prior knowledge of known land surface emissivity (LSE). The SC algorithm is extensively employed for retrieving LST from Landsat series data due to its simplicity and its reliance on just one thermal infrared channel. The Thermal Infrared Sensor (IRS) on the Chinese ZY1-02E satellite is a pivotal instrument employed for gathering thermal infrared (TIR) data of land surfaces. The objective of this research is to evaluate the feasibility of a single-channel approach based on water vapor scaling (WVS) for deriving LST from ZY1-02E IRS data because of its wide spectrum range, i.e., 7~12 μm, which is affected strongly by both atmospheric water vapor and ozone. Three study areas, namely the Baotou, Heihe River Basin, and Yantai Sea sites, were selected as validation sites to evaluate the LST inversion accuracy. This evaluation was also conducted via cross-comparison between the retrieved LST and MODIS LST products. The results revealed that the WVS-based method exhibited an average bias of 0.63 K and an RMSE of 1.62 K compared to the in situ LSTs. The WVS-based method demonstrated reasonable accuracy through cross-validation with the MODIS LST product, with an average bias of 0.77 K and an RMSE of 2.0 K. These findings indicate that the WVS-based method is effective in estimating LST from ZY1-02E IRS data. Full article
(This article belongs to the Special Issue Land Surface Temperature Estimation Using Remote Sensing II)
Show Figures

Figure 1

21 pages, 7362 KiB  
Article
Evaluation of the Radiometric Calibration of ZY1-02E Thermal Infrared Data
by Honggeng Zhang, Hongzhao Tang, Xining Liu, Xianhui Dou, Yonggang Qian, Wei Chen and Kun Li
Remote Sens. 2023, 15(15), 3905; https://doi.org/10.3390/rs15153905 - 7 Aug 2023
Cited by 1 | Viewed by 2221 | Correction
Abstract
Following the launch of the ZY1-02E satellite, the thermal infrared sensor aboard the satellite experienced alterations in the space environment, leading to varying degrees of attenuation in some components. The laboratory calibration accuracy could not satisfy the demands of quantitative production, and a [...] Read more.
Following the launch of the ZY1-02E satellite, the thermal infrared sensor aboard the satellite experienced alterations in the space environment, leading to varying degrees of attenuation in some components. The laboratory calibration accuracy could not satisfy the demands of quantitative production, and a certain degree of deviation was observed in on-orbit calibration. To accurately characterize the on-orbit radiation properties of thermal infrared remote sensing payloads, an absolute radiometric calibration campaign was carried out at the Ulansuhai Nur and Baotou calibration sites in Inner Mongolia in July 2022. This paper outlines the processes of onboard calibration and vicarious calibration for the ZY1-02E satellite, comparing the outcomes of onboard calibration with those of vicarious calibration. The onboard calibration method involved internal calibration, while the vicarious calibration method utilized an on-orbit absolute radiometric calibration technique based on various natural features that were not constrained by satellite–Earth spectrum matching requirements. Calibration coefficients were acquired, and the absolute radiometric calibration results of on-orbit vicarious and onboard calibration were compared, analyzed, and verified using the radiance computed from measured data and the reference sensor data. The accuracy of on-orbit absolute vicarious calibration was determined, and the causes for the decline in the radiation calibration accuracy on the orbiting satellite were examined. The findings revealed that the vicarious calibration results exhibited a lower percentage of radiance deviation compared with the onboard calibration results, meeting the quantitative requirements of remote sensing data. These results were significantly better than those obtained from onboard blackbody calibration, offering a data foundation for devising satellite calibration plans and enhancing calibration algorithms. In the future, the developmental trend of on-orbit radiometric calibration technology will encompass high-precision and slow-attenuation onboard calibration techniques, as well as high-frequency and simplified-step vicarious calibration methods. Full article
(This article belongs to the Special Issue Advances in Thermal Infrared Remote Sensing)
Show Figures

Figure 1

34 pages, 11080 KiB  
Article
Evaluation of Temporal Stability in Radiometric Calibration Network Sites Using Multi-Source Satellite Data and Continuous In Situ Measurements
by Enchuan Qiao, Chao Ma, Hao Zhang, Zhenzhen Cui and Chenglong Zhang
Remote Sens. 2023, 15(10), 2639; https://doi.org/10.3390/rs15102639 - 18 May 2023
Cited by 6 | Viewed by 2208
Abstract
The radiometric calibration network (RadCalNet) comprises four pseudo-invariant calibration sites (PICS): Gobabeb, Baotou, Railroad Valley Playa, and La Crau. Due to its site stability characteristics, it is widely used for sensor performance monitoring and radiometric calibration, which require high spatiotemporal stability. However, some [...] Read more.
The radiometric calibration network (RadCalNet) comprises four pseudo-invariant calibration sites (PICS): Gobabeb, Baotou, Railroad Valley Playa, and La Crau. Due to its site stability characteristics, it is widely used for sensor performance monitoring and radiometric calibration, which require high spatiotemporal stability. However, some studies have found that PICS are not invariable. Previous studies used top-of-atmosphere (TOA) data without verifying site data, which could affect the accuracy of their results. In this study, we analyzed the short- and long-term radiometric trends of RadCalNet sites using bottom-of-atmosphere (BOA) data, and verified the trends revealed by the TOA data from Landsat 7, 8, and Sentinel-2. Besides the commonly used methods (e.g., nonparametric Mann–Kendall and sequential Mann–Kendall tests), a more robust Sen’s slope method was used to estimate the magnitude of the change. We found that (1) the trends based on TOA reflectance contrasted with those based on BOA reflectance in certain cases, e.g., the reflectance trends in the red band of BOA data for La Crau in summer and autumn and Baotou were not significant, while the TOA data showed a significant downward trend; (2) the temporal trends showed statistically significant and abrupt changes in all PICS, e.g., the SWIR2 band of La Crau in winter and spring changed by 1.803% per year, and the SWIR1 band of Railroad Valley Playa changed by >0.282% per year, indicating that the real changes in sensor performance are hard to detect using these sites; (3) spatial homogeneity was verified using the coefficient of variation (CV) and Getis statistic (Gi*) for each PICS (CV < 3% and Gi* > 0). Overall, the RadCalNet remains a highly reliable tool for vicarious calibration; however, the temporal stability should be noted for radiometric performance monitoring of sensors. Full article
Show Figures

Figure 1

18 pages, 10365 KiB  
Article
Radiometric Calibration of GF5-02 Advanced Hyperspectral Imager Based on RadCalNet Baotou Site
by Hongzhao Tang, Chenchao Xiao, Kun Shang, Taixia Wu and Qi Li
Remote Sens. 2023, 15(9), 2233; https://doi.org/10.3390/rs15092233 - 23 Apr 2023
Cited by 9 | Viewed by 2425
Abstract
In this study, an on-orbit radiometric calibration campaign of the GF5-02 AHSI was performed at the RadCalNet Baotou site, based on the automated observation of reflectance and atmospheric parameters of a 300 m × 300 m homogeneous desert area. The consistency of the [...] Read more.
In this study, an on-orbit radiometric calibration campaign of the GF5-02 AHSI was performed at the RadCalNet Baotou site, based on the automated observation of reflectance and atmospheric parameters of a 300 m × 300 m homogeneous desert area. The consistency of the radiometric calibration coefficients was validated both at the Dunhuang calibration site and the Baotou site. The average relative difference between the calibrated top-of-atmospheric (TOA) radiance and the predicted TOA radiance were less than 7%. The R2 of these two TOA radiances were all higher than 0.99. These results showed that the accuracy of calibration coefficients could meet the requirements of hyperspectral quantification applications. The uncertainty of GF5-02 AHSI radiometric calibration was 6.18%. This study also demonstrated that automated observation data of the Baotou site were reliable for high-frequency radiometric calibration and radiometric performance monitoring of GF5-02 AHSI. Full article
(This article belongs to the Special Issue Hyperspectral Remote Sensing Data Calibration and Validation)
Show Figures

Figure 1

19 pages, 12377 KiB  
Article
On-Orbit Vicarious Radiometric Calibration and Validation of ZY1-02E Thermal Infrared Sensor
by Hongzhao Tang, Junfeng Xie, Xianhui Dou, Honggeng Zhang and Wei Chen
Remote Sens. 2023, 15(4), 994; https://doi.org/10.3390/rs15040994 - 10 Feb 2023
Cited by 1 | Viewed by 2263
Abstract
The ZY1-02E satellite carrying a thermal infrared sensor was successfully launched from the Taiyuan Satellite Launch Center on 26 December 2021. The quantitative characteristics of this thermal infrared camera, for use in supporting applications, were acquired as part of an absolute radiometric calibration [...] Read more.
The ZY1-02E satellite carrying a thermal infrared sensor was successfully launched from the Taiyuan Satellite Launch Center on 26 December 2021. The quantitative characteristics of this thermal infrared camera, for use in supporting applications, were acquired as part of an absolute radiometric calibration campaign performed at the Ulansuhai Nur and Baotou calibration site (Inner Mongolia, July 2022). In this paper, we propose a novel on-orbit absolute radiometric calibration technique, based on multiple ground observations, that considers the radiometric characteristics of the ZY1-02E thermal infrared sensor. A variety of natural surface objects were selected as references, including bodies of water, bare soil, a desert in Kubuqi, and sand and vegetation at the Baotou calibration site. During satellite overpass, the 102F Fourier transform thermal infrared spectrometer and the SI-111 infrared temperature sensor were used to measure temperature and ground-leaving radiance for these surface profiles. Atmospheric water vapor, aerosol optical depth, and ozone concentration were simultaneously obtained from the CIMEL CE318 Sun photometer and the MICROTOP II ozonometer. Atmospheric profile information was acquired from radiosonde instruments carried by sounding balloons. Synchronous measurements of atmospheric parameters and ECMWF ERA5 reanalysis data were then combined and input to an atmospheric radiative transfer model (MODTRAN6.0) used to calculate apparent radiance. Calibration coefficients were determined from the measured apparent radiance and satellite-observed digital number (DN), for use in calculating the on-orbit observed radiance of typical surface objects. These values were then compared with the apparent radiance of each object, using radiative transfer calculations to evaluate the accuracy of on-orbit absolute radiometric calibration. The results show that the accuracy of this absolute radiometric calibration is better than 0.6 K. This approach allows the thermal infrared channel to be unrestricted by the limitations of spectrum matching between a satellite and field measurements, with strong applicability to various types of calibration sites. Full article
Show Figures

Graphical abstract

14 pages, 4291 KiB  
Technical Note
Absolute Radiometric Calibration of ZY3-02 Satellite Multispectral Imager Based on Irradiance-Based Method
by Hongzhao Tang, Junfeng Xie, Wei Chen, Honggeng Zhang and Hengyang Wang
Remote Sens. 2023, 15(2), 448; https://doi.org/10.3390/rs15020448 - 11 Jan 2023
Cited by 6 | Viewed by 2042
Abstract
In this paper, an irradiance-based absolute radiometric calibration campaign at Baotou calibration site during June and July 2018 was described. This radiometric calibration campaign made use of six radiometric calibration tarps. The synchronous measurements of parameters such as surface reflectance, atmospheric parameters, and [...] Read more.
In this paper, an irradiance-based absolute radiometric calibration campaign at Baotou calibration site during June and July 2018 was described. This radiometric calibration campaign made use of six radiometric calibration tarps. The synchronous measurements of parameters such as surface reflectance, atmospheric parameters, and diffuse-to-global irradiance ratio were collected at the satellite overpass. The top-of-atmospheric radiance was predicted by radiative transfer model with these synchronous measurements. The linear relationship between DNs of satellite sensor and band-specific top-of-atmospheric spectral radiance was established, and a stable and reliable absolute calibration coefficient of ZY3-02 MUX was determined in this campaign. We compared the calibration results of the irradiance-based method with those of the reflectance-based method. The results suggested that the irradiance-based method is better than reflectance-based method. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

19 pages, 2589 KiB  
Article
Phytoplankton Community Structure and Its Relationship with Environmental Factors in Nanhai Lake
by Donghui Gong, Ziqing Guo, Wenxue Wei, Jie Bi, Zhizhong Wang and Xiang Ji
Diversity 2022, 14(11), 927; https://doi.org/10.3390/d14110927 - 29 Oct 2022
Cited by 11 | Viewed by 3524
Abstract
In order to determine the characteristics of phytoplankton community structure in Nanhai Lake in Baotou City and its relationship with environmental factors, water and phytoplankton samples were collected and composition and biomass were investigated at six sites in the spring, summer, and autumn [...] Read more.
In order to determine the characteristics of phytoplankton community structure in Nanhai Lake in Baotou City and its relationship with environmental factors, water and phytoplankton samples were collected and composition and biomass were investigated at six sites in the spring, summer, and autumn of 2021. This article used correlation analysis and redundancy analysis (RDA) combined with the community turnover index (BC) to analyze the phytoplankton functional groups. The results showed that 7 phyla and 68 genera of phytoplankton were identified in the water body, of which Chlorophyta, Bacillariophyta, Cyanobacteria, Chrysophyta, Euglenophyta, Cryptophyta, and Pyrrophyta accounted for 34%, 32%, 16%, 6%, 4%, 4%, and 3%, respectively. The phytoplankton in the water body was classified into 23 functional groups, of which MP and D functional groups were the long−term dominant functional groups, indicating that the habitat is a turbid water body. The ecological state index (Q) value ranged from 1.94 to 3.13, with an average value of 2.74. The comprehensive nutritional index (TSIM(∑)) was between 49.32 and 52.11, with an average value of 51.72, indicating that Nanhai Lake was in a mesotrophic state. Correlation analysis and redundancy analysis (RDA) showed that multiple nutrients, transparency (SD), chemical oxygen demand (COD), water temperature (WT), and Chlorophyll a (Chl−a) were the main environmental factors affecting the biomass of dominant functional groups in the water body. The study showed the characteristics of the functional groups of algae in a precious urban lake in arid and semi−arid areas of China and their relationship with environmental factors (physical and chemical indicators, anions and cation ions, and heavy metal ions), and provided a scientific basis for its water quality evaluation. Full article
(This article belongs to the Special Issue Diversity and Ecology of Algae in China)
Show Figures

Figure 1

18 pages, 4044 KiB  
Article
On-Orbit Absolute Radiometric Calibration and Validation of ZY3-02 Satellite Multispectral Sensor
by Hongzhao Tang, Junfeng Xie, Xinming Tang, Wei Chen and Qi Li
Sensors 2022, 22(5), 2066; https://doi.org/10.3390/s22052066 - 7 Mar 2022
Cited by 13 | Viewed by 3264
Abstract
This study described the on-orbit vicarious radiometric calibration of Chinese civilian high-resolution stereo mapping satellite ZY3-02 multispectral imager (MUX). The calibration was based on gray-scale permanent artificial targets, and multiple radiometric calibration tarpaulins (tarps) using a reflectance-based approach between July and September 2016 [...] Read more.
This study described the on-orbit vicarious radiometric calibration of Chinese civilian high-resolution stereo mapping satellite ZY3-02 multispectral imager (MUX). The calibration was based on gray-scale permanent artificial targets, and multiple radiometric calibration tarpaulins (tarps) using a reflectance-based approach between July and September 2016 at Baotou calibration site in China was described. The calibration results reveal a good linear relationship between DN and TOA radiances of ZY3-02 MUX. The uncertainty of this radiometric calibration was 4.33%, indicating that radiometric coefficients of ZY3-02 MUX are reliable. A detailed discussion on the validation analysis of the comparison results between the different radiometric calibration coefficients is presented in this paper. To further validate the reliability of the three coefficients, the calibrated ZY3-02 MUX was compared with Landsat-8 Operational Land Imager (OLI). The results also indicate that radiometric characteristics of ZY3-02 MUX imagery are reliable and highly accurate for quantitative applications. Full article
(This article belongs to the Collection Remote Sensing Image Processing)
Show Figures

Figure 1

18 pages, 7606 KiB  
Article
On-Orbit Radiometric Performance of GF-7 Satellite Multispectral Imagery
by Hongzhao Tang, Junfeng Xie, Xinming Tang, Wei Chen and Qi Li
Remote Sens. 2022, 14(4), 886; https://doi.org/10.3390/rs14040886 - 12 Feb 2022
Cited by 14 | Viewed by 3503
Abstract
China’s first civilian, sub-meter, high-resolution stereo mapping satellite, GF-7, launched on 3 November 2019. Radiometric characterization of GF-7 multispectral imagery has been performed in this study. A relative radiometric accuracy evaluation of the GF-7 multispectral imagery was performed using several large uniform scenes, [...] Read more.
China’s first civilian, sub-meter, high-resolution stereo mapping satellite, GF-7, launched on 3 November 2019. Radiometric characterization of GF-7 multispectral imagery has been performed in this study. A relative radiometric accuracy evaluation of the GF-7 multispectral imagery was performed using several large uniform scenes, and the results showed that the accuracy is better than 2%. The absolute radiometric evaluation of the GF-7 satellite sensor was conducted at the Baotou and Dunhuang calibration sites, using the reflectance-based vicarious approach. The synchronous measurements of surface reflectance and atmospheric parameters were collected as the input for the radiative transfer model. The official radiometrically calibrated coefficient of the GF-7 multispectral imagery was evaluated with the predicted top-of-atmosphere (TOA) radiance from the radiative transfer model. The results indicated that the absolute radiometric accuracy of GF-7 multispectral imagery is better than 5%. In order to monitor the radiometric stability of the GF-7 satellite multispectral sensor, a relative and absolute radiometric accuracy assessment campaign should be performed several times a year. Full article
(This article belongs to the Special Issue Accuracy and Quality Control of Remote Sensing Data)
Show Figures

Figure 1

27 pages, 11995 KiB  
Article
Super-Resolution Restoration of Spaceborne Ultra-High-Resolution Images Using the UCL OpTiGAN System
by Yu Tao and Jan-Peter Muller
Remote Sens. 2021, 13(12), 2269; https://doi.org/10.3390/rs13122269 - 10 Jun 2021
Cited by 13 | Viewed by 5278
Abstract
We introduce a robust and light-weight multi-image super-resolution restoration (SRR) method and processing system, called OpTiGAN, using a combination of a multi-image maximum a posteriori approach and a deep learning approach. We show the advantages of using a combined two-stage SRR processing scheme [...] Read more.
We introduce a robust and light-weight multi-image super-resolution restoration (SRR) method and processing system, called OpTiGAN, using a combination of a multi-image maximum a posteriori approach and a deep learning approach. We show the advantages of using a combined two-stage SRR processing scheme for significantly reducing inference artefacts and improving effective resolution in comparison to other SRR techniques. We demonstrate the optimality of OpTiGAN for SRR of ultra-high-resolution satellite images and video frames from 31 cm/pixel WorldView-3, 75 cm/pixel Deimos-2 and 70 cm/pixel SkySat. Detailed qualitative and quantitative assessments are provided for the SRR results on a CEOS-WGCV-IVOS geo-calibration and validation site at Baotou, China, which features artificial permanent optical targets. Our measurements have shown a 3.69 times enhancement of effective resolution from 31 cm/pixel WorldView-3 imagery to 9 cm/pixel SRR. Full article
(This article belongs to the Special Issue Satellite Image Processing and Applications)
Show Figures

Figure 1

16 pages, 8048 KiB  
Article
Compaction Procedures and Associated Environmental Impacts Analysis for Application of Steel Slag in Road Base Layer
by Bo Gao, Chao Yang, Yingxue Zou, Fusong Wang, Xiaojun Zhou, Diego Maria Barbieri and Shaopeng Wu
Sustainability 2021, 13(8), 4396; https://doi.org/10.3390/su13084396 - 15 Apr 2021
Cited by 16 | Viewed by 3270
Abstract
In recent years, recycling steel slag is receiving growing interest in the road base layer construction field due to its role in alleviating land occupation and resource shortages. However, the mixture compaction and its environmental impact on practical construction sites remain unclear, which [...] Read more.
In recent years, recycling steel slag is receiving growing interest in the road base layer construction field due to its role in alleviating land occupation and resource shortages. However, the mixture compaction and its environmental impact on practical construction sites remain unclear, which may hinder the application of steel slags in road layers. This study investigates the pavement construction of the ‘Baotou-Maoming’ motorway, located in Inner Mongolia, China, analyzing the compaction procedures and assessing the environmental impacts caused by the road base layer containing steel slag. Firstly, mechanical properties and texture appearances of the steel slag aggregates are characterized. Afterwards, the comparative assessments for steel slag and andesite layers compaction are quantified from equivalent CO2 emission and energy consumption aspects, respectively. The results show that the steel slag has a better surface texture than the natural aggregates; physical properties including compactness, flatness and compressive strength comply with the requirements for applying steel slag to a hydraulically bound mixture. Compared to the base layer using andesite aggregates, the compaction vibration period of the course containing steel slags should be reduced to achieve a proper density due to the “hard-to-hard” effect that occurs between the adjacent steel slag particles. Consequently, the additional energy and the equivalent CO2 are generated at 2.67 MJ/m3 and 0.20 kg/m3, respectively. Full article
(This article belongs to the Special Issue Recycled Materials and Infrastructure Sustainability)
Show Figures

Figure 1

14 pages, 2969 KiB  
Letter
A Validation Experiment of the Reflectance Products of KOMPSAT-3A Based on RadCalNet Data and Its Applicability to Vegetation Indexing
by Kwangseob Kim and Kiwon Lee
Remote Sens. 2020, 12(23), 3971; https://doi.org/10.3390/rs12233971 - 4 Dec 2020
Cited by 14 | Viewed by 2740
Abstract
Surface reflectance products obtained through the absolute atmospheric correction of multispectral satellite images are useful for precise scientific applications. For broader applications, the reflectance products computed using high-resolution images need to be validated with field measurement data. This study dealt with 2.2-m resolution [...] Read more.
Surface reflectance products obtained through the absolute atmospheric correction of multispectral satellite images are useful for precise scientific applications. For broader applications, the reflectance products computed using high-resolution images need to be validated with field measurement data. This study dealt with 2.2-m resolution Korea Multi-Purpose Satellite (KOMPSAT)-3A images with four multispectral bands, which were used to obtain top-of-atmosphere (TOA) and top-of-canopy (TOC) reflectance products. The open-source Orfeo Toolbox (OTB) extension was used to generate these products. Next, these were subsequently validated by considering three sites (i.e., Railroad Valley Playa, NV, USA (RVUS), Baotou, China (BTCN), and La Crau, France (LCFR)) in RadCalNet, as well as a calibration and validation portal for remote sensing. We conducted the validations comparing satellite image-based reflectance products and field measurement reflectance based on data sets acquired at different times. The experimental results showed that the overall trend of validation accuracy of KOPSAT-3A was well fitted in all the RadCalNet sites and that the accuracy remained quite constant. Reflectance bands showing the minimum and maximum differences between the sets of experimental data are presented in this paper. The vegetation indices (i.e., the atmospherically resistant vegetation index (ARVI) and the structure insensitive pigment index (SIPI)) and three TOC reflectance bands obtained from KOMPSAT-3A were computed as a case study and used to achieve a detailed vegetation interpretation; finally, the correspondent results were compared with those obtained from Landsat-8 images (downloaded from the Google Earth Engine (GEE)). The validation and the application scheme presented in this study can be potentially applied to the generation of analysis ready data from high-resolution satellite sensor images. Full article
Show Figures

Graphical abstract

Back to TopTop