Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = textile-engineered scaffold

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5803 KB  
Review
Application of Textile Technology in Vascular Tissue Engineering
by Hua Ji, Hongjun Yang and Zehao Li
Textiles 2025, 5(3), 38; https://doi.org/10.3390/textiles5030038 - 3 Sep 2025
Viewed by 492
Abstract
Cardiovascular diseases pose a significant global health burden, driving the need for artificial vascular grafts to address limitations of autologous and allogeneic vessels. This review examines the integration of fiber materials and textile technologies in vascular tissue engineering, focusing on structural mimicry and [...] Read more.
Cardiovascular diseases pose a significant global health burden, driving the need for artificial vascular grafts to address limitations of autologous and allogeneic vessels. This review examines the integration of fiber materials and textile technologies in vascular tissue engineering, focusing on structural mimicry and functional regeneration of native blood vessels. Traditional textile techniques (weaving, knitting, and braiding) and advanced methods (electrospinning, melt electrowriting, wet spinning, and gel spinning) enable the fabrication of fibrous scaffolds with hierarchical architectures resembling the extracellular matrix. The convergence of textile technology and fiber materials holds promise for next-generation grafts that integrate seamlessly with host tissue, addressing unmet clinical needs in vascular tissue regeneration. Full article
Show Figures

Figure 1

20 pages, 8671 KB  
Review
Advances in Preparation and Biomedical Applications of Sodium Alginate-Based Electrospun Nanofibers
by Xuan Zhou, Yudong Wang and Changchun Ji
Gels 2025, 11(9), 704; https://doi.org/10.3390/gels11090704 - 3 Sep 2025
Viewed by 748
Abstract
Sodium alginate (SA) has the advantages of good biocompatibility, water absorption, oxygen permeability, non-toxicity, and film-forming properties. SA is compounded with other materials to formulate a spinning solution. Subsequently, electrospinning is employed to fabricate nanofiber membranes. These membranes undergo cross-linking modification or hydrogel [...] Read more.
Sodium alginate (SA) has the advantages of good biocompatibility, water absorption, oxygen permeability, non-toxicity, and film-forming properties. SA is compounded with other materials to formulate a spinning solution. Subsequently, electrospinning is employed to fabricate nanofiber membranes. These membranes undergo cross-linking modification or hydrogel composite functionalization, yielding nanofiber composites exhibiting essential properties, including biodegradability, biocompatibility, low immunogenicity, and antimicrobial activity. Consequently, these functionalized composites are widely utilized in tissue engineering, regenerative engineering, biological scaffolds, and drug delivery systems, among other biomedical applications. This work reviews the sources, characteristics, and electrospinning preparation methods of SA, with a focus on the application and research status of SA composite nanofibers in tissue engineering scaffolds, wound dressings, drug delivery, and other fields. It can be concluded that SA electrospun nanofibers have great development potential and application prospects in biomedicine, which could better meet the increasingly complex and diverse needs of tissue or wound healing. At the same time, the future development trend of SA composite nanofibers was prospected in order to provide some theoretical reference for the development of biomedical textiles and to promote its development in the direction of being green, safe, and efficient. Full article
(This article belongs to the Special Issue Advanced Hydrogels for Biomedical Applications)
Show Figures

Graphical abstract

34 pages, 2191 KB  
Review
Properties, Production, and Recycling of Regenerated Cellulose Fibers: Special Medical Applications
by Sandra Varnaitė-Žuravliova and Julija Baltušnikaitė-Guzaitienė
J. Funct. Biomater. 2024, 15(11), 348; https://doi.org/10.3390/jfb15110348 - 16 Nov 2024
Cited by 11 | Viewed by 5367
Abstract
Regenerated cellulose fibers are a highly adaptable biomaterial with numerous medical applications owing to their inherent biocompatibility, biodegradability, and robust mechanical properties. In the domain of wound care, regenerated cellulose fibers facilitate a moist environment conducive to healing, minimize infection risk, and adapt [...] Read more.
Regenerated cellulose fibers are a highly adaptable biomaterial with numerous medical applications owing to their inherent biocompatibility, biodegradability, and robust mechanical properties. In the domain of wound care, regenerated cellulose fibers facilitate a moist environment conducive to healing, minimize infection risk, and adapt to wound topographies, making it ideal for different types of dressings. In tissue engineering, cellulose scaffolds provide a matrix for cell attachment and proliferation, supporting the development of artificial skin, cartilage, and other tissues. Furthermore, regenerated cellulose fibers, used as absorbable sutures, degrade within the body, eliminating the need for removal and proving advantageous for internal suturing. The medical textile industry relies heavily on regenerated cellulose fibers because of their unique properties that make them suitable for various applications, including wound care, surgical garments, and diagnostic materials. Regenerated cellulose fibers are produced by dissolving cellulose from natural sources and reconstituting it into fiber form, which can be customized for specific medical uses. This paper will explore the various types, properties, and applications of regenerated cellulose fibers in medical contexts, alongside an examination of its manufacturing processes and technologies, as well as associated challenges. Full article
(This article belongs to the Special Issue Biodegradable Polymers and Textiles)
Show Figures

Figure 1

21 pages, 9470 KB  
Article
Topographically and Chemically Enhanced Textile Polycaprolactone Scaffolds for Tendon and Ligament Tissue Engineering
by Benedict Bauer, Caroline Emonts, Johannes Pitts, Eva Miriam Buhl, Jörg Eschweiler, Robert Hänsch, Marcel Betsch, Thomas Gries and Henning Menzel
Polymers 2024, 16(4), 488; https://doi.org/10.3390/polym16040488 - 9 Feb 2024
Cited by 4 | Viewed by 2113
Abstract
The use of tissue engineering to address the shortcomings of current procedures for tendons and ligaments is promising, but it requires a suitable scaffold that meets various mechanical, degradation-related, scalability-related, and biological requirements. Macroporous textile scaffolds made from appropriate fiber material have the [...] Read more.
The use of tissue engineering to address the shortcomings of current procedures for tendons and ligaments is promising, but it requires a suitable scaffold that meets various mechanical, degradation-related, scalability-related, and biological requirements. Macroporous textile scaffolds made from appropriate fiber material have the potential to fulfill the first three requirements. This study aimed to investigate the biocompatibility, sterilizability, and functionalizability of a multilayer braided scaffold. These macroporous scaffolds with dimensions similar to those of the human anterior cruciate ligament consist of fibers with appropriate tensile strength and degradation behavior melt-spun from Polycaprolactone (PCL). Two different cross-sectional geometries resulting in significantly different specific surface areas and morphologies were used at the fiber level, and a Chitosan-graft-PCL (CS-g-PCL) surface modification was applied to the melt-spun substrates for the first time. All scaffolds elicited a positive cell response, and the CS-g-PCL modification provided a platform for incorporating functionalization agents such as drug delivery systems for growth factors, which were successfully released in therapeutically effective quantities. The fiber geometry was found to be a variable that could be manipulated to control the amount released. Therefore, scaled, surface-modified textile scaffolds are a versatile technology that can successfully address the complex requirements of tissue engineering for ligaments and tendons, as well as other structures. Full article
(This article belongs to the Special Issue Biomaterials for Tissue Engineering and Regeneration II)
Show Figures

Figure 1

21 pages, 1743 KB  
Review
Could an Anterior Cruciate Ligament Be Tissue-Engineered from Silk?
by Judith Hahn, Clemens Gögele and Gundula Schulze-Tanzil
Cells 2023, 12(19), 2350; https://doi.org/10.3390/cells12192350 - 25 Sep 2023
Cited by 4 | Viewed by 2902
Abstract
Silk has a long history as an exclusive textile, but also as a suture thread in medicine; nowadays, diverse cell carriers are manufactured from silk. Its advantages are manifold, including high biocompatibility, biomechanical strength and processability (approved for nearly all manufacturing techniques). Silk’s [...] Read more.
Silk has a long history as an exclusive textile, but also as a suture thread in medicine; nowadays, diverse cell carriers are manufactured from silk. Its advantages are manifold, including high biocompatibility, biomechanical strength and processability (approved for nearly all manufacturing techniques). Silk’s limitations, such as scarcity and batch to batch variations, are overcome by gene technology, which allows for the upscaled production of recombinant “designed” silk proteins. For processing thin fibroin filaments, the sericin component is generally removed (degumming). In contrast to many synthetic biomaterials, fibroin allows for superior cell adherence and growth. In addition, silk grafts demonstrate superior mechanical performance and long-term stability, making them attractive for anterior cruciate ligament (ACL) tissue engineering. Looking at these promising properties, this review focusses on the responses of cell types to silk variants, as well as their biomechanical properties, which are relevant for ACL tissue engineering. Meanwhile, sericin has also attracted increasing interest and has been proposed as a bioactive biomaterial with antimicrobial properties. But so far, fibroin was exclusively used for experimental ACL tissue engineering approaches, and fibroin from spider silk also seems not to have been applied. To improve the bone integration of ACL grafts, silk scaffolds with osteogenic functionalization, silk-based tunnel fillers and interference screws have been developed. Nevertheless, signaling pathways stimulated by silk components remain barely elucidated, but need to be considered during the development of optimized silk cell carriers for ACL tissue engineering. Full article
Show Figures

Figure 1

9 pages, 1564 KB  
Article
Degradation of Poly(ε-caprolactone) Resorbable Multifilament Yarn under Physiological Conditions
by Monica V. Deshpande, Arjunsing Girase and Martin W. King
Polymers 2023, 15(18), 3819; https://doi.org/10.3390/polym15183819 - 19 Sep 2023
Cited by 32 | Viewed by 4067
Abstract
Poly(ε-caprolactone) (PCL) is a hydrophobic, resorbable aliphatic polymer recognized for its low tenacity and extensive elongation at break, making it a popular choice for fabricating biodegradable tissue engineering scaffolds. PCL’s slow degradation rate typically results in a complete resorption period of 2 to [...] Read more.
Poly(ε-caprolactone) (PCL) is a hydrophobic, resorbable aliphatic polymer recognized for its low tenacity and extensive elongation at break, making it a popular choice for fabricating biodegradable tissue engineering scaffolds. PCL’s slow degradation rate typically results in a complete resorption period of 2 to 3 years. While numerous studies have examined the degradation of PCL in various forms such as films and webs, no study to date has investigated its physiological degradation in multifilament yarn form. In this study, we subjected PCL multifilament yarn samples to physiological conditions in phosphate-buffered saline (PBS) maintained at a consistent temperature of 37 ± 2 °C and agitated at 45 rpm for a period of 32 weeks. We retrieved samples at five different intervals to analyze the degradation profile of the multifilament yarn. This allowed us to estimate the complete resorption time and rate under these in vitro conditions. Over the 32-week period, the multifilament yarn’s mass decreased by 4.8%, its elongation at break declined by 42%, the tenacity dropped by 40%, and the peak load at break fell by 46.5%. Based on these findings, we predict that a scaffold structure incorporating PCL multifilament yarn would undergo complete resorption in approximately 14 months under physiological conditions, such as in PBS solution at a pH of approximately 7 and a temperature of 37 °C. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds)
Show Figures

Figure 1

13 pages, 4442 KB  
Article
Bio-Inspired Fiber Reinforcement for Aortic Valves: Scaffold Production Process and Characterization
by Christian A. Boehm, Christine Donay, Andreas Lubig, Stephan Ruetten, Mahmoud Sesa, Alicia Fernández-Colino, Stefanie Reese and Stefan Jockenhoevel
Bioengineering 2023, 10(9), 1064; https://doi.org/10.3390/bioengineering10091064 - 9 Sep 2023
Cited by 6 | Viewed by 2125
Abstract
The application of tissue-engineered heart valves in the high-pressure circulatory system is still challenging. One possible solution is the development of biohybrid scaffolds with textile reinforcement to achieve improved mechanical properties. In this article, we present a manufacturing process of bio-inspired fiber reinforcement [...] Read more.
The application of tissue-engineered heart valves in the high-pressure circulatory system is still challenging. One possible solution is the development of biohybrid scaffolds with textile reinforcement to achieve improved mechanical properties. In this article, we present a manufacturing process of bio-inspired fiber reinforcement for an aortic valve scaffold. The reinforcement structure consists of polyvinylidene difluoride monofilament fibers that are biomimetically arranged by a novel winding process. The fibers were embedded and fixated into electrospun polycarbonate urethane on a cylindrical collector. The scaffold was characterized by biaxial tensile strength, bending stiffness, burst pressure and hemodynamically in a mock circulation system. The produced fiber-reinforced scaffold showed adequate acute mechanical and hemodynamic properties. The transvalvular pressure gradient was 3.02 ± 0.26 mmHg with an effective orifice area of 2.12 ± 0.22 cm2. The valves sustained aortic conditions, fulfilling the ISO-5840 standards. The fiber-reinforced scaffold failed in a circumferential direction at a stress of 461.64 ± 58.87 N/m and a strain of 49.43 ± 7.53%. These values were above the levels of tested native heart valve tissue. Overall, we demonstrated a novel manufacturing approach to develop a fiber-reinforced biomimetic scaffold for aortic heart valve tissue engineering. The characterization showed that this approach is promising for an in situ valve replacement. Full article
(This article belongs to the Special Issue Feature Papers in Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

32 pages, 2540 KB  
Review
Microbial Exopolysaccharide Composites in Biomedicine and Healthcare: Trends and Advances
by Vishal Ahuja, Arvind Kumar Bhatt, J. Rajesh Banu, Vinod Kumar, Gopalakrishnan Kumar, Yung-Hun Yang and Shashi Kant Bhatia
Polymers 2023, 15(7), 1801; https://doi.org/10.3390/polym15071801 - 6 Apr 2023
Cited by 30 | Viewed by 8428
Abstract
Microbial exopolysaccharides (EPSs), e.g., xanthan, dextran, gellan, curdlan, etc., have significant applications in several industries (pharma, food, textiles, petroleum, etc.) due to their biocompatibility, nontoxicity, and functional characteristics. However, biodegradability, poor cell adhesion, mineralization, and lower enzyme activity are some other factors that [...] Read more.
Microbial exopolysaccharides (EPSs), e.g., xanthan, dextran, gellan, curdlan, etc., have significant applications in several industries (pharma, food, textiles, petroleum, etc.) due to their biocompatibility, nontoxicity, and functional characteristics. However, biodegradability, poor cell adhesion, mineralization, and lower enzyme activity are some other factors that might hinder commercial applications in healthcare practices. Some EPSs lack biological activities that make them prone to degradation in ex vivo, as well as in vivo environments. The blending of EPSs with other natural and synthetic polymers can improve the structural, functional, and physiological characteristics, and make the composites suitable for a diverse range of applications. In comparison to EPS, composites have more mechanical strength, porosity, and stress-bearing capacity, along with a higher cell adhesion rate, and mineralization that is required for tissue engineering. Composites have a better possibility for biomedical and healthcare applications and are used for 2D and 3D scaffold fabrication, drug carrying and delivery, wound healing, tissue regeneration, and engineering. However, the commercialization of these products still needs in-depth research, considering commercial aspects such as stability within ex vivo and in vivo environments, the presence of biological fluids and enzymes, degradation profile, and interaction within living systems. The opportunities and potential applications are diverse, but more elaborative research is needed to address the challenges. In the current article, efforts have been made to summarize the recent advancements in applications of exopolysaccharide composites with natural and synthetic components, with special consideration of pharma and healthcare applications. Full article
Show Figures

Figure 1

17 pages, 9150 KB  
Article
Engineering Ligament Scaffolds Based on PLA/Graphite Nanoplatelet Composites by 3D Printing or Braiding
by Magda Silva, Isabel Pinho, Hugo Gonçalves, Ana C. Vale, Maria C. Paiva, Natália M. Alves and José A. Covas
J. Compos. Sci. 2023, 7(3), 104; https://doi.org/10.3390/jcs7030104 - 7 Mar 2023
Cited by 6 | Viewed by 3079
Abstract
The development of scaffolds for tissue-engineered growth of the anterior cruciate ligament (ACL) is a promising approach to overcome the limitations of current solutions. This work proposes novel biodegradable and biocompatible scaffolds matching the mechanical characteristics of the native human ligament. Poly(L-lactic acid) [...] Read more.
The development of scaffolds for tissue-engineered growth of the anterior cruciate ligament (ACL) is a promising approach to overcome the limitations of current solutions. This work proposes novel biodegradable and biocompatible scaffolds matching the mechanical characteristics of the native human ligament. Poly(L-lactic acid) (PLA) scaffolds reinforced with graphite nano-platelets (PLA+EG) as received, chemically functionalized (PLA+f-EG), or functionalized and decorated with silver nanoparticles [PLA+((f-EG)+Ag)], were fabricated by conventional braiding and using 3D-printing technology. The dimensions of both braided and 3D-printed scaffolds were finely controlled. The results showed that the scaffolds exhibited high porosity (>60%), pore interconnectivity, and pore size suitable for ligament tissue ingrowth, with no relevant differences between PLA and composite scaffolds. The wet state dynamic mechanical analysis at 37 °C revealed an increase in the storage modulus of the composite constructs, compared to neat PLA scaffolds. Either braided or 3D-printed scaffolds presented storage modulus values similar to those found in soft tissues. The tailorable design of the braided structures, as well as the reproducibility, the high speed, and the simplicity of 3D-printing allowed to obtain two different scaffolds suitable for ligament tissue engineering. Full article
(This article belongs to the Special Issue 3D Printing Composites)
Show Figures

Graphical abstract

12 pages, 2078 KB  
Article
Textile Functionalization by Porous Protein Crystal Conjugation and Guest Molecule Loading
by Luke F. Hartje, David A. Andales, Lucas P. Gintner, Lucas B. Johnson, Yan V. Li and Christopher D. Snow
Crystals 2023, 13(2), 352; https://doi.org/10.3390/cryst13020352 - 18 Feb 2023
Cited by 5 | Viewed by 2495
Abstract
Protein crystals are versatile nanostructured materials that can be readily engineered for applications in nanomedicine and nanobiotechnology. Despite their versatility, the small size of typical individual protein crystals (less than one cubic mm) presents challenges for macroscale applications. One way to overcome this [...] Read more.
Protein crystals are versatile nanostructured materials that can be readily engineered for applications in nanomedicine and nanobiotechnology. Despite their versatility, the small size of typical individual protein crystals (less than one cubic mm) presents challenges for macroscale applications. One way to overcome this limitation is by immobilizing protein crystals onto larger substrates. Cotton is composed primarily of cellulose, the most common natural fiber in the world, and is routinely used in numerous material applications including textiles, explosives, paper, and bookbinding. Here, two types of protein crystals were conjugated to the cellulosic substrate of cotton fabric using a 1,1′-carbonyldiimidazole/aldehyde mediated coupling protocol. The efficacy of this attachment was assessed via accelerated laundering and quantified by fluorescence imaging. The ability to load guest molecules of varying sizes into the scaffold structure of the conjugated protein crystals was also assessed. This work demonstrates the potential to create multifunctional textiles by incorporating diverse protein crystal scaffolds that can be infused with a multiplicity of useful guest molecules. Cargo molecule loading and release kinetics will depend on the size of the guest molecules as well as the protein crystal solvent channel geometry. Here, we demonstrate the loading of a small molecule dye into the small pores of hen egg white lysozyme crystals and a model enzyme into the 13-nm pores delimited by “CJ” crystals composed of an isoprenoid-binding protein from Campylerbacter jejuni. Full article
(This article belongs to the Special Issue Feature Papers in Biomolecular Crystals in 2022-2023)
Show Figures

Figure 1

19 pages, 4391 KB  
Article
3D-Braided Poly-ε-Caprolactone-Based Scaffolds for Ligament Tissue Engineering
by Caroline Emonts, David Wienen, Benedict Bauer, Akram Idrissi and Thomas Gries
J. Funct. Biomater. 2022, 13(4), 230; https://doi.org/10.3390/jfb13040230 - 8 Nov 2022
Cited by 8 | Viewed by 2907
Abstract
The anterior cruciate ligament (ACL) is the most commonly injured intra-articular ligament of the knee. Due to its limited intrinsical healing potential and vascularization, injuries of the ACL do not heal satisfactorily, and surgical intervention is usually required. The limitations of existing reconstructive [...] Read more.
The anterior cruciate ligament (ACL) is the most commonly injured intra-articular ligament of the knee. Due to its limited intrinsical healing potential and vascularization, injuries of the ACL do not heal satisfactorily, and surgical intervention is usually required. The limitations of existing reconstructive grafts and autologous transplants have prompted interest in tissue-engineered solutions. A tissue engineering scaffold for ACL reconstruction must be able to mimic the mechanical properties of the native ligament, provide sufficient porosity to promote cell growth of the neoligament tissue, and be biodegradable. This study investigates long-term biodegradable poly-ε-caprolactone (PCL)-based scaffolds for ACL replacement using the 3D hexagonal braiding technique. The scaffolds were characterized mechanically as well as morphologically. All scaffolds, regardless of their braid geometry, achieved the maximum tensile load of the native ACL. The diameter of all scaffolds was lower than that of the native ligament, making the scaffolds implantable with established surgical methods. The 3D hexagonal braiding technique offers a high degree of geometrical freedom and, thus, the possibility to develop novel scaffold architectures. Based on the findings of this study, the 3D-braided PCL-based scaffolds studied were found to be a promising construct for tissue engineering of the anterior cruciate ligament. Full article
(This article belongs to the Special Issue Biomimetic Biomaterials-Based Scaffolds for Tissue Engineering)
Show Figures

Figure 1

17 pages, 2921 KB  
Article
Nano-Structured Ridged Micro-Filaments (≥100 µm Diameter) Produced Using a Single Step Strategy for Improved Bone Cell Adhesion and Proliferation in Textile Scaffolds
by Nemeshwaree Behary, Sandy Eap, Aurélie Cayla, Feng Chai, Nadia Benkirane-Jessel and Christine Campagne
Molecules 2022, 27(12), 3790; https://doi.org/10.3390/molecules27123790 - 13 Jun 2022
Cited by 5 | Viewed by 2667
Abstract
Textile scaffolds that are either 2D or 3D with tunable shapes and pore sizes can be made through textile processing (weaving, knitting, braiding, nonwovens) using microfilaments. However, these filaments lack nano-topographical features to improve bone cell adhesion and proliferation. Moreover, the diameter of [...] Read more.
Textile scaffolds that are either 2D or 3D with tunable shapes and pore sizes can be made through textile processing (weaving, knitting, braiding, nonwovens) using microfilaments. However, these filaments lack nano-topographical features to improve bone cell adhesion and proliferation. Moreover, the diameter of such filaments should be higher than that used for classical textiles (10–30 µm) to enable adhesion and the efficient spreading of the osteoblast cell (>30 µm diameter). We report, for the first time, the fabrication of biodegradable nanostructured cylindrical PLLA (poly-L-Lactic acid) microfilaments of diameters 100 µm and 230 µm, using a single step melt-spinning process for straightforward integration of nano-scale ridge-like structures oriented in the fiber length direction. Appropriate drawing speed and temperature used during the filament spinning allowed for the creation of instabilities giving rise to nanofibrillar ridges, as observed by AFM (Atomic Force Microscopy). These micro-filaments were hydrophobic, and had reduced crystallinity and mechanical strength, but could still be processed into 2D/3D textile scaffolds of various shapes. Biological tests carried out on the woven scaffolds made from these nano-structured micro filaments showed excellent human bone cell MG 63 adhesion and proliferation, better than on smooth 30 µm- diameter fibers. Elongated filopodia of the osteoblast, intimately anchored to the nano-structured filaments, was observed. The filaments also induced in vitro osteogenic expression, as shown by the expression of osteocalcin and bone sialoprotein after 21 days of culture. This work deals with the fabrication of a new generation of nano-structured micro-filament for use as scaffolds of different shapes suited for bone cell engineering. Full article
(This article belongs to the Special Issue Nanostructured Textiles)
Show Figures

Graphical abstract

18 pages, 2461 KB  
Article
Silk Vascular Grafts with Optimized Mechanical Properties for the Repair and Regeneration of Small Caliber Blood Vessels
by Elisa Valsecchi, Marco Biagiotti, Antonio Alessandrino, Dario Gastaldi, Pasquale Vena and Giuliano Freddi
Materials 2022, 15(10), 3735; https://doi.org/10.3390/ma15103735 - 23 May 2022
Cited by 8 | Viewed by 3167
Abstract
As the incidence of cardiovascular diseases has been growing in recent years, the need for small-diameter vascular grafts is increasing. Considering the limited success of synthetic grafts, vascular tissue engineering/repair/regeneration aim to find novel solutions. Silk fibroin (SF) has been widely investigated for [...] Read more.
As the incidence of cardiovascular diseases has been growing in recent years, the need for small-diameter vascular grafts is increasing. Considering the limited success of synthetic grafts, vascular tissue engineering/repair/regeneration aim to find novel solutions. Silk fibroin (SF) has been widely investigated for the development of vascular grafts, due to its good biocompatibility, tailorable biodegradability, excellent mechanical properties, and minimal inflammatory reactions. In this study, a new generation of three-layered SF vascular scaffolds has been produced and optimized. Four designs of the SILKGraft vascular prosthesis have been developed with the aim of improving kink resistance and mechanical strength, without compromising the compliance with native vessels and the proven biocompatibility. A more compact arrangement of the textile layer allowed for the increase in the mechanical properties along the longitudinal and circumferential directions and the improvement of the compliance value, which approached that reported for the saphenous and umbilical veins. The higher braid density slightly affected the grafts’ morphology, increasing surface roughness, but the novel design mimicked the corrugation approach used for synthetic grafts, causing significant improvements in kink resistance. Full article
(This article belongs to the Special Issue Development and Application of Silk-Proteins Based Biomaterials)
Show Figures

Figure 1

23 pages, 4311 KB  
Review
A Review on Current Designation of Metallic Nanocomposite Hydrogel in Biomedical Applications
by Nur Syafiqah Farhanah Dzulkharnien and Rosiah Rohani
Nanomaterials 2022, 12(10), 1629; https://doi.org/10.3390/nano12101629 - 10 May 2022
Cited by 25 | Viewed by 4111
Abstract
In the past few decades, nanotechnology has been receiving significant attention globally and is being continuously developed in various innovations for diverse applications, such as tissue engineering, biotechnology, biomedicine, textile, and food technology. Nanotechnological materials reportedly lack cell-interactive properties and are easily degraded [...] Read more.
In the past few decades, nanotechnology has been receiving significant attention globally and is being continuously developed in various innovations for diverse applications, such as tissue engineering, biotechnology, biomedicine, textile, and food technology. Nanotechnological materials reportedly lack cell-interactive properties and are easily degraded into unfavourable products due to the presence of synthetic polymers in their structures. This is a major drawback of nanomaterials and is a cause of concern in the biomedicine field. Meanwhile, particulate systems, such as metallic nanoparticles (NPs), have captured the interest of the medical field due to their potential to inhibit the growth of microorganisms (bacteria, fungi, and viruses). Lately, researchers have shown a great interest in hydrogels in the biomedicine field due to their ability to retain and release drugs as well as to offer a moist environment. Hence, the development and innovation of hydrogel-incorporated metallic NPs from natural sources has become one of the alternative pathways for elevating the efficiency of therapeutic systems to make them highly effective and with fewer undesirable side effects. The objective of this review article is to provide insights into the latest fabricated metallic nanocomposite hydrogels and their current applications in the biomedicine field using nanotechnology and to discuss the limitations of this technology for future exploration. This article gives an overview of recent metallic nanocomposite hydrogels fabricated from bioresources, and it reviews their antimicrobial activities in facilitating the demands for their application in biomedicine. The work underlines the fabrication of various metallic nanocomposite hydrogels through the utilization of natural sources in the production of biomedical innovations, including wound healing treatment, drug delivery, scaffolds, etc. The potential of these nanocomposites in relation to their mechanical strength, antimicrobial activities, cytotoxicity, and optical properties has brought this technology into a new dimension in the biomedicine field. Finally, the limitations of metallic nanocomposite hydrogels in terms of their methods of synthesis, properties, and outlook for biomedical applications are further discussed. Full article
(This article belongs to the Special Issue Nanotechnologies and Nanomaterials: Selected Papers from CCMR)
Show Figures

Figure 1

21 pages, 7557 KB  
Article
Melt-Spun, Cross-Section Modified Polycaprolactone Fibers for Use in Tendon and Ligament Tissue Engineering
by Benedict Bauer, Caroline Emonts, Louisa Bonten, Rokaya Annan, Felix Merkord, Thomas Vad, Akram Idrissi, Thomas Gries and Andreas Blaeser
Fibers 2022, 10(3), 23; https://doi.org/10.3390/fib10030023 - 2 Mar 2022
Cited by 14 | Viewed by 5073
Abstract
Tissue Engineering is considered a promising route to address existing deficits of autografts and permanent synthetic prostheses for tendons and ligaments. However, the requirements placed on the scaffold material are manifold and include mechanical, biological and degradation-related aspects. In addition, scalable processes and [...] Read more.
Tissue Engineering is considered a promising route to address existing deficits of autografts and permanent synthetic prostheses for tendons and ligaments. However, the requirements placed on the scaffold material are manifold and include mechanical, biological and degradation-related aspects. In addition, scalable processes and FDA-approved materials should be applied to ensure the transfer into clinical practice. To accommodate these aspects, this work focuses on the high-scale fabrication of high-strength and highly oriented polycaprolactone (PCL) fibers with adjustable cross-sectional geometry and degradation kinetics applying melt spinning technology. Four different fiber cross-sections were investigated to account for potential functionalization and cell growth guidance. Mechanical properties and crystallinity were studied for a 24-week exposure to phosphate-buffered saline (PBS) at 37 °C. PCL fibers were further processed into scaffolds using multistage circular braiding with three different hierarchical structures. One structure was selected based on its morphology and scaled up in thickness to match the requirements for a human anterior cruciate ligament (ACL) replacement. Applying a broad range of draw ratios (up to DR9.25), high-strength PCL fibers with excellent tensile strength (up to 69 cN/tex) could be readily fabricated. The strength retention after 24 weeks in PBS at 37 °C was 83–93%. The following braiding procedure did not affect the scaffolds’ mechanical properties as long as the number of filaments and the braiding angle remained constant. Up-scaled PCL scaffolds resisted loads of up to 4353.88 ± 37.30 N, whilst matching the stiffness of the human ACL (111–396 N/mm). In conclusion, this work demonstrates the fabrication of highly oriented PCL fibers with excellent mechanical properties. The created fibers represent a promising building block that can be further processed into versatile textile implants for tissue engineering and regenerative medicine. Full article
Show Figures

Figure 1

Back to TopTop