Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (580)

Search Parameters:
Keywords = textile sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4144 KiB  
Article
Towards Woven Fabrics with Integrated Stainless Steel-Nickel-Carbon Thermopile for Sensing and Cooling Applications
by Magdalena Georgievska, Benny Malengier, Lucas Roelofs, Sufiyan Derbew Tiku and Lieva Van Langenhove
Appl. Sci. 2025, 15(16), 9002; https://doi.org/10.3390/app15169002 - 14 Aug 2025
Abstract
Thermocouples can be combined into thermopiles to sense heat differences or achieve localized heating and cooling. However, integrating them into textiles using yarns is not straightforward, and chemical methods face challenges like complex processing, poor scalability, and voltage non-uniformity. This study employs conventional [...] Read more.
Thermocouples can be combined into thermopiles to sense heat differences or achieve localized heating and cooling. However, integrating them into textiles using yarns is not straightforward, and chemical methods face challenges like complex processing, poor scalability, and voltage non-uniformity. This study employs conventional weaving to fabricate textile-based thermocouples and thermopiles for wearable sensing and potential cooling applications, with a focus on protective clothing. Using stainless steel and nickel-coated carbon yarns, we demonstrate a more stable thermocouple than those made with chemical or welded methods, with minimal fabric damage. Four conductive yarns, stainless steel, carbon fiber (CF), and nickel-coated carbon fiber (NiFC), were woven and laser-cut to form thermocouples using three different binding types to connect them. Inox1–NiFC was the most efficient thermocouple, achieving the highest Seebeck coefficient of 21.87 µV/K with Binding 3. Binding 3 also reduced contact resistance by 66% across all configurations. Slightly lower but comparable performance was seen with Inox1–NiFC/Binding 2 (21.83 µV/K) and Inox2–NiFC/Binding 1 (15.79 µV/K). In contrast, FC-based thermocouples showed significantly lower Seebeck values: 5.67 µV/K (Inox2–FC/Binding 2), 5.43 µV/K (Inox1–FC/Binding 3), and 5.06 µV/K (Inox2–FC/Binding 1). A woven thermopile with three junctions made with the optimal binding and thermocouple combination generated an average of 55.54 µV/K and about 500 µV at small temperature differences (4–5 °C), with a linear voltage response suitable for sensing. While thermal sensing proved effective, Peltier cooling needs further optimization. This method offers a stable, low-cost, and scalable platform for textile-integrated thermoelectric systems, with strong potential for use in uniforms and other protective garments. Full article
Show Figures

Figure 1

15 pages, 2582 KiB  
Article
Investigation of Composition, Structure, Electrical Properties, and Ageing Resistance of Conductive Flocked Fabric for Automotive Applications
by Matilde Arese, Elio Sarotto, Antonino Domenico Veca, Vito Guido Lambertini, Daniele Nardi, Martina Sandigliano, Federico Cesano and Valentina Brunella
Polymers 2025, 17(16), 2212; https://doi.org/10.3390/polym17162212 - 13 Aug 2025
Viewed by 241
Abstract
The growing development of conductive functionalised textiles has attracted the interest of the automotive industry, which is seeking innovative solutions for seamless and futuristic interior design aimed at improving both vehicle aesthetics and user experience. In line with this trend, the present work [...] Read more.
The growing development of conductive functionalised textiles has attracted the interest of the automotive industry, which is seeking innovative solutions for seamless and futuristic interior design aimed at improving both vehicle aesthetics and user experience. In line with this trend, the present work investigates the electrical performances of two conductive flocked yarns, one incorporating silver-coated fibres and the other carbon black-based fibres, for potential application in smart automotive interiors. The stability of their electrical properties was also evaluated under thermal ageing and mechanical stress conditions. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FE-SEM) investigations provided information about the composition and structural properties of the yarns. Silver-based yarns demonstrated superior conductivity and thermal stability. In contrast, carbon-black yarns exhibited lower electrical performance and increased sensitivity to ageing due to filler agglomeration. A multitouch capacitive sensor prototype was also developed using the silver-based fabric and successfully integrated into a microcontroller platform. The results demonstrate the suitability of conductive flocked textiles for durable, low-voltage human–machine interfaces requiring robust, flexible, and responsive textile-based control surfaces, such as automotive applications, consumer electronics, and wearable technology. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

30 pages, 3078 KiB  
Review
Smart Polymers and Adaptive Systems in Pilot Suit Engineering: Toward Autonomous, Responsive, and Wearable Flight Technologies
by Hanjing Ma, Yuan He, Yu Ma, Guannan Han, Zhetao Zhang and Baohua Tian
Nanomaterials 2025, 15(16), 1228; https://doi.org/10.3390/nano15161228 - 12 Aug 2025
Viewed by 351
Abstract
Next-generation pilot suits are evolving into intelligent, adaptive platforms that integrate advanced polymeric materials, smart textiles, and on-body artificial intelligence. High-performance polymers have advanced in mechanical strength, thermal regulation, and environmental resilience, with fabrication methods like electrospinning, weaving, and 3D/4D printing enabling structural [...] Read more.
Next-generation pilot suits are evolving into intelligent, adaptive platforms that integrate advanced polymeric materials, smart textiles, and on-body artificial intelligence. High-performance polymers have advanced in mechanical strength, thermal regulation, and environmental resilience, with fabrication methods like electrospinning, weaving, and 3D/4D printing enabling structural versatility and sensor integration. In particular, functional nanomaterials and hierarchical nanostructures contribute critical properties such as conductivity, flexibility, and responsiveness, forming the foundation for miniaturized sensing and integrated electronics. The integration of flexible fiber-based electronics such as biosensors, strain sensors, and energy systems enables real-time monitoring of physiological and environmental conditions. Coupled with on-body AI for multimodal data processing, autonomous decision-making, and adaptive feedback, these systems enhance pilot safety while reducing cognitive load during flight. This review places a special focus on system-level integration, where polymers and nanomaterials serve as both structural and functional components in wearable technologies. By highlighting the role of nanostructured and functional materials within intelligent textiles, we underline a potential shift toward active human–machine interfaces in aerospace applications. Future trends and advancements in self-healing materials, neuromorphic computing, and dynamic textile systems will further elevate the capabilities of intelligent pilot suits. This review discusses interdisciplinary strategies for developing pilot wearables capable of responding to real-time physiological and operational needs. Full article
(This article belongs to the Special Issue Nanomaterials and Textiles (Second Edition))
Show Figures

Figure 1

32 pages, 20583 KiB  
Article
Application of Prodigiosin Extracts in Textile Dyeing and Novel Printing Processes for Halochromic and Antimicrobial Wound Dressings
by Cátia Alves, Pedro Soares-Castro, Rui D. V. Fernandes, Adriana Pereira, Rui Rodrigues, Ana Rita Fonseca, Nuno C. Santos and Andrea Zille
Biomolecules 2025, 15(8), 1113; https://doi.org/10.3390/biom15081113 - 1 Aug 2025
Viewed by 304
Abstract
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin [...] Read more.
The textile industry’s reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by Pseudomonas putida with a yield of 1.85 g/L. Prodigiosin was prepared under acidic, neutral, and alkaline conditions, resulting in varying protonation states that influenced its affinity for cotton and polyester fibers. Three surfactants (anionic, cationic, non-ionic) were tested, with non-ionic Tween 80 yielding a promising color strength (above 4) and fastness results with neutral prodigiosin at 1.3 g/L. Cotton and polyester demonstrated good washing (color difference up to 14 for cotton, 5 for polyester) and light fastness (up to 15 for cotton, 16 for polyester). Cellulose acetate, used in the conventional printing process as a thickener, produced superior color properties compared to commercial thickeners. Neutral prodigiosin achieved higher color strength, and cotton fabrics displayed halochromic properties, distinguishing them from polyester, which showed excellent fastness. Prodigiosin-printed samples also exhibited strong antimicrobial activity against Pseudomonas aeruginosa and retained halochromic properties over 10 pH cycles. These findings suggest prodigiosin as a sustainable dye alternative and pH sensor, with potential applications in biomedical materials, such as antimicrobial and pH-responsive wound dressings. Full article
(This article belongs to the Special Issue Applications of Biomaterials in Medicine and Healthcare)
Show Figures

Graphical abstract

20 pages, 16450 KiB  
Article
A Smart Textile-Based Tactile Sensing System for Multi-Channel Sign Language Recognition
by Keran Chen, Longnan Li, Qinyao Peng, Mengyuan He, Liyun Ma, Xinxin Li and Zhenyu Lu
Sensors 2025, 25(15), 4602; https://doi.org/10.3390/s25154602 - 25 Jul 2025
Viewed by 405
Abstract
Sign language recognition plays a crucial role in enabling communication for deaf individuals, yet current methods face limitations such as sensitivity to lighting conditions, occlusions, and lack of adaptability in diverse environments. This study presents a wearable multi-channel tactile sensing system based on [...] Read more.
Sign language recognition plays a crucial role in enabling communication for deaf individuals, yet current methods face limitations such as sensitivity to lighting conditions, occlusions, and lack of adaptability in diverse environments. This study presents a wearable multi-channel tactile sensing system based on smart textiles, designed to capture subtle wrist and finger motions for static sign language recognition. The system leverages triboelectric yarns sewn into gloves and sleeves to construct a skin-conformal tactile sensor array, capable of detecting biomechanical interactions through contact and deformation. Unlike vision-based approaches, the proposed sensor platform operates independently of environmental lighting or occlusions, offering reliable performance in diverse conditions. Experimental validation on American Sign Language letter gestures demonstrates that the proposed system achieves high signal clarity after customized filtering, leading to a classification accuracy of 94.66%. Experimental results show effective recognition of complex gestures, highlighting the system’s potential for broader applications in human-computer interaction. Full article
(This article belongs to the Special Issue Advanced Tactile Sensors: Design and Applications)
Show Figures

Figure 1

39 pages, 7688 KiB  
Review
Advances and Applications of Graphene-Enhanced Textiles: A 10-Year Review of Functionalization Strategies and Smart Fabric Technologies
by Patricia Rocio Durañona Aznar and Heitor Luiz Ornaghi Junior
Textiles 2025, 5(3), 28; https://doi.org/10.3390/textiles5030028 - 22 Jul 2025
Viewed by 669
Abstract
Graphene has emerged as a promising material for transforming conventional textiles into smart, multi-functional platforms due to its exceptional electrical, thermal, and mechanical properties. This review aims to provide a comprehensive overview of the latest advances in graphene-enhanced fabrics over the past ten [...] Read more.
Graphene has emerged as a promising material for transforming conventional textiles into smart, multi-functional platforms due to its exceptional electrical, thermal, and mechanical properties. This review aims to provide a comprehensive overview of the latest advances in graphene-enhanced fabrics over the past ten years, focusing on their functional properties and real-world applications. This article examines the main strategies used to incorporate graphene and its derivatives—such as graphene oxide and reduced graphene oxide—into textile substrates through coating, printing, or composite formation. The structural, electrical, thermal, mechanical, and electrochemical properties of these fabrics are discussed based on characterization techniques including microscopy, Raman spectroscopy, and cyclic voltammetry. Functional evaluations in wearable strain sensors, biosignal acquisition, electrothermal systems, and energy storage devices are highlighted to demonstrate the versatility of these materials. Although challenges remain in scalability, durability, and washability, recent developments in fabrication and encapsulation methods show significant potential to overcome these limitations. This review concludes by outlining the major opportunities and future directions for graphene-based textiles in areas such as personalized health monitoring, active thermal wear, and integrated wearable electronics. Full article
Show Figures

Figure 1

18 pages, 2062 KiB  
Article
Measuring Blink-Related Brainwaves Using Low-Density Electroencephalography with Textile Electrodes for Real-World Applications
by Emily Acampora, Sujoy Ghosh Hajra and Careesa Chang Liu
Sensors 2025, 25(14), 4486; https://doi.org/10.3390/s25144486 - 18 Jul 2025
Viewed by 406
Abstract
Background: Electroencephalography (EEG) systems based on textile electrodes are increasingly being developed to address the need for more wearable sensor systems for brain function monitoring. Blink-related oscillations (BROs) are a new measure of brain function that corresponds to brainwave responses occurring after [...] Read more.
Background: Electroencephalography (EEG) systems based on textile electrodes are increasingly being developed to address the need for more wearable sensor systems for brain function monitoring. Blink-related oscillations (BROs) are a new measure of brain function that corresponds to brainwave responses occurring after spontaneous blinking, and indexes neural processes as the brain evaluates new visual information appearing after eye re-opening. Prior studies have reported BRO utility as both a clinical and non-clinical biomarker of cognition, but no study has demonstrated BRO measurement using textile-based EEG devices that facilitate user comfort for real-world applications. Methods: We investigated BRO measurement using a four-channel EEG system with textile electrodes by extracting BRO responses using existing, publicly available EEG data (n = 9). We compared BRO effects derived from textile-based electrodes with those from standard dry Ag/Ag-Cl electrodes collected at the same locations (i.e., Fp1, Fp2, F7, F8) and using the same EEG amplifier. Results: Results showed that BRO effects measured using textile electrodes exhibited similar features in both time and frequency domains compared to dry Ag/Ag-Cl electrodes. Data from both technologies also showed similar performance in artifact removal and signal capture. Conclusions: These findings provide the first demonstration of successful BRO signal capture using four-channel EEG with textile electrodes, providing compelling evidence toward the development of a comfortable and user-friendly EEG technology that uses the simple activity of blinking for objective brain function assessment in a variety of settings. Full article
Show Figures

Figure 1

21 pages, 5973 KiB  
Article
Soft Conductive Textile Sensors: Characterization Methodology and Behavioral Analysis
by Giulia Gamberini, Selene Tognarelli and Arianna Menciassi
Sensors 2025, 25(14), 4448; https://doi.org/10.3390/s25144448 - 17 Jul 2025
Viewed by 448
Abstract
Resistive stretching sensors are currently used in healthcare robotics due to their ability to vary electrical resistance when subjected to mechanical strain. However, commercial sensors often lack the softness required for integration into soft structures. This study presents a detailed methodology to characterize [...] Read more.
Resistive stretching sensors are currently used in healthcare robotics due to their ability to vary electrical resistance when subjected to mechanical strain. However, commercial sensors often lack the softness required for integration into soft structures. This study presents a detailed methodology to characterize fabric-based resistive stretching sensors, focusing on both static and dynamic performance, for application in a smart vascular simulator for surgical training. Five sensors, called #1–#5, were developed using conductive fabrics integrated into soft silicone. Stability and fatigue tests were performed to evaluate their behavior. The surface structure and fiber distribution were analyzed using digital microscopy and scanning electron microscopy, while element analysis was performed via Energy-Dispersive X-ray Spectroscopy. Sensors #1 and #3 are the most stable with a low relative standard deviation and good sensitivity at low strains. Sensor #3 showed the lowest hysteresis, while sensor #1 had the widest operating range (0–30% strain). Although all sensors showed non-monotonic behavior across 0–100% strain, deeper investigation suggested that the sensor response depends on the configuration of conductive paths within and between fabric layers. Soft fabric-based resistive sensors represent a promising technical solution for physical simulators for surgical training. Full article
(This article belongs to the Special Issue Sensor Technology in Robotic Surgery)
Show Figures

Graphical abstract

12 pages, 3755 KiB  
Article
Effects of Processing Parameters on the Structure and Mechanical Property of PVDF/BN Nanofiber Yarns
by Jincheng Gui, Xu Liu and Hao Dou
Polymers 2025, 17(14), 1931; https://doi.org/10.3390/polym17141931 - 13 Jul 2025
Viewed by 385
Abstract
The increasing demand for light and comfort smart wearable devices has promoted the cross-integration of textile technology with nanomaterials and nanotechnology. As a potential candidate with excellent piezoelectricity, PVDF has been processed into different forms used for flexible sensors but shows limited practicality [...] Read more.
The increasing demand for light and comfort smart wearable devices has promoted the cross-integration of textile technology with nanomaterials and nanotechnology. As a potential candidate with excellent piezoelectricity, PVDF has been processed into different forms used for flexible sensors but shows limited practicality due to their discomfort and stiffness from non-yarn level. In this study, PVDF/BN nanofiber yarns (NFYs) were successfully fabricated via conjugated electrospinning. The effects of BN concentration, stretching temperature, and stretching ratio on the structural morphology and mechanical performance of the NFYs were systematically investigated. The results show that under the stretching temperature of 140 °C and stretching ratios of 3.5, smooth 1% PVDF/BN NFYs with highly oriented inner nanofibers can be successfully fabricated, and the breaking strength and elongation of composite NFYs reached 129.5 ± 8.1 MPa and 22.4 ± 3.8%, respectively, 667% higher than the breaking strength of pure PVDF nanoyarns. Hence, with the selection of appropriate nanofiller amounts and optimized post-treatment process, the structure and mechanical property of PVDF NFYs can be significantly improved, and this study provides an effective strategy to fabricate high-performance nanoyarns, which is favorable to potential applications in wearable electronic devices and flexible piezoelectric sensors. Full article
(This article belongs to the Special Issue Electrospinning Techniques and Advanced Polymer Textile Products)
Show Figures

Figure 1

17 pages, 5876 KiB  
Article
Optimization of Knitted Strain Sensor Structures for a Real-Time Korean Sign Language Translation Glove System
by Youn-Hee Kim and You-Kyung Oh
Sensors 2025, 25(14), 4270; https://doi.org/10.3390/s25144270 - 9 Jul 2025
Viewed by 341
Abstract
Herein, an integrated system is developed based on knitted strain sensors for real-time translation of sign language into text and audio voices. To investigate how the structural characteristics of the knit affect the electrical performance, the position of the conductive yarn and the [...] Read more.
Herein, an integrated system is developed based on knitted strain sensors for real-time translation of sign language into text and audio voices. To investigate how the structural characteristics of the knit affect the electrical performance, the position of the conductive yarn and the presence or absence of elastic yarn are set as experimental variables, and five distinct sensors are manufactured. A comprehensive analysis of the electrical and mechanical performance, including sensitivity, responsiveness, reliability, and repeatability, reveals that the sensor with a plain-plated-knit structure, no elastic yarn included, and the conductive yarn positioned uniformly on the back exhibits the best performance, with a gauge factor (GF) of 88. The sensor exhibited a response time of less than 0.1 s at 50 cycles per minute (cpm), demonstrating that it detects and responds promptly to finger joint bending movements. Moreover, it exhibits stable repeatability and reliability across various angles and speeds, confirming its optimization for sign language recognition applications. Based on this design, an integrated textile-based system is developed by incorporating the sensor, interconnections, snap connectors, and a microcontroller unit (MCU) with built-in Bluetooth Low Energy (BLE) technology into the knitted glove. The complete system successfully recognized 12 Korean Sign Language (KSL) gestures in real time and output them as both text and audio through a dedicated application, achieving a high recognition accuracy of 98.67%. Thus, the present study quantitatively elucidates the structure–performance relationship of a knitted sensor and proposes a wearable system that accounts for real-world usage environments, thereby demonstrating the commercialization potential of the technology. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

16 pages, 31664 KiB  
Article
Rheological Behavior of Poly(Styrene-Co-Acrylonitrile)/Carbon Nanotube Sponges for Fiber Electrospinning Applications
by Rubén Caro-Briones, Marco Antonio Pérez-Castillo, Hugo Martínez-Gutiérrez, Emilio Muñoz-Sandoval, Gabriela Martínez-Mejía, Lazaro Ruiz-Virgen and Mónica Corea
Nanomaterials 2025, 15(14), 1060; https://doi.org/10.3390/nano15141060 - 9 Jul 2025
Viewed by 331
Abstract
Polymeric composite solutions (PCSs) reinforced with carbon nanotubes sponges (CNT-sponges) have attracted interest in material science and engineering due to their physicochemical properties. Understanding the influence of CNT-sponges content (0.1 wt.%, 0.3 wt.% and 0.5 wt.%) on rheological behavior of poly(styrene-co-acrylonitrile) P(S:AN) (0:100, [...] Read more.
Polymeric composite solutions (PCSs) reinforced with carbon nanotubes sponges (CNT-sponges) have attracted interest in material science and engineering due to their physicochemical properties. Understanding the influence of CNT-sponges content (0.1 wt.%, 0.3 wt.% and 0.5 wt.%) on rheological behavior of poly(styrene-co-acrylonitrile) P(S:AN) (0:100, 20:80, 40:60 and 50:50, wt.%:wt.%) solutions synthesized by emulsion polymerization can predict the viscoelastic parameters for their possible application in electrospinning processes. The obtained nanofibers can be used as sensors, textiles, purifying agents or artificial muscles and tissues. For this, amplitude and frequency sweeps were performed to measure the viscosity (η), storage (G’) and loss (G”) moduli and loss factor (tan δ). Most PCSs showed a shear thinning behavior over the viscosity range of 0.8 < η/Pa·s < 20. At low CNT-sponges concentration in the polymer matrix, the obtained loss factor indicated a liquid-like behavior, while as CNT-sponges content increases, the solid-like behavior predominated. Then, the polymeric solutions were successfully electrospun; however, some agglomerations were formed in materials containing 0.5 wt.% of CNT-sponges attributed to the interaction forces generated within the structure. Finally, the rheological analysis indicates that the PCS with a low percentage of CNT-sponges are highly suitable to be electrospun. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Fibers and Textiles)
Show Figures

Graphical abstract

15 pages, 5527 KiB  
Article
Screen Printing Conductive Inks on Textiles: Impact of Plasma Treatment
by Julia Guérineau, Jollan Ton and Mariia Zhuldybina
Sensors 2025, 25(13), 4240; https://doi.org/10.3390/s25134240 - 7 Jul 2025
Viewed by 476
Abstract
Textile-based wearable devices are rapidly gaining traction in the Internet of Things paradigm and offer distinct advantages for data collection and analysis across a wide variety of applications. Seamlessly integrating electronics in textiles remains a technical challenge, especially when the textiles’ essential properties, [...] Read more.
Textile-based wearable devices are rapidly gaining traction in the Internet of Things paradigm and offer distinct advantages for data collection and analysis across a wide variety of applications. Seamlessly integrating electronics in textiles remains a technical challenge, especially when the textiles’ essential properties, such as comfort, breathability, and flexibility, are meant to be preserved. This article investigates screen printing as a textile post-processing technique for electronic integration, and highlights its versatility, cost-effectiveness, and adaptability in terms of design and customization. The study examines two silver-based inks screen-printed on an Oxford polyester textile substrate with a focus on substrate preparation and treatment. Before printing, the textile samples were cleaned with nitrogen gas and then subjected to low-pressure oxygen plasma treatment. For comparative analysis, two samples printed on polyethylene terephthalate (PET) serve as a reference. The findings highlight the importance of plasma treatment in optimizing the printability of textiles and demonstrate that it notably improves the electrical properties of conductive inks. Despite some remaining challenges, the study indicates that screen-printed electronics show promising potential for advancing the development of e-textiles and sensor-integrated wearables. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

48 pages, 6397 KiB  
Review
Advancements in Electrochromic Technology for Multifunctional Flexible Devices
by Alice Marciel, Joel Borges, Luiz Pereira, Rui F. Silva and Manuel Graça
Materials 2025, 18(13), 2964; https://doi.org/10.3390/ma18132964 - 23 Jun 2025
Viewed by 817
Abstract
The design and investigation of electrochromic devices have advanced significantly, including distinct applications such as self-charged smart windows, aerospace interactive windows, low power flexible and ecofriendly displays, automatic dimming rearview, wearable smart textiles, military and civilian camouflage systems, electrochromic sensors, among others. Although [...] Read more.
The design and investigation of electrochromic devices have advanced significantly, including distinct applications such as self-charged smart windows, aerospace interactive windows, low power flexible and ecofriendly displays, automatic dimming rearview, wearable smart textiles, military and civilian camouflage systems, electrochromic sensors, among others. Although significant progress has been made in related fields, achieving the full potential of electrochromic devices to meet the standards of maturity and practical applications remains a persistent challenge. Electrochromic devices are typically multilayered structures that can be designed as either rigid or flexible systems, depending on the type of substrate employed. Conventional electrochromic devices comprise layered structures that include transparent electrodes, electrochromic materials, ionic conductors, and ion storage materials. On the other hand, multifunctional systems integrate bifunctional materials or distinct functional layers to simultaneously achieve optical modulation and additional capabilities such as energy storage. The development of advanced materials, comprehensive electrochemical kinetic analysis, the optimization and advancement of process techniques and deposition methods, and innovative device designs are active areas of extensive global research. This review focuses on the recent advances in multifunctional electrochromic materials and devices with particular emphasis on the integration of electrochromic technology with other functional technologies. It further identifies current challenges, proposes potential solutions, and outlines future research directions focused on advancing this technology in both niche and scalable applications. Full article
Show Figures

Figure 1

17 pages, 8128 KiB  
Article
Tuning Polymer–Metal Interfaces via Solvent-Engineered Electroless Nickel Coatings on Functional Fibres
by Chenyao Wang, Heng Zhai, Xuzhao Liu, David Lewis, Yuhao Huang, Ling Ai, Xinyi Guan, Hugh Gong, Xuqing Liu and Anura Fernando
Polymers 2025, 17(12), 1693; https://doi.org/10.3390/polym17121693 - 18 Jun 2025
Cited by 1 | Viewed by 472
Abstract
Electroless nickel deposition (ELD) on polymer substrates enables the fabrication of flexible, conductive fibres for wearable and functional textiles. However, achieving uniform, low-defect coatings on synthetic fibres such as nylon-6,6 remains challenging due to their chemical inertness, hydrophobicity, and poor interfacial compatibility with [...] Read more.
Electroless nickel deposition (ELD) on polymer substrates enables the fabrication of flexible, conductive fibres for wearable and functional textiles. However, achieving uniform, low-defect coatings on synthetic fibres such as nylon-6,6 remains challenging due to their chemical inertness, hydrophobicity, and poor interfacial compatibility with metal coatings. This study presents a solvent-assisted approach using dimethyl sulfoxide (DMSO) in a conventional aqueous ELD bath to control both polymer–metal interfacial chemistry and nickel coating microstructure. The modified surface supports dense catalytic sites, triggering spatially uniform Ni nucleation. The combination of scanning electron microscopy and transmission electron microscopy confirms the difference in coarse grains with fully aqueous baths to a nanocrystalline shell with DMSO-modified baths. This refined microstructure relieves residual stress and anchors firmly to the swollen polymer, delivering +7 °C higher onset decomposition temperature and 45% lower creep strain at 50 °C compared with aqueous controls. The fabric strain sensor fabricated by 1 wt.% DMSO-modified ELD shows a remarkable sensitivity against strain, demonstrating a 1400% resistance change under 200% stain. Electrochemical impedance and polarisation tests confirm a two-fold rise in charge transfer resistance and negligible corrosion current drift after accelerated ageing. By clarifying how a polar aprotic co-solvent couples polymer swelling with metal growth kinetics, the study introduces a scalable strategy for tuning polymer–metal interfaces and advances solvent-assisted ELD as a route to mechanically robust, thermally stable, and corrosion-resistant conductive textiles. Full article
(This article belongs to the Special Issue Polymer Modification for Soft Matter and Flexible Devices)
Show Figures

Figure 1

10 pages, 13542 KiB  
Article
Aging Effects on a Driver Position Sensor Integrated into a Woven Fabric
by Marc Martínez-Estrada, Ignacio Gil and Raúl Fernández-García
Sensors 2025, 25(12), 3797; https://doi.org/10.3390/s25123797 - 18 Jun 2025
Viewed by 325
Abstract
A textile woven presence sensor was previously presented to demonstrate its functionality in eliminating some false positives on car seat presence sensors. After studying the functionality, the next characteristic that the textile sensor should demonstrate is its reliability. The woven sensor was prepared [...] Read more.
A textile woven presence sensor was previously presented to demonstrate its functionality in eliminating some false positives on car seat presence sensors. After studying the functionality, the next characteristic that the textile sensor should demonstrate is its reliability. The woven sensor was prepared to be tested against ageing. The ageing cycle was prepared according to the UNE-EN ISO 17228:2015 standard. Nine woven sensors are prepared, seven of them face the aging test, and two are selected as reference sensors. The characterization of the woven sensor has been carried out through a microcontroller measurement circuit that obtains the cycles to charge the sensor. Comparison of the results obtained shows that the effects of ageing are negligible. The behavior of the aged sensors is similar to that of the reference sensors, indicating that the variations in the values of both aged and reference sensors are provoked by the environmental conditions during the measurements. To support this argument, a statistical study based on a t-Student analysis was carried out. After 4 ageing cycles, the functionality of the sensors remains unaffected. This research proves the reliability of the woven textile sensor, which encourages its use in automotive applications. Full article
(This article belongs to the Special Issue Sensors and Sensor Fusion Technology in Autonomous Vehicles)
Show Figures

Figure 1

Back to TopTop