Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = tetrathiafulvalene derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 13085 KiB  
Review
Beyond Spin Crossover: Optical and Electronic Horizons of 2,6-Bis(pyrazol-1-yl)pyridine Ligands and Complexes
by Yuliia Oleksii and Abdelkrim El-Ghayoury
Molecules 2025, 30(6), 1314; https://doi.org/10.3390/molecules30061314 - 14 Mar 2025
Viewed by 1230
Abstract
The 2,6-bis(pyrazol-1-yl)pyridine (bpp) ligand family is widely recognized for its versatile coordination abilities and broad functionalization potential. This review examines bpp and its modifications at the pyridine ring’s 4-position, focusing on their influence on magnetic, optical, and electronic properties. Key applications [...] Read more.
The 2,6-bis(pyrazol-1-yl)pyridine (bpp) ligand family is widely recognized for its versatile coordination abilities and broad functionalization potential. This review examines bpp and its modifications at the pyridine ring’s 4-position, focusing on their influence on magnetic, optical, and electronic properties. Key applications discussed include spin crossover (SCO), single-ion and single-molecule magnetism (SIM and SMM), luminescence, redox flow batteries (RFBs), and photonic devices. We provide a comprehensive overview of ligand modifications involving carboxylates, extended aromatic systems, radicals, and redox-active units such as tetrathiafulvalene (TTF), alongside supramolecular architectures. The review highlights fundamental design principles, particularly the role of substituents in tuning the SCO behavior, photophysical properties, and self-assembly into functional nanostructures. Notable advancements include SCO-driven conductivity modulation, reversible luminescent switching, and amphiphilic bpp-based vesicles for multicolor emission. By analyzing the interplay between ligand structure and magnetic, optical, and electronic functions, we provide insights into the potential of bpp derivatives for advanced materials design. This review presents recent experimental and theoretical developments, offering a foundation for future exploration of bpp-based compounds in multifunctional devices. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Figure 1

15 pages, 4480 KiB  
Article
Synthesis and Electrochemical Characterization of Dissymmetric Tetrathiafulvalene Derivatives for Aqueous Rechargeable Batteries
by João F. G. Rodrigues, Isabel C. Santos, Sandra Rabaça and Diogo M. F. Santos
Batteries 2025, 11(3), 92; https://doi.org/10.3390/batteries11030092 - 27 Feb 2025
Viewed by 798
Abstract
Organic electroactive materials (OEMs) offer advantages such as cost-effectiveness, environmental sustainability, and simplified end-of-life processing compared to inorganic electrode materials. Aqueous electrolytes further enhance sustainability and safety relative to organic electrolytes. Investigating the electrochemical properties of OEMs in aqueous media provides valuable insights [...] Read more.
Organic electroactive materials (OEMs) offer advantages such as cost-effectiveness, environmental sustainability, and simplified end-of-life processing compared to inorganic electrode materials. Aqueous electrolytes further enhance sustainability and safety relative to organic electrolytes. Investigating the electrochemical properties of OEMs in aqueous media provides valuable insights into their redox behavior and stability under such conditions. However, challenges remain, including low electronic conductivity and structural stability concerns, while aqueous rechargeable batteries (ARBs) face inherent energy density limitations. Tetrathiafulvalene (TTF) has been previously reported as an electrode material for ARBs, while its oligomers have been proposed for organic electrolyte batteries. This study focuses on the synthesis and characterization of two new dissymmetric TTF derivatives—cyanobenzene tetrathiafulvalene pyrazine (CNB-TTF-Pz) (1) and 4-cyanobenzene tetrathiafulvalene pyrazine (4-CNB-TTF) (2)—as well as one symmetric TTF derivative, dipyrazine tetrathiafulvalene ((Pz)2-TTF) (3). Their electrochemical behavior in aqueous lithium and potassium nitrate electrolytes was systematically characterized using cyclic voltammetry. The study provides insights into the redox properties and electroactivity of these compounds, highlighting challenges related to low electronic conductivity and redox potentials close to the water stability limits. These findings contribute to broadening our understanding of the electrochemical properties of TTF derivatives in aqueous electrolytes and offer a preliminary assessment of their potential application as electrodes for ARBs. Full article
(This article belongs to the Special Issue Research on Aqueous Rechargeable Batteries)
Show Figures

Graphical abstract

14 pages, 3223 KiB  
Article
Molecular Conductors Based on Dimethylcyclohexene-Fused Tetrathiafulvalene
by Masahiro Fujisaki, Ryoya Naito, Takashi Shirahata, Yoshitaka Kawasugi, Naoya Tajima and Yohji Misaki
Chemistry 2024, 6(6), 1509-1522; https://doi.org/10.3390/chemistry6060091 - 25 Nov 2024
Viewed by 1180
Abstract
Chiral electroactive materials have attracted attention for the effects of electrical magnetochiral anisotropy (eMChA) and chirality-induced spin selectivity (CISS). The combination of tetrathiafulvalene (TTF) with chiral moieties is one way to access chiral electroactive materials. In this paper, we have focused on the [...] Read more.
Chiral electroactive materials have attracted attention for the effects of electrical magnetochiral anisotropy (eMChA) and chirality-induced spin selectivity (CISS). The combination of tetrathiafulvalene (TTF) with chiral moieties is one way to access chiral electroactive materials. In this paper, we have focused on the fused 2,3-dimethylcyclohexene (DMCh) ring as a substituent with chiral carbon atoms and without heteroatoms, which has not been used in the field of molecular conductors, and we synthesized a new TTF derivative (rac-DMCh-EDT-TTF). We have developed novel molecular conductors (rac-DMCh-EDT-TTF)2X (X = PF6, AsF6 and ClO4), which have bilayer conducting sheets composed of the two crystallographically independent molecules. All salts exhibited semiconducting behavior from room temperature down to low temperatures, and a resistivity anomaly was observed at 180–250 K. X-ray structure analysis at 100 K and 263 K and molecular orbital calculations using the results of X-ray structure analysis indicated the emergence of a charge disproportionation between Layers 1 and 2 at the low-temperature phase. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Graphical abstract

26 pages, 23787 KiB  
Article
Hierarchical Modeling of the Nonlinear Optical Response of Composite Materials Based on Tetrathiafulvalene Derivatives
by Lucia Mydlova, Bouchta Sahraoui, Abdelkrim El-Ghayoury, Janusz Berdowski, Anna Migalska-Zalas and Malgorzata Makowska-Janusik
Molecules 2024, 29(16), 3720; https://doi.org/10.3390/molecules29163720 - 6 Aug 2024
Cited by 1 | Viewed by 1272
Abstract
The presented work concerns computational investigations of the physical properties of composite materials based on polymer matrix and nonlinear optical (NLO) active chromophores. The structural, electronic, and optical properties of selected tetrathiafulvalene (TTF)-based chromophores have been calculated using quantum chemical methods. The polymer [...] Read more.
The presented work concerns computational investigations of the physical properties of composite materials based on polymer matrix and nonlinear optical (NLO) active chromophores. The structural, electronic, and optical properties of selected tetrathiafulvalene (TTF)-based chromophores have been calculated using quantum chemical methods. The polymer matrix changes the physical properties of the inserted chromophores influencing their optical parameters. To explain the mechanism of the NLO signal occurrence from the composites based on poly(methyl methacrylate) (PMMA) matrix and TTF chromophores, their structures are modeled using the classical molecular dynamics. In consequence, the structural properties of the composites are discussed according to the NLO requirements. By developing the theoretical model based on a discrete multipole local field approach, the impact of polymer matrix on the optical properties of chromophores is explained. Full article
(This article belongs to the Special Issue Advances in Computational and Theoretical Chemistry—2nd Edition)
Show Figures

Graphical abstract

11 pages, 2588 KiB  
Article
Electrochemistry of Tetrathiafulvalene Ligands Assembled on the Surface of Gold Nanoparticles
by Jiří Janoušek, Jiří Rybáček, Miloš Buděšínský, Lubomír Pospíšil, Irena G. Stará and Ivo Starý
Molecules 2022, 27(21), 7639; https://doi.org/10.3390/molecules27217639 - 7 Nov 2022
Cited by 1 | Viewed by 2500
Abstract
The synthesis of a tetrathiafulvalene (TTF) derivative, S-[4-({4-[(2,2′-bi-1,3-dithiol-4-ylmethoxy)methyl] phenyl}ethynyl)phenyl] ethanethioate, suitable for the modification of gold nanoparticles (AuNPs), is described in this article. The TTF ligand was self-assembled on the AuNP surface through ligand exchange, starting from dodecanethiol-stabilized AuNPs. The resulting modified [...] Read more.
The synthesis of a tetrathiafulvalene (TTF) derivative, S-[4-({4-[(2,2′-bi-1,3-dithiol-4-ylmethoxy)methyl] phenyl}ethynyl)phenyl] ethanethioate, suitable for the modification of gold nanoparticles (AuNPs), is described in this article. The TTF ligand was self-assembled on the AuNP surface through ligand exchange, starting from dodecanethiol-stabilized AuNPs. The resulting modified AuNPs were characterized by TEM, UV-Vis spectroscopy, and electrochemistry. The most suitable electrochemical method was the phase-sensitive AC voltammetry at very low frequencies of the sine-wave perturbation. The results indicate a diminishing electronic communication between the two equivalent redox centers of TTF and also intermolecular donor–acceptor interactions manifested by an additional oxidation wave upon attachment of the ligand to AuNPs. Full article
Show Figures

Graphical abstract

33 pages, 10366 KiB  
Review
Recent Advances in Design and Synthesis of Diselenafulvenes, Tetraselenafulvalenes, and Their Tellurium Analogs and Application for Materials Sciences
by Nataliya A. Makhaeva, Svetlana V. Amosova and Vladimir A. Potapov
Molecules 2022, 27(17), 5613; https://doi.org/10.3390/molecules27175613 - 31 Aug 2022
Cited by 9 | Viewed by 2805
Abstract
The first organic metals were obtained based on tetrathiafulvalene. The most significant advance in the field of organic metals was the discovery of superconductivity. The first organic superconductors were obtained based on tetramethyltetraselenafulvalene. These facts demonstrate great importance of tetraselenafulvalenes and their precursors, [...] Read more.
The first organic metals were obtained based on tetrathiafulvalene. The most significant advance in the field of organic metals was the discovery of superconductivity. The first organic superconductors were obtained based on tetramethyltetraselenafulvalene. These facts demonstrate great importance of tetraselenafulvalenes and their precursors, diselenafulvenes, for materials sciences. Derivatives of 1,4-diselenafulvene and 1,4,5,8-tetraselenafulvalene are useful building blocks for organic synthesis and donor units for the preparation of charge-transfer complexes and radical ion salts, the construction of organic metals, superconductors, organic Dirac materials, semiconductors, ferromagnets, and other conductive materials. This review covers the literature on the design, synthesis, and application of 1,4,5,8-tetraselenafulvalenes and 1,4-diselenafulvenes and their tellurium analogs over the past 15–20 years. These two classes of compounds are interconnected, since the main part of methods for the synthesis of tetraselenafulvalenes is based on the diselenafulvene derivatives as starting compounds. Special attention is paid to the development of novel efficient synthetic approaches to these classes of compounds. Conducting properties and distinguishing features of materials based on tetraselenafulvalenes and their tellurium analogs as well as examples of materials with high conductivity are discussed. Full article
Show Figures

Scheme 1

12 pages, 16356 KiB  
Article
Redox-Active Metal-Organic Frameworks with Three-Dimensional Lattice Containing the m-Tetrathiafulvalene-Tetrabenzoate
by Hongrui Huang, Zhi-Mei Yang, Xiao-Cheng Zhou, Gen Zhang and Jian Su
Molecules 2022, 27(13), 4052; https://doi.org/10.3390/molecules27134052 - 23 Jun 2022
Cited by 3 | Viewed by 2869
Abstract
Metal-organic frameworks (MOFs) constructed by tetrathiafulvalene-tetrabenzoate (H4TTFTB) have been widely studied in porous materials, while the studies of other TTFTB derivatives are rare. Herein, the meta derivative of the frequently used p-H4TTFTB ligand, m-H4TTFTB, and [...] Read more.
Metal-organic frameworks (MOFs) constructed by tetrathiafulvalene-tetrabenzoate (H4TTFTB) have been widely studied in porous materials, while the studies of other TTFTB derivatives are rare. Herein, the meta derivative of the frequently used p-H4TTFTB ligand, m-H4TTFTB, and lanthanide (Ln) metal ions (Tb3+, Er3+, and Gd3+) were assembled into three novel MOFs. Compared with the reported porous Ln-TTFTB, the resulted three-dimensional frameworks, Ln-m-TTFTB ([Ln2(m-TTFTB)(m-H2TTFTB)0.5(HCOO)(DMF)]·2DMF·3H2O), possess a more dense stacking which leads to scarce porosity. The solid-state cyclic voltammetry studies revealed that these MOFs show similar redox activity with two reversible one-electron processes at 0.21 and 0.48 V (vs. Fc/Fc+). The results of magnetic properties suggested Dy-m-TTFTB and Er-m-TTFTB exhibit slow relaxation of the magnetization. Porosity was not found in these materials, which is probably due to the meta-configuration of the m-TTFTB ligand that seems to hinder the formation of pores. However, the m-TTFTB ligand has shown to be promising to construct redox-active or electrically conductive MOFs in future work. Full article
Show Figures

Graphical abstract

14 pages, 3879 KiB  
Communication
Enhanced Photocatalytic Hydrogen Production Activity by Constructing a Robust Organic-Inorganic Hybrid Material Based Fulvalene and TiO2
by Mengyuan Wang, Shizhuo Su, Xin Zhong, Derui Kong, Bo Li, Yujie Song, Chunman Jia and Yifan Chen
Nanomaterials 2022, 12(11), 1918; https://doi.org/10.3390/nano12111918 - 3 Jun 2022
Cited by 7 | Viewed by 2727
Abstract
A novel redox-active organic-inorganic hybrid material (denoted as H4TTFTB-TiO2) based on tetrathiafulvalene derivatives and titanium dioxide with a micro/mesoporous nanomaterial structure has been synthesized via a facile sol-gel method. In this study, tetrathiafulvalene-3,4,5,6-tetrakis(4-benzoic acid) (H4TTFTB) is an [...] Read more.
A novel redox-active organic-inorganic hybrid material (denoted as H4TTFTB-TiO2) based on tetrathiafulvalene derivatives and titanium dioxide with a micro/mesoporous nanomaterial structure has been synthesized via a facile sol-gel method. In this study, tetrathiafulvalene-3,4,5,6-tetrakis(4-benzoic acid) (H4TTFTB) is an ideal electron-rich organic material and has been introduced into TiO2 for promoting photocatalytic H2 production under visible light irradiation. Notably, the optimized composites demonstrate remarkably enhanced photocatalytic H2 evolution performance with a maximum H2 evolution rate of 1452 μmol g−1 h−1, which is much higher than the prototypical counterparts, the common dye-sensitized sample (denoted as H4TTFTB-5.0/TiO2) (390.8 μmol g−1 h−1) and pure TiO2 (18.87 μmol g−1 h−1). Moreover, the composites perform with excellent stability even after being used for seven time cycles. A series of characterizations of the morphological structure, the photoelectric physics performance and the photocatalytic activity of the hybrid reveal that the donor-acceptor structural H4TTFTB and TiO2 have been combined robustly by covalent titanium ester during the synthesis process, which improves the stability of the hybrid nanomaterials, extends visible-light adsorption range and stimulates the separation of photogenerated charges. This work provides new insight for regulating precisely the structure of the fulvalene-based composite at the molecule level and enhances our in-depth fundamental understanding of the photocatalytic mechanism. Full article
Show Figures

Figure 1

13 pages, 16279 KiB  
Article
Characterization of Charge States in Conducting Organic Nanoparticles by X-ray Photoemission Spectroscopy
by Jordi Fraxedas, Antje Vollmer, Norbert Koch, Dominique de Caro, Kane Jacob, Christophe Faulmann and Lydie Valade
Materials 2021, 14(8), 2058; https://doi.org/10.3390/ma14082058 - 19 Apr 2021
Cited by 3 | Viewed by 2979
Abstract
The metallic and semiconducting character of a large family of organic materials based on the electron donor molecule tetrathiafulvalene (TTF) is rooted in the partial oxidation (charge transfer or mixed valency) of TTF derivatives leading to partially filled molecular orbital-based electronic bands. The [...] Read more.
The metallic and semiconducting character of a large family of organic materials based on the electron donor molecule tetrathiafulvalene (TTF) is rooted in the partial oxidation (charge transfer or mixed valency) of TTF derivatives leading to partially filled molecular orbital-based electronic bands. The intrinsic structure of such complexes, with segregated donor and acceptor molecular chains or planes, leads to anisotropic electronic properties (quasi one-dimensional or two-dimensional) and morphology (needle-like or platelet-like crystals). Recently, such materials have been synthesized as nanoparticles by intentionally frustrating the intrinsic anisotropic growth. X-ray photoemission spectroscopy (XPS) has emerged as a valuable technique to characterize the transfer of charge due to its ability to discriminate the different chemical environments or electronic configurations manifested by chemical shifts of core level lines in high-resolution spectra. Since the photoemission process is inherently fast (well below the femtosecond time scale), dynamic processes can be efficiently explored. We determine here the fingerprint of partial oxidation on the photoemission lines of nanoparticles of selected TTF-based conductors. Full article
(This article belongs to the Special Issue Nanoparticles for Conductors)
Show Figures

Figure 1

22 pages, 4336 KiB  
Article
Strategies for Controlling Through-Space Charge Transport in Metal-Organic Frameworks via Structural Modifications
by Christian Winkler and Egbert Zojer
Nanomaterials 2020, 10(12), 2372; https://doi.org/10.3390/nano10122372 - 28 Nov 2020
Cited by 5 | Viewed by 4141
Abstract
In recent years, charge transport in metal-organic frameworks (MOFs) has shifted into the focus of scientific research. In this context, systems with efficient through-space charge transport pathways resulting from π-stacked conjugated linkers are of particular interest. In the current manuscript, we use [...] Read more.
In recent years, charge transport in metal-organic frameworks (MOFs) has shifted into the focus of scientific research. In this context, systems with efficient through-space charge transport pathways resulting from π-stacked conjugated linkers are of particular interest. In the current manuscript, we use density functional theory-based simulations to provide a detailed understanding of such MOFs, which, in the present case, are derived from the prototypical Zn2(TTFTB) system (with TTFTB4− corresponding to tetrathiafulvalene tetrabenzoate). In particular, we show that factors such as the relative arrangement of neighboring linkers and the details of the structural conformations of the individual building blocks have a profound impact on bandwidths and charge transfer. Considering the helical stacking of individual tetrathiafulvalene (TTF) molecules around a screw axis as the dominant symmetry element in Zn2(TTFTB)-derived materials, the focus, here, is primarily on the impact of the relative rotation of neighboring molecules. Not unexpectedly, changing the stacking distance in the helix also plays a distinct role, especially for structures which display large electronic couplings to start with. The presented results provide guidelines for achieving structures with improved electronic couplings. It is, however, also shown that structural defects (especially missing linkers) provide major obstacles to charge transport in the studied, essentially one-dimensional systems. This suggests that especially the sample quality is a decisive factor for ensuring efficient through-space charge transport in MOFs comprising stacked π-systems. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

11 pages, 885 KiB  
Article
Synthesis, Structure and Physical Properties of (trans-TTF-py2)1.5(PF6)·EtOH: A Molecular Conductor with Weak CH∙∙∙N Hydrogen Bondings
by Shohei Koyama, Morio Kawai, Shinya Takaishi, Masahiro Yamashita, Norihisa Hoshino, Tomoyuki Akutagawa, Manabu Kanno and Hiroaki Iguchi
Crystals 2020, 10(12), 1081; https://doi.org/10.3390/cryst10121081 - 26 Nov 2020
Cited by 3 | Viewed by 3456
Abstract
The studies of crystal structures with hydrogen bonds have been actively pursued because of their moderate stabilization energy for constructing unique structures. In this study, we synthesized a molecular conductor based on 2,6-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene (trans-TTF-py2). Two pyridyl groups were introduced into the [...] Read more.
The studies of crystal structures with hydrogen bonds have been actively pursued because of their moderate stabilization energy for constructing unique structures. In this study, we synthesized a molecular conductor based on 2,6-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene (trans-TTF-py2). Two pyridyl groups were introduced into the TTF skeleton toward the structural exploration in TTF-based molecular conductors involved by hydrogen bonds. In the obtained molecular conductor, (trans-TTF-py2)1.5(PF6)·EtOH, short contacts between the pyridyl group and the hydrogen atom of the TTF skeleton were observed, indicating that hydrogen bonding interactions were introduced in the crystal structure. Spectroscopic measurements and conductivity measurement revealed semiconducting behavior derived from π-stacked trans-TTF-py2 radical in the crystal structure. Finally, these results are discussed with the quantified hydrogen bonding stabilization energy, and the band calculation of the crystal obtained from density functional theory calculation. Full article
(This article belongs to the Special Issue Organic Conductors)
Show Figures

Graphical abstract

16 pages, 2550 KiB  
Article
Synthesis, Characterization, and Self-Assembly of a Tetrathiafulvalene (TTF)–Triglycyl Derivative
by Sónia Pérez-Rentero, Ramon Eritja, Marleen Häring, César Saldías and David Díaz Díaz
Appl. Sci. 2018, 8(5), 671; https://doi.org/10.3390/app8050671 - 26 Apr 2018
Cited by 4 | Viewed by 4854
Abstract
In this work, we describe the synthesis, characterization, and self-assembly properties of a new tetrathiafulvalene (TTF)–triglycyl low-molecular-weight (LMW) gelator. Supramolecular organogels were obtained in various solvents via a heating–cooling cycle. Critical gelation concentrations (CGC) (range ≈ 5–50 g/L) and thermal gel-to-sol [...] Read more.
In this work, we describe the synthesis, characterization, and self-assembly properties of a new tetrathiafulvalene (TTF)–triglycyl low-molecular-weight (LMW) gelator. Supramolecular organogels were obtained in various solvents via a heating–cooling cycle. Critical gelation concentrations (CGC) (range ≈ 5–50 g/L) and thermal gel-to-sol transition temperatures (Tgel) (range ≈ 36–51 °C) were determined for each gel. Fourier transform infrared (FT-IR) spectroscopy suggested that the gelator is also aggregated in its solid state via a similar hydrogen-bonding pattern. The fibrillar microstructure and viscoelastic properties of selected gels were demonstrated by means of field-emission electron microscopy (FE-SEM) and rheological measurements. As expected, exposure of a model xerogel to I2 vapor caused the oxidation of the TTF unit as confirmed by UV-vis-NIR analysis. However, FT-IR spectroscopy showed that the oxidation was accompanied with concurrent alteration of the hydrogen-bonded network. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

16 pages, 6142 KiB  
Review
Thermodynamic Picture of Dimer-Mott Organic Superconductors Revealed by Heat Capacity Measurements with External and Chemical Pressure Control
by Yasuhiro Nakazawa, Shusaku Imajo, Yuki Matsumura, Satoshi Yamashita and Hiroki Akutsu
Crystals 2018, 8(4), 143; https://doi.org/10.3390/cryst8040143 - 21 Mar 2018
Cited by 15 | Viewed by 5019
Abstract
This article reviews and discusses the thermodynamic properties of dimer-Mott-type molecular superconductive compounds with (BEDT-TTF)2X composition, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene and X denotes counter-anions, respectively. We focus mainly on the features occurring in the κ-type structure in which the d-wave superconductive [...] Read more.
This article reviews and discusses the thermodynamic properties of dimer-Mott-type molecular superconductive compounds with (BEDT-TTF)2X composition, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene and X denotes counter-anions, respectively. We focus mainly on the features occurring in the κ-type structure in which the d-wave superconductive phase appears depending on the Coulomb repulsion U and the bandwidth W, which is tunable by external and chemical pressures. First, we report the high-pressure ac (alternating current) calorimetry technique and experimental system constructed to measure single-crystal samples of molecule-based compounds to derive low-temperature thermodynamic parameters. Using extremely small resistance chips as a heater and a thermometer allows four-terminal detection of an accurate temperature and its oscillation in the sample part with sufficient sensitivity. From the analyses of the temperature dependence of the ac heat capacity of κ-(BEDT-TTF)2Cu(NCS)2 under external pressures, we discuss the changes in the peak shape of the thermal anomaly at the superconductive transition temperature Tc at various external pressures p. The rather sharp peak in CpT−1 at Tc = 9.1 K with a strong coupling character at ambient pressure is gradually reduced to weaker coupling as the pressure increases to 0.45 GPa concomitant with suppression of the transition temperature. This feature is compared with the systematic argument of the chemical–pressure effect on the basis of thermal anomalies around the superconductive transition of κ-(BEDT-TTF)2X compounds and other previously studied typical dimer-Mott 2:1 compounds. Finally, the discussion is extended to the chemical pressure effect on the normal state electronic heat capacity coefficient γ obtained by applying magnetic fields higher than Hc2 and the residual γ*, which remains in the superconductive state due to the induced electron density of states around the node structure. From the overall arguments with respect to both chemical and external pressures, we suggest that a crossover of the electronic state inside the superconductive phase occurs and the coupling strength of electron pairs varies from the electron correlation region near the metal-insulator boundary to the band picture region. Full article
(This article belongs to the Special Issue Advances in Organic Conductors and Superconductors)
Show Figures

Figure 1

9 pages, 2126 KiB  
Article
β”-(CNB-EDT-TTF)4BF4; Anion Disorder Effects in Bilayer Molecular Metals
by Sandra Rabaça, Sandrina Oliveira, Vasco Gama, Isabel C. Santos, Gonçalo Oliveira, Elsa B. Lopes, Enric Canadell and Manuel Almeida
Crystals 2018, 8(4), 142; https://doi.org/10.3390/cryst8040142 - 21 Mar 2018
Cited by 9 | Viewed by 5344
Abstract
The preparation and characterization of new salts based on the dissymmetrical TTF derivative CNB-EDT-TTF (cyanobenzene-ethylenedithio-tetrathiafulvalene) and BF4 anions, are reported. Depending on the electrocrystallization conditions salts with different stoichiometries, (CNB-EDT-TTF)BF4 and β”-(CNB-EDT-TTF)4BF4, can be obtained. [...] Read more.
The preparation and characterization of new salts based on the dissymmetrical TTF derivative CNB-EDT-TTF (cyanobenzene-ethylenedithio-tetrathiafulvalene) and BF4 anions, are reported. Depending on the electrocrystallization conditions salts with different stoichiometries, (CNB-EDT-TTF)BF4 and β”-(CNB-EDT-TTF)4BF4, can be obtained. The 1:1 salt is an electrical insulator isostructural to the ClO4 analogue previously described. The 4:1 salt is a new member of the family of 2D metals of this donor with different small anions X, (CNB-EDT-TTF)4X, characterized by a bilayer arrangement of the donors and it was obtained in a monoclinic polymorph with a β”-type donor packing pattern. The small anions in this compound are severely disordered between the donor bilayers, which present slightly larger lattice parameters than the isostructural ClO4 analogue. Both electrical conductivity and thermoelectric power measurements in single crystals denote metallic properties as predicted by electronic band structure calculations. As a consequence of the anion disorder the metallic regime of the electrical conductivity denotes electronic localization effects with a progressive increase of resistivity below ~25 K. Because of the larger lattice parameters the intermolecular interactions and electronic bandwidth are decreased compared to other (CNB-EDT-TTF)4X salts. The large and positive thermoelectric power S of this compound (~110 μV/K in the range 100–330 K) and its electrical conductivity σ = 20 S/cm at room temperature lead to a power factor S2σ = 24 μW/K2m, quite large among molecular conductors, placing these compounds as potential candidates for thermoelectric materials. Full article
(This article belongs to the Special Issue Advances in Organic Conductors and Superconductors)
Show Figures

Graphical abstract

16 pages, 8864 KiB  
Article
Synthesis and Characterization of Charge Transfer Salts Based on [M(dcdmp)2] (M = Au, Cu and Ni) with TTF Type Donors
by Rafaela A. L. Silva, Isabel C. Santos, Sandra Rabaça, Elsa B. Lopes, Vasco Gama, Manuel Almeida and Dulce Belo
Crystals 2018, 8(3), 141; https://doi.org/10.3390/cryst8030141 - 20 Mar 2018
Cited by 7 | Viewed by 4052
Abstract
The charge transfer salts α-DT-TTF[Au(dcdmp)2] (1), BET-TTF[Au(dcdmp)2] (2M and 2T), α-DT-TTF[Cu(dcdmp)2] (3), ET[Cu(dcdmp)2] (4), (BET-TTF)2[Cu(dcdmp)2] (5), (ET)2[Ni(dcdmp)2] [...] Read more.
The charge transfer salts α-DT-TTF[Au(dcdmp)2] (1), BET-TTF[Au(dcdmp)2] (2M and 2T), α-DT-TTF[Cu(dcdmp)2] (3), ET[Cu(dcdmp)2] (4), (BET-TTF)2[Cu(dcdmp)2] (5), (ET)2[Ni(dcdmp)2] (6), and α-mtdt[Cu(dcdmp)2] (7) were obtained by electrocrystallization of different electron donor molecules derived from TTF (α-DT-TTF = alpha-dithiophene-tetrathiafulvalene; BET-TTF = (bis(ethylenethio)tetrathiafulvalene; ET = bis(ethylenedithio)-tetrathiafulvalene; α-mtdt = alpha-methylthiophenetetrathiafulvalene) in the presence of transition metal complex [M(dcdmp)2] (M = Au (III), Cu (III) and Ni (II)) (dcdmp = 2,3-dicyano-5,6-dimercaptopyrazine). Compounds 1 and 2 (2M and 2T) have a similar packing pattern composed of mixed stacks of alternating donor-acceptor molecules. For (BET-TTF)[Au(dcdmp)2] two different crystal structures (2M and 2T) were obtained indicating polymorphism. Compounds 3 and 4 are isostructural being composed of zigzag chains of alternating donor and acceptor molecules. The salts with a 2:1 stoichiometry, (BET-TTF)2[Cu(dcdmp)2] (5), and (ET)2[Ni(dcdmp)2] (6) present the donor molecules fully oxidized and [M(dcdmp)2] (M = Ni and Cu) in a dianionic state. The salt of the dissymmetric donor α-mtdt with [Cu(dcdmp)2], α-mtdt[Cu(dcdmp)2] (7) has a crystal structure composed of segregated donor stacks that are positioned in a head-to-head fashion and alternate with the anion stacks. All charge transfer salts (17) are modest semiconductors with conductivities in the range 10−1–10−5 S/cm, with the highest values obtained in α-DT-TTF salts, compounds 1 and 3. Full article
(This article belongs to the Special Issue Advances in Organic Conductors and Superconductors)
Show Figures

Graphical abstract

Back to TopTop