Molecular Conductors Based on Dimethylcyclohexene-Fused Tetrathiafulvalene
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Synthesis
2.2.1. Compound rac-2
2.2.2. Compound rac-3
2.2.3. Compound rac-4
2.2.4. Compound rac-5
2.2.5. Compound rac-6
2.2.6. Compound rac-7
2.2.7. rac-DMCh-EDT-TTF
2.3. Preparation of Radical Cation Salts
2.4. X-Ray Crystallographic Analysis
2.5. Band Calculations
2.6. Electrical Conductivity
3. Results and Discussion
3.1. Synthesis and Electrochemistry
3.2. Preparation and Electrical Conductivities of (rac-DMCh-EDT-TTF)2X (X− = PF6−, AsF6−, and ClO4−)
3.3. X-Ray Structure Analyses of (rac-DMCh-EDT-TTF)2X (X− = PF6−, AsF6−, and ClO4−)
3.4. Band Calculations of (rac-DMCh-EDT-TTF)2X (X− = PF6−, AsF6−, and ClO4−)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pop, F.; Zigon, N.; Avarvari, N. Main-Group-Based Electro- and Photoactive Chiral Materials. Chem. Rev. 2019, 119, 8435–8478. [Google Scholar] [CrossRef] [PubMed]
- Rikken, G.L.; Fölling, J.; Wyder, P. Electrical Magnetochiral Anisotropy. Phys. Rev. Lett. 2001, 87, 236602. [Google Scholar] [CrossRef] [PubMed]
- Rikken, G.L.J.A.; Avarvari, N. Dielectric Magnetochiral Anisotropy. Nat. Commun. 2022, 13, 3564. [Google Scholar] [CrossRef]
- Atzori, M.; Train, C.; Hillard, E.A.; Avarvari, N.; Rikken, G.L.J.A. Magneto-Chiral Anisotropy: From Fundamentals to Perspectives. Chirality 2021, 33, 844–857. [Google Scholar] [CrossRef]
- Mondal, P.C.; Kantor-Uriel, N.; Mathew, S.P.; Tassinari, F.; Fontanesi, C.; Naaman, R. Chiral Conductive Polymers as Spin Filters. Adv. Mater. 2015, 27, 1924–1927. [Google Scholar] [CrossRef]
- Naaman, R.; Paltiel, Y.; Waldeck, D. Chiral Molecules and the Electron Spin. Nat. Rev. Chem. 2019, 3, 250–260. [Google Scholar] [CrossRef]
- Naaman, R.; Paltiel, Y.; Waldeck, D.H. Chiral Molecules and the Spin Selectivity Effect. J. Phys. Chem. Lett. 2020, 11, 3660–3666. [Google Scholar] [CrossRef]
- Rikken, G.L.J.A.; Avarvari, N. Comparing Electrical Magnetochiral Anisotropy and Chirality-Induced Spin Selectivity. J. Phys. Chem. Lett. 2023, 14, 9727–9731. [Google Scholar] [CrossRef]
- Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y. Superconductivity in a Chiral Nanotube. Nat. Commun. 2017, 8, 14465. [Google Scholar] [CrossRef]
- Nakajima, R.; Hirobe, D.; Kawaguchi, G.; Nabei, Y.; Sato, T.; Narushima, T.; Okamoto, H.; Yamamoto, H.M. Giant Spin Polarization and a Pair of Antiparallel Spins in a Chiral Superconductor. Nature 2023, 613, 479–484. [Google Scholar] [CrossRef]
- Yamada, J.-I.; Sugimoto, T. TTF Chemistry: Fundamentals and Applications of Tetrathiafulvalene; Kodansha: Tokyo, Japan; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Avarvari, N.; Wallis, J. Strategies towards Chiral Molecular Conductors. J. Mater. Chem. 2009, 19, 4061–4076. [Google Scholar] [CrossRef]
- Wallis, J.D.; Karrer, A.; Dunitz, J.D. Chiral Metals? A Chiral Substrate for Organic Conductors and Superconductors. Helv. Chim. Acta 1986, 69, 69–70. [Google Scholar] [CrossRef]
- Matsumiya, S.; Izuoka, A.; Sugawara, T.; Taruishi, T.; Kawada, Y. Effect of Methyl Substitution on Conformation and Molecular Arrangement of BEDT-TTF Derivatives in the Crystalline Environment. Bull. Chem. Soc. Jpn. 1993, 66, 513–522. [Google Scholar] [CrossRef]
- Pop, F.; Auban-Senzier, P.; Frąckowiak, A.; Ptaszyński, K.; Olejniczak, I.; Wallis, J.D.; Canadell, E.; Avarvari, N. Chirality Driven Metallic versus Semiconducting Behavior in a Complete Series of Radical Cation Salts Based on Dimethyl-Ethylenedithio-Tetrathiafulvalene (DM-EDT-TTF). J. Am. Chem. Soc. 2013, 135, 17176–17186. [Google Scholar] [CrossRef]
- Konoike, T.; Namba, K.; Shinada, T.; Sakaguchi, K.; Papavassiliou, G.C.; Murata, K.; Ohfune, Y. Efficient Synthesis of EDO-S,S-DMEDT-TTF, a Potent Organic-Donor for Synthetic Metals. Synlett 2001, 2001, 1476–1478. [Google Scholar] [CrossRef]
- Zambounis, J.S.; Pfeiffer, J.; Papavassiliou, G.C.; Lagouvardos, D.J.; Terzis, A.; Raptopoulou, C.P.; Delhaès, P.; Ducasse, L.; Fortune, N.A.; Murata, K. Structural and Physical Properties of the Organic Metal τ-(P-(S,S)-DMEDT-TTF)2(AuBr2)1(AuBr2)~0.75. Solid State Commun. 1995, 95, 211–215. [Google Scholar] [CrossRef]
- Pop, F.; Auban-Senzier, P.; Canadell, E.; Rikken, G.L.J.A.; Avarvari, N. Electrical Magnetochiral Anisotropy in a Bulk Chiral Molecular Conductor. Nat. Commun. 2014, 5, 3757. [Google Scholar] [CrossRef]
- Stefani, A.; Bogdan, A.; Pop, F.; Tassinari, F.; Pasquali, L.; Fontanesi, C.; Avarvari, N. Spin-Dependent Electrochemistry and Electrochemical Enantioselective Recognition with Chiral Methylated Bis(Ethylenedithio)-Tetrathiafulvalenes. J. Chem. Phys. 2023, 159, 204706. [Google Scholar] [CrossRef]
- Galán-Mascarós, J.R.; Coronado, E.; Goddard, P.A.; Singleton, J.; Coldea, A.I.; Wallis, J.D.; Coles, S.J.; Alberola, A. A Chiral Ferromagnetic Molecular Metal. J. Am. Chem. Soc. 2010, 132, 9271–9273. [Google Scholar] [CrossRef]
- Atzori, M.; Pop, F.; Auban-Senzier, P.; Clérac, R.; Canadell, E.; Mercuri, M.L.; Avarvari, N. Complete Series of Chiral Paramagnetic Molecular Conductors Based on Tetramethyl-Bis(Ethylenedithio)-Tetrathiafulvalene (TM-BEDT-TTF) and Chloranilate-Bridged Heterobimetallic Honeycomb Layers. Inorg. Chem. 2015, 54, 3643–3653. [Google Scholar] [CrossRef]
- Martin, L.; Day, P.; Horton, P.; Nakatsuji, S.; Yamada, J.; Akutsu, H. Chiral Conducting Salts of BEDT-TTF Containing a Single Enantiomer of Tris(Oxalato)Chromate(III) Crystallised from a Chiral Solvent. J. Mater. Chem. 2010, 20, 2738–2742. [Google Scholar] [CrossRef]
- Kulkarni, C.; Mondal, A.K.; Das, T.K.; Grinbom, G.; Tassinari, F.; Mabesoone, M.F.J.; Meijer, E.W.; Naaman, R. Highly Efficient and Tunable Filtering of Electrons’ Spin by Supramolecular Chirality of Nanofiber-Based Materials. Adv. Mater. 2020, 32, e1904965. [Google Scholar] [CrossRef] [PubMed]
- Amsallem, D.; Kumar, A.; Naaman, R.; Gidron, O. Spin Polarization through Axially Chiral Linkers: Length Dependence and Correlation with the Dissymmetry Factor. Chirality 2023, 35, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, J.O.; Takimiya, K.; Jensen, F.; Becher, J. Pyrrolo Annelated Tetrathiafulvalenes: The Parent Systems. Org. Lett. 1999, 1, 1291–1294. [Google Scholar] [CrossRef]
- Moore, A.J.; Bryce, M.R. Generation and Trapping of Phosphorus Stabilized 4,5-Ethylenedithio-1,3-Dithiol-2-Ide Carbanions: Synthesis of Ethylenedithio-1,3-Dithiafulvalenes. Synthesis 1991, 1991, 26–28. [Google Scholar] [CrossRef]
- CrysAlisPro; ver. 1.171.42.49, Data Collection and Processing Software; Rigaku Corporation: Tokyo, Japan, 2015.
- Sheldrick, G.M. SHELXT--Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Mori, T.; Kobayashi, A.; Sasaki, Y.; Kobayashi, H.; Saito, G.; Inokuchi, H. The Intermolecular Interaction of Tetrathiafulvalene and Bis(Ethylenedithio)Tetrathiafulvalene in Organic Metals. Calculation of Orbital Overlaps and Models of Energy-Band Structures. Bull. Chem. Soc. Jpn. 1984, 57, 627–633. [Google Scholar] [CrossRef]
- Mori, T.; Katsuhara, M. Estimation of Πd-Interactions in Organic Conductors Including Magnetic Anions. J. Phys. Soc. Jpn. 2002, 71, 826–844. [Google Scholar] [CrossRef]
- Mori, T. Structural Genealogy of BEDT-TTF-Based Organic Conductors I. Parallel Molecules: β and β″ Phases. Bull. Chem. Soc. Jpn. 1998, 71, 2509–2526. [Google Scholar] [CrossRef]
- Bondi, A. Van Der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Guionneau, P.; Kepert, C.J.; Bravic, G.; Chasseau, D.; Truter, M.R.; Kurmoo, M.; Day, P. Determining the Charge Distribution in BEDT-TTF Salts. Synth. Met. 1997, 86, 1973–1974. [Google Scholar] [CrossRef]
- Guionneau, P.; Chasseau, D.; Howard, J.A.; Day, P. Neutral Bis(Ethylenedithio)Tetrathiafulvalene at 100 K. Acta Crystallogr. C 2000, 56, 453–454. [Google Scholar] [CrossRef] [PubMed]
σr.t.a/S cm−1 | Ea/eV | |||
---|---|---|---|---|
300–275 K | 265–240 K | 210–180 K | ||
(rac-DMCh-EDT-TTF)2PF6 b | 4.4 × 10−2 | 2.1 × 10−1 | 4.3 × 10−1 | 1.6 × 10−1 |
(rac-DMCh-EDT-TTF)2AsF6 b | 2.5 × 10−1 | 1.8 × 10−1 | 5.4 × 10−1 | 2.0 × 10−1 |
(rac-DMCh-EDT-TTF)2ClO4 b | 4.1 × 100 | 4.8 × 10−2 | — | 1.7 × 10−1 |
(rac-DMCh-EDT-TTF)2PF6 | (rac-DMCh-EDT-TTF)2AsF6 | (rac-DMCh-EDT-TTF)2ClO4 | |||
---|---|---|---|---|---|
Formula | C28H32PF6S12 | C28H32AsF6S12 | C28H32ClO4S12 | ||
T/K | 100 | 263 | 100 | 100 | 263 |
crystal system | triclinic | triclinic | triclinic | triclinic | triclinic |
space group | P (#2) | P (#2) | P (#2) | P (#2) | P (#2) |
a/Å | 6.6189 (2) | 6.6582 (3) | 6.6442 (2) | 6.6158 (2) | 6.6663 (3) |
b/Å | 8.1402 (2) | 8.2694 (4) | 8.21630 (10) | 8.0542 (3) | 8.2020 (4) |
c/Å | 32.8895 (8) | 32.8995 (9) | 32.9681 (6) | 32.5826 (7) | 32.6647 (13) |
α/° | 94.785 (2) | 94.801 (3) | 95.051 (2) | 93.731 (3) | 93.919 (4) |
β/° | 90.361 (2) | 90.106 (3) | 90.064 (2) | 92.451 (2) | 92.093 (2) |
γ/° | 99.344 (2) | 99.151 (4) | 98.937 (2) | 99.953 (3) | 100.116 (4) |
V/Å3 | 1742.10 (8) | 1781.88 (13) | 1770.80 (7) | 1703.83 (9) | 1751.99 (14) |
Z | 2 | 2 | 2 | 2 | 2 |
Dcalc/g cm−3 | 1.712 | 1.674 | 1.767 | 1.662 | 1.616 |
μ/mm−1 | 0.855 | 0.836 | 1.723 | 0.884 | 0.860 |
independent reflections | 8026 | 8170 | 8143 | 7831 | 8044 |
observed reflections [I > 2σ(I)] | 6213 | 4627 | 7328 | 6436 | 5769 |
variable parameters | 500 | 438 | 485 | 476 | 447 |
Rint | 0.0543 | 0.1166 | 0.0348 | 0.0916 | 0.1018 |
GOF | 1.031 | 0.962 | 1.028 | 1.033 | 1.056 |
R1 [I > 2σ(I)] | 0.0409 | 0.0584 | 0.0303 | 0.0419 | 0.0556 |
wR2 [I > 2σ(I)] | 0.0792 | 0.1049 | 0.0719 | 0.0992 | 0.1378 |
R1 (all data) | 0.0620 | 0.1209 | 0.0353 | 0.0537 | 0.0800 |
wR2 (all data) | 0.0860 | 0.1266 | 0.0741 | 0.1055 | 0.1506 |
CCDC No. | 2404093 | 2404094 | 2404095 | 2404096 | 2404097 |
Molecule 1 | Molecule 2 | Molecule 1–Molecule 2 | ||||
---|---|---|---|---|---|---|
HOMO Level/eV | Charge | HOMO Level/eV | Charge | HOMO Level/eV | Charge | |
PF6 (100 K) | −9.345 | +0.33 | −9.270 | +0.67 | −0.075 | −0.34 |
PF6 (263 K) | −9.313 | +0.41 | −9.256 | +0.59 | −0.057 | −0.18 |
AsF6 (100K) | −9.348 | +0.33 | −9.274 | +0.67 | −0.07 | −0.34 |
ClO4 (100 K) | −9.354 | +0.32 | −9.262 | +0.68 | −0.092 | −0.36 |
ClO4 (263 K) | −9.336 | +0.33 | −9.258 | +0.67 | −0.078 | −0.34 |
(rac-DMCh-EDT-TTF)2PF6 | |||||||||||
Layer 1 | Layer 2 | ||||||||||
100 K | S | ϕ/° | x/Å | y/Å | z/Å | 100 K | S | ϕ/° | x/Å | y/Å | z/Å |
b1 | 19.0 | 88.8 | 1.49 | 0.08 | 3.66 | b3 | 30.8 | 89.8 | 1.45 | 0.01 | 3.38 |
b2 | 4.23 | 89.4 | 4.54 | 0.04 | 3.89 | a2 | 4.20 | 7.97 | 1.70 | 6.34 | 0.89 |
a1 | −3.09 | 14.8 | 1.29 | 6.28 | 1.65 | p2 | −2.62 | 48.5 | 4.36 | 3.12 | 3.55 |
p1 | 0.80 | 19.4 | 5.83 | 6.32 | 2.23 | p3 | 5.32 | 21.5 | 3.15 | 6.32 | 2.49 |
q1 | 6.31 | 17.9 | 0.20 | 6.20 | 2.01 | q2 | −1.11 | 54.2 | 6.06 | 3.19 | 4.43 |
ΔS/<S> c | 1.27 | ΔS/<S> c | 1.69 | ||||||||
263 K | S | ϕ/° | x/Å | y/Å | z/Å | 263 K | S | ϕ/° | x/Å | y/Å | z/Å |
b1 | 18.3 | 89.4 | 1.49 | 0.04 | 3.70 | b3 | 29.1 | 89.7 | 1.45 | 0.02 | 3.43 |
b2 | 3.56 | 89.1 | 4.62 | 0.06 | 3.95 | a2 | 4.51 | 7.62 | 1.70 | 6.38 | 0.85 |
a1 | −3.30 | 15.2 | 1.33 | 6.29 | 1.71 | p2 | −3.12 | 49.1 | 4.45 | 3.13 | 3.62 |
p1 | 0.69 | 19.4 | 5.96 | 6.36 | 2.24 | p3 | 4.60 | 22.0 | 3.15 | 6.37 | 2.58 |
q1 | 5.83 | 17.6 | 0.15 | 6.26 | 1.99 | q2 | −0.94 | 54.0 | 6.15 | 3.25 | 4.47 |
ΔS/<S> c | 1.35 | ΔS/<S> c | 1.61 | ||||||||
(rac-DMCh-EDT-TTF)2AsF6 | |||||||||||
Layer 1 | Layer 2 | ||||||||||
100 K | S | ϕ/° | x/Å | y/Å | z/Å | 100 K | S | ϕ/° | x/Å | y/Å | z/Å |
b1 | 19.6 | 89.1 | 1.44 | 0.05 | 3.66 | b3 | 30.1 | 90.0 | 1.44 | 0.00 | 3.39 |
b2 | 3.86 | 89.8 | 4.60 | 0.02 | 3.93 | a2 | 3.94 | 8.16 | 1.73 | 6.35 | 0.91 |
a1 | −2.94 | 14.7 | 1.35 | 6.29 | 1.65 | p2 | −2.83 | 48.7 | 4.43 | 3.15 | 3.58 |
p1 | 0.78 | 19.8 | 5.95 | 6.31 | 2.28 | p3 | 5.11 | 21.4 | 3.17 | 6.35 | 2.48 |
q1 | 6.12 | 17.9 | 0.09 | 6.24 | 2.01 | q2 | −1.00 | 54.5 | 6.16 | 3.20 | 4.49 |
ΔS/<S> c | 1.34 | ΔS/<S> c | 1.66 | ||||||||
(rac-DMCh-EDT-TTF)2ClO4 | |||||||||||
Layer 1 | Layer 2 | ||||||||||
100 K | S | ϕ/° | x/Å | y/Å | z/Å | 100 K | S | ϕ/° | x/Å | y/Å | z/Å |
b1 | 17.3 | 88.1 | 1.68 | 0.12 | 3.67 | b3 | 31.2 | 87.7 | 1.49 | 0.13 | 3.36 |
b2 | 4.23 | 88.9 | 4.62 | 0.08 | 3.83 | a2 | 3.64 | 8.32 | 1.61 | 6.35 | 0.93 |
a1 | −3.03 | 15.0 | 1.23 | 6.28 | 1.67 | p2 | −0.04 | 46.2 | 4.38 | 3.31 | 3.46 |
p1 | 0.47 | 18.8 | 5.85 | 6.36 | 2.16 | p3 | 6.53 | 21.3 | 3.10 | 6.21 | 2.43 |
q1 | 6.14 | 18.0 | 0.45 | 6.16 | 2.00 | q2 | −1.38 | 55.3 | 5.99 | 3.04 | 4.38 |
ΔS/<S> c | 1.21 | ΔS/<S> c | 1.95 | ||||||||
263 K | S | ϕ/° | x/Å | y/Å | z/Å | 263 K | S | ϕ/° | x/Å | y/Å | z/Å |
b1 | 15.8 | 88.3 | 1.68 | 0.11 | 3.72 | b3 | 28.4 | 88.0 | 1.50 | 0.12 | 3.43 |
b2 | 3.66 | 88.6 | 4.65 | 0.10 | 3.92 | a2 | 3.47 | 8.38 | 1.63 | 6.39 | 0.94 |
a1 | −3.17 | 15.4 | 1.26 | 6.31 | 1.74 | p2 | 0.24 | 46.0 | 4.42 | 3.39 | 3.51 |
p1 | 0.62 | 18.8 | 5.91 | 6.41 | 2.18 | p3 | 5.84 | 21.6 | 3.13 | 6.28 | 2.48 |
q1 | 5.78 | 17.8 | 0.42 | 6.20 | 1.99 | q2 | −1.42 | 55.9 | 6.05 | 3.01 | 4.45 |
ΔS/<S> c | 1.25 | ΔS/<S> c | 1.97 |
PF6 (100 K)/eV | PF6 (263 K)/eV | AsF6 (100 K)/eV | ClO4 (100 K)/eV | ClO4 (263 K)/eV | |
---|---|---|---|---|---|
WU | 0.11 | 0.45 | 0.11 | 0.04 | 0.05 |
WM | 0.33 | – | 0.32 | – | – |
WL | 0.32 | 0.34 | 0.31 | 0.63 | 0.59 |
Eg (WU–WL) | – | 0.02 | – | 0.11 | 0.07 |
Eg1 (WU–WM) | 0.03 | – | 0.03 | – | – |
Eg2 (WM–WL) | 0.01 | – | 0.10 | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujisaki, M.; Naito, R.; Shirahata, T.; Kawasugi, Y.; Tajima, N.; Misaki, Y. Molecular Conductors Based on Dimethylcyclohexene-Fused Tetrathiafulvalene. Chemistry 2024, 6, 1509-1522. https://doi.org/10.3390/chemistry6060091
Fujisaki M, Naito R, Shirahata T, Kawasugi Y, Tajima N, Misaki Y. Molecular Conductors Based on Dimethylcyclohexene-Fused Tetrathiafulvalene. Chemistry. 2024; 6(6):1509-1522. https://doi.org/10.3390/chemistry6060091
Chicago/Turabian StyleFujisaki, Masahiro, Ryoya Naito, Takashi Shirahata, Yoshitaka Kawasugi, Naoya Tajima, and Yohji Misaki. 2024. "Molecular Conductors Based on Dimethylcyclohexene-Fused Tetrathiafulvalene" Chemistry 6, no. 6: 1509-1522. https://doi.org/10.3390/chemistry6060091
APA StyleFujisaki, M., Naito, R., Shirahata, T., Kawasugi, Y., Tajima, N., & Misaki, Y. (2024). Molecular Conductors Based on Dimethylcyclohexene-Fused Tetrathiafulvalene. Chemistry, 6(6), 1509-1522. https://doi.org/10.3390/chemistry6060091