Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = terahertz system-on-chip

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2006 KiB  
Article
A CMOS-Based Terahertz Reconfigurable Reflectarray with Amplitude Control: Design and Validation
by You Wu, Yongli Ren, Fan Yang, Shenheng Xu and Maokun Li
Appl. Sci. 2025, 15(12), 6638; https://doi.org/10.3390/app15126638 - 12 Jun 2025
Viewed by 408
Abstract
Terahertz reconfigurable reflectarray antennas (RRAs) hold significant promise for next-generation wireless communication systems by enabling dynamic beam control to mitigate severe path loss at high frequencies. This work presents a Complementary Metal-Oxide-Semiconductor (CMOS)-based RRA for terahertz amplitude control using tunable split-ring resonators. First, [...] Read more.
Terahertz reconfigurable reflectarray antennas (RRAs) hold significant promise for next-generation wireless communication systems by enabling dynamic beam control to mitigate severe path loss at high frequencies. This work presents a Complementary Metal-Oxide-Semiconductor (CMOS)-based RRA for terahertz amplitude control using tunable split-ring resonators. First, a terahertz switch in standard 65 nm CMOS process is designed, tested, and calibrated on the chip to extract the equivalent impedance, enabling precise RRA element design. Next, a reconfigurable element architecture is presented through the co-design of a split-ring radiator, control line, and a single switch. Experimental characterization demonstrates that the fabricated RRA achieves 3 dB amplitude variation at 0.290 THz with <8.5 dB element loss under 0.8 V gate bias. The measured results validate that the proposed single-switch topology effectively balances reconfigurability and loss performance in the terahertz regime. The demonstrated CMOS-compatible RRA provides a scalable solution for real-time beamforming in terahertz communication systems. Full article
(This article belongs to the Special Issue Recent Advances in Reflectarray and Transmitarray Antennas)
Show Figures

Figure 1

10 pages, 3709 KiB  
Article
W-Band Microstrip Antenna Arrays on Glass
by Yuanchen Li, Hui Ma, Hong Peng and Honggang Liu
Electronics 2025, 14(11), 2133; https://doi.org/10.3390/electronics14112133 - 24 May 2025
Cited by 1 | Viewed by 355
Abstract
This paper proposes a compact 2 × 2 on-chip microstrip antenna array operating for W-band applications. The design utilizes a low-loss glass substrate to mitigate dielectric losses and integrates an embedded feeding structure with wideband T-junction power dividers, addressing bandwidth limitations and feed [...] Read more.
This paper proposes a compact 2 × 2 on-chip microstrip antenna array operating for W-band applications. The design utilizes a low-loss glass substrate to mitigate dielectric losses and integrates an embedded feeding structure with wideband T-junction power dividers, addressing bandwidth limitations and feed network losses in conventional approaches. Experimental results demonstrate a relative bandwidth of 10.1% (76.11–83.87 GHz) with gain exceeding 10 dBi across the bandwidth, closely aligning with simulated predictions. This work provides a cost-effective solution for millimeter-wave and terahertz antenna systems, balancing high-performance requirements with fabrication simplicity for automotive radar and 5G/6G communication applications. Full article
(This article belongs to the Special Issue Antenna Design for Microwave and Millimeter Wave Application)
Show Figures

Figure 1

12 pages, 4596 KiB  
Article
High-Speed Terahertz Modulation Signal Generation Based on Integrated LN-RMZM and CPPLN
by Hangfeng Zhou, Miao Ma, Chenwei Zhang, Xinlong Zhao, Weichao Ma, Wangzhe Li and Mingjun Xia
Photonics 2025, 12(5), 490; https://doi.org/10.3390/photonics12050490 - 15 May 2025
Viewed by 403
Abstract
With the increasing communication frequencies in 6G networks, high-speed terahertz (THz) modulation signal generation has become a critical research area. This study first proposes an on-chip high-speed THz modulation signal generation system based on lithium niobate (LN), which integrates a pair of racetrack [...] Read more.
With the increasing communication frequencies in 6G networks, high-speed terahertz (THz) modulation signal generation has become a critical research area. This study first proposes an on-chip high-speed THz modulation signal generation system based on lithium niobate (LN), which integrates a pair of racetrack resonator-integrated Mach–Zehnder modulators (RMZMs) with a chirped periodically poled lithium niobate (CPPLN) waveguide. The on-chip system combines near-infrared electro-optic modulation and cascaded difference-frequency generation (CDFG) for high-speed THz modulation signal generation. At 300 K, utilizing two input optical waves at frequencies of 193.55 THz and 193.14 THz, this on-chip system enables high-speed THz modulation signal generation at 0.41 THz, with a 1 Gbit/s modulation rate and a 0.25 V modulation voltage. During the simulation, when the intensity of the input optical waves is 1000 MW/cm2, the generated 0.41 THz signal reaches a peak intensity of 21.24 MW/cm2. Furthermore, based on theoretical analysis and subsequent simulation, the on-chip system is shown to support a maximum modulation signal generation rate of 7.75 Gbit/s. These results demonstrate the potential of the proposed on-chip system as a compact and efficient solution for high-speed THz modulation signal generation. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

19 pages, 2276 KiB  
Article
A Broadband Mode Converter Antenna for Terahertz Communications
by Biswash Paudel, Xue Jun Li and Boon-Chong Seet
Electronics 2025, 14(3), 551; https://doi.org/10.3390/electronics14030551 - 29 Jan 2025
Viewed by 930
Abstract
The rise of artificial intelligence (AI) necessitates ultra-fast computing, with on-chip terahertz (THz) communication emerging as a key enabler. It offers high bandwidth, low power consumption, dense interconnects, support for multi-core architectures, and 3D circuit integration. However, transitioning between different waveguides remains a [...] Read more.
The rise of artificial intelligence (AI) necessitates ultra-fast computing, with on-chip terahertz (THz) communication emerging as a key enabler. It offers high bandwidth, low power consumption, dense interconnects, support for multi-core architectures, and 3D circuit integration. However, transitioning between different waveguides remains a major challenge in THz systems. In this paper, we propose a THz band mode converter that converts from a rectangular waveguide (RWG) (WR-0.43) in TE10 mode to a substrate-integrated waveguide (SIW) in TE20 mode. The converter comprises a tapered waveguide, a widened waveguide, a zigzag antenna, and an aperture coupling slot. The zigzag antenna effectively captures the electromagnetic (EM) energy from the RWG, which is then coupled to the aperture slot. This coupling generates a quasi-slotline mode for the electric field (E-field) along the longitudinal side of the aperture, exhibiting odd symmetry akin to the SIW’s TE20 mode. Consequently, the TE20 mode is excited in the symmetrical plane of the SIW and propagates transversely. Our work details the mode transition principle through simulations of the EM field distribution and model optimization. A back-to-back RWG TE10-to-TE10 mode converter is designed, demonstrating an insertion loss of approximately 5 dB over the wide frequency range band of 2.15–2.36 THz, showing a return loss of 10 dB. An on-chip antenna is proposed which is fed by a single higher-order mode of the SIW, achieving a maximum gain of 4.49 dB. Furthermore, a balun based on the proposed converter is designed, confirming the presence of the TE20 mode in the SIW. The proposed mode converter demonstrates its feasibility for integration into a THz-band high-speed circuit due to its efficient mode conversion and compact planar design. Full article
(This article belongs to the Special Issue Broadband Antennas and Antenna Arrays)
Show Figures

Figure 1

12 pages, 4233 KiB  
Article
Theoretical Investigation of Terahertz Spoof Surface-Plasmon-Polariton Devices Based on Ring Resonators
by Can Liu, Shenghao Gu, Mingming Sun, Ya Liu, Ying Zhang and Jiaguang Han
Photonics 2025, 12(1), 70; https://doi.org/10.3390/photonics12010070 - 15 Jan 2025
Viewed by 1046
Abstract
Terahertz is one of the most promising technologies for high-speed communication and large-scale data transmission. As a classical optical component, ring resonators are extensively utilized in the design of band-pass and frequency-selective devices across various wavebands, owing to their unique characteristics, including optical [...] Read more.
Terahertz is one of the most promising technologies for high-speed communication and large-scale data transmission. As a classical optical component, ring resonators are extensively utilized in the design of band-pass and frequency-selective devices across various wavebands, owing to their unique characteristics, including optical comb generation, compactness, and low manufacturing cost. While substantial progress has been made in the study of ring resonators, their application in terahertz surface wave systems remains less than fully optimized. This paper presents several spoof surface plasmon polariton-based devices, which were realized using ring resonators at terahertz frequencies. The influence of both the radius of the ring resonator and the width of the waveguide coupling gap on the coupling coefficient are investigated. The band-stop filters based on the cascaded ring resonator exhibit a 0.005 THz broader frequency bandwidth compared to the single-ring resonator filter and achieve a minimum stopband attenuation of 28 dB. The add–drop multiplexers based on the asymmetric ring resonator enable selective surface wave outputs at different ports by rotating the ring resonator. The devices designed in this study offer valuable insights for the development of on-chip terahertz components. Full article
Show Figures

Figure 1

18 pages, 757 KiB  
Article
Preamble Design and Noncoherent ToA Estimation for Pulse-Based Wireless Networks-on-Chip Communications in the Terahertz Band
by Pankaj Singh and Sung-Yoon Jung
Micromachines 2025, 16(1), 70; https://doi.org/10.3390/mi16010070 - 8 Jan 2025
Cited by 1 | Viewed by 1005
Abstract
The growing demand for high-speed data transfer and ultralow latency in wireless networks-on-chips (WiNoC) has spurred exploration into innovative communication paradigms. Recent advancements highlight the potential of the terahertz (THz) band, a largely untapped frequency range, for enabling ultrafast tera-bit-per-second links in chip [...] Read more.
The growing demand for high-speed data transfer and ultralow latency in wireless networks-on-chips (WiNoC) has spurred exploration into innovative communication paradigms. Recent advancements highlight the potential of the terahertz (THz) band, a largely untapped frequency range, for enabling ultrafast tera-bit-per-second links in chip multiprocessors. However, the ultrashort duration of THz pulses, often in the femtosecond range, makes synchronization a critical challenge, as even minor timing errors can cause significant data loss. This study introduces a preamble-aided noncoherent synchronization scheme for time-of-arrival (ToA) estimation in pulse-based WiNoC communication operating in the THz band (0.02–0.8 THz). The scheme transmits the preamble, a known sequence of THz pulses, at the beginning of each symbol, allowing the energy-detection receiver to collect and analyze the energy of the preamble across multiple integrators. The integrator with maximum energy output is then used to estimate the symbol’s ToA. A preamble design based on maximum pulse energy constraints is also presented. Performance evaluations demonstrate a synchronization probability exceeding 0.98 for distances under 10 mm at a signal-to-noise ratio of 20 dB, with a normalized mean squared error below 102. This scheme enhances synchronization reliability, supporting energy-efficient, high-performance WiNoCs for future multicore systems. Full article
(This article belongs to the Special Issue Recent Advances in Terahertz Devices and Applications)
Show Figures

Graphical abstract

13 pages, 27964 KiB  
Article
Enhanced Terahertz Sensing via On-Chip Integration of Diffractive Optics with InGaAs Bow-Tie Detectors
by Karolis Redeckas, Vytautas Jakštas, Matas Bernatonis, Vincas Tamošiūnas, Gintaras Valušis and Linas Minkevičius
Sensors 2025, 25(1), 229; https://doi.org/10.3390/s25010229 - 3 Jan 2025
Viewed by 920
Abstract
The practical implementation of terahertz (THz) imaging and spectroscopic systems in real operational conditions requires them to be of a compact size, to have enhanced functionality, and to be user-friendly. This work demonstrates the single-sided integration of Fresnel-zone-plate-based optical elements with InGaAs bow-tie [...] Read more.
The practical implementation of terahertz (THz) imaging and spectroscopic systems in real operational conditions requires them to be of a compact size, to have enhanced functionality, and to be user-friendly. This work demonstrates the single-sided integration of Fresnel-zone-plate-based optical elements with InGaAs bow-tie diodes directly on a semiconductor chip. Numerical simulations were conducted to optimize the Fresnel zone plate’s focal length and the InP substrate’s thickness to achieve constructive interference at 600 GHz, room-temperature operation and achieve a sensitivity more than an order of magnitude higher—up to 24.5 V/W—than that of a standalone bow-tie detector. Investigations revealed the strong angular dependence of the incident radiation on the Fresnel zone plate-integrated bow-tie diode’s response. These findings pave a promising avenue for the further development of single-sided integration of flat optics with THz detectors, enabling improved sensitivity, simplified manufacturing processes, and reduced costs for THz detection systems in a more compact design scheme. Full article
Show Figures

Figure 1

11 pages, 50395 KiB  
Article
Detection of Low-Density Foreign Objects in Infant Snacks Using a Continuous-Wave Sub-Terahertz Imaging System for Industrial Applications
by Byeong-Hyeon Na, Dae-Ho Lee, Jaein Choe, Young-Duk Kim and Mi-Kyung Park
Sensors 2024, 24(22), 7374; https://doi.org/10.3390/s24227374 - 19 Nov 2024
Viewed by 1342
Abstract
Low-density foreign objects (LDFOs) in foods pose significant safety risks to consumers. Existing detection methods, such as metal and X-ray detectors, have limitations in identifying low-density and nonmetallic contaminants. To address these challenges, our research group constructed and optimized a continuous-wave sub-terahertz (THz) [...] Read more.
Low-density foreign objects (LDFOs) in foods pose significant safety risks to consumers. Existing detection methods, such as metal and X-ray detectors, have limitations in identifying low-density and nonmetallic contaminants. To address these challenges, our research group constructed and optimized a continuous-wave sub-terahertz (THz) imaging system for the real-time, on-site detection of LDFOs in infant snacks. The system was optimized by adjusting the attenuation value from 0 to 9 dB and image processing parameters [White (W), Black (B), and Gamma (G)] from 0 to 100. Its detectability was evaluated across eight LDFOs underneath snacks with scanning at 30 cm/s. The optimal settings for puffed snacks and freeze-dried chips were found to be 3 dB attenuation with W, B, and G values of 100, 50, and 80, respectively, while others required 0 dB attenuation with W, B, and G set to 100, 0, and 100, respectively. Additionally, the moisture content of infant snacks was measured using a modified AOAC-based drying method at 105 °C, ensuring the removal of all free moisture. Using these optimized settings, the system successfully detected a housefly and a cockroach underneath puffed snacks and freeze-dried chips. It also detected LDFOs as small as 3 mm in size in a single layer of snacks, including polyurethane, polyvinyl chloride, ethylene–propylene–diene–monomer, and silicone, while in two layers of infant snacks, they were detected up to 7.5 mm. The constructed system can rapidly and effectively detect LDFOs in foods, offering a promising approach to enhance safety in the food industry. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

14 pages, 5008 KiB  
Article
Terahertz Spectra of Mannitol and Erythritol: A Joint Experimental and Computational Study
by Zeyu Hou, Bingxin Yan, Yuhan Zhao, Bo Peng, Shengbo Zhang, Bo Su, Kai Li and Cunlin Zhang
Molecules 2024, 29(13), 3154; https://doi.org/10.3390/molecules29133154 - 2 Jul 2024
Cited by 1 | Viewed by 1262
Abstract
Sugar substitutes, which generally refer to a class of food additives, mostly have vibration frequencies within the terahertz (THz) band. Therefore, THz technology can be used to analyze their molecular properties. To understand the characteristics of sugar substitutes, this study selected mannitol and [...] Read more.
Sugar substitutes, which generally refer to a class of food additives, mostly have vibration frequencies within the terahertz (THz) band. Therefore, THz technology can be used to analyze their molecular properties. To understand the characteristics of sugar substitutes, this study selected mannitol and erythritol as representatives. Firstly, PXRD and Raman techniques were used to determine the crystal structure and purity of mannitol and erythritol. Then, the THz time-domain spectroscopy (THz-TDS) system was employed to measure the spectral properties of the two sugar substitutes. Additionally, density functional theory (DFT) was utilized to simulate the crystal configurations of mannitol and erythritol. The experimental results showed good agreement with the simulation results. Finally, microfluidic chip technology was used to measure the THz spectroscopic properties of the two sugar substitutes in solution. A comparison was made between their solid state and aqueous solution state, revealing a strong correlation between the THz spectra of the two sugar substitutes in both states. Additionally, it was found that the THz spectrum of a substance in solution is related to its concentration. This study provides a reference for the analysis of sugar substitutes. Full article
Show Figures

Figure 1

21 pages, 4123 KiB  
Article
Design and Modeling of a Terahertz Transceiver for Intra- and Inter-Chip Communications in Wireless Network-on-Chip Architectures
by Biswash Paudel, Xue Jun Li and Boon-Chong Seet
Sensors 2024, 24(10), 3220; https://doi.org/10.3390/s24103220 - 18 May 2024
Cited by 6 | Viewed by 2021
Abstract
This paper addresses the increasing demand for computing power and the challenges associated with adding more core units to a computer processor. It explores the utilization of System-on-Chip (SoC) technology, which integrates Terahertz (THz) wave communication capabilities for intra- and inter-chip communication, using [...] Read more.
This paper addresses the increasing demand for computing power and the challenges associated with adding more core units to a computer processor. It explores the utilization of System-on-Chip (SoC) technology, which integrates Terahertz (THz) wave communication capabilities for intra- and inter-chip communication, using the concept of Wireless Network-on-Chips (WNoCs). Various types of network topologies are discussed, along with the disadvantages of wired networks. We explore the idea of applying wireless connections among cores and across the chip. Additionally, we describe the WNoC architecture, the flip-chip package, and the THz antenna. Electromagnetic fields are analyzed using a full-wave simulation software, Ansys High Frequency Structure Simulator (HFSS). The simulation is conducted with dipole and zigzag antennas communicating within the chip at resonant frequencies of 446 GHz and 462.5 GHz, with transmission coefficients of around −28 dB and −33 to −41 dB, respectively. Transmission coefficient characterization, path loss analysis, a study of electric field distribution, and a basic link budget for transmission are provided. Furthermore, the feasibility of calculated transmission power is validated in cases of high insertion loss, ensuring that the achieved energy expenditure is less than 1 pJ/bit. Finally, employing a similar setup, we study intra-chip communication using the same antennas. Simulation results indicate that the zigzag antenna exhibits a higher electric field magnitude compared with the dipole antenna across the simulated chip structure. We conclude that transmission occurs through reflection from the ground plane of a printed circuit board (PCB), as evidenced by the electric field distribution. Full article
(This article belongs to the Special Issue Integrated Sensing and Communication)
Show Figures

Figure 1

37 pages, 9960 KiB  
Review
On-Chip Photonic Detection Techniques for Non-Invasive In Situ Characterizations at the Microfluidic Scale
by Tamar Kurdadze, Fabrice Lamadie, Karen A. Nehme, Sébastien Teychené, Béatrice Biscans and Isaac Rodriguez-Ruiz
Sensors 2024, 24(5), 1529; https://doi.org/10.3390/s24051529 - 27 Feb 2024
Cited by 8 | Viewed by 4207
Abstract
Microfluidics has emerged as a robust technology for diverse applications, ranging from bio-medical diagnostics to chemical analysis. Among the different characterization techniques that can be used to analyze samples at the microfluidic scale, the coupling of photonic detection techniques and on-chip configurations is [...] Read more.
Microfluidics has emerged as a robust technology for diverse applications, ranging from bio-medical diagnostics to chemical analysis. Among the different characterization techniques that can be used to analyze samples at the microfluidic scale, the coupling of photonic detection techniques and on-chip configurations is particularly advantageous due to its non-invasive nature, which permits sensitive, real-time, high throughput, and rapid analyses, taking advantage of the microfluidic special environments and reduced sample volumes. Putting a special emphasis on integrated detection schemes, this review article explores the most relevant advances in the on-chip implementation of UV–vis, near-infrared, terahertz, and X-ray-based techniques for different characterizations, ranging from punctual spectroscopic or scattering-based measurements to different types of mapping/imaging. The principles of the techniques and their interest are discussed through their application to different systems. Full article
(This article belongs to the Collection Microfluidic Sensors)
Show Figures

Figure 1

13 pages, 6486 KiB  
Communication
Design of a Novel Broadband Antenna for Photomixer Chips in the Terahertz Frequency Range
by Yimiao Chu, Qin Han, Han Ye, Shuai Wang, Yu Zheng and Liyan Geng
Photonics 2023, 10(12), 1321; https://doi.org/10.3390/photonics10121321 - 29 Nov 2023
Cited by 1 | Viewed by 1491
Abstract
A novel broadband antenna designed for the terahertz (THz) frequency range is proposed and developed for the THz emitter on a photomixer chip. This THz emitter comprises an ultra-high-speed indium phosphide photodetector integrated with a planar THz antenna. This paper presents a novel [...] Read more.
A novel broadband antenna designed for the terahertz (THz) frequency range is proposed and developed for the THz emitter on a photomixer chip. This THz emitter comprises an ultra-high-speed indium phosphide photodetector integrated with a planar THz antenna. This paper presents a novel broadband antenna configuration comprising a combination of bowtie and circular patch elements designed for the frequency range of 150 GHz to 500 GHz. Detailed parametric analysis of the antenna’s design parameters is also provided. The simulation results demonstrate that the optimized antenna achieves an impedance bandwidth of 350 GHz, satisfying the |S11| ≤ −10 dB condition, and exhibits a relative bandwidth of 107% within the 150 GHz to 500 GHz frequency range. This novel broadband terahertz antenna showcases an exceptional wideband performance and is highly suitable for high-speed transmission systems. Full article
Show Figures

Figure 1

14 pages, 3472 KiB  
Article
Stacked Chip-Based Terahertz Metamaterials and Their Application
by Han Wang, Zhigang Wang, Bo Yan, Xinyu Li, Chenrui Zhang, Huiqi Jiang, Minghui Deng, Lesiqi Yin and Cheng Gong
Photonics 2023, 10(11), 1226; https://doi.org/10.3390/photonics10111226 - 1 Nov 2023
Cited by 1 | Viewed by 2091
Abstract
A terahertz (THz) metamaterial design mechanism based on a stacked chip is proposed. Unlike the traditional sandwich-type metamaterial design mechanism based on the “resonant layer–dielectric layer–ground layer” structure, it adopts a stacked design of upper and lower metamaterial chips to achieve a new [...] Read more.
A terahertz (THz) metamaterial design mechanism based on a stacked chip is proposed. Unlike the traditional sandwich-type metamaterial design mechanism based on the “resonant layer–dielectric layer–ground layer” structure, it adopts a stacked design of upper and lower metamaterial chips to achieve a new structure based on the “dielectric layer–resonant layer–air layer–ground layer” structure. This could break through the thickness limitations and construct an ultra-thin metamaterial upper chip. To verify the effectiveness of this method, we applied it to the field of THz perfect absorbers. We designed, simulated, and prepared a terahertz stacked chip-based perfect absorber with an upper-chip thickness less than 1/800 of the wavelength. Then, a reflective spectroscopy system based on a vector network analyzer is built to test the absorption performance. The measured results show that it has an absorptivity of 98.4% at 0.222 THz, which is in good agreement with simulations. Full article
(This article belongs to the Special Issue Terahertz Transmission and Imaging)
Show Figures

Figure 1

26 pages, 2058 KiB  
Article
Effects of Variation in Geometric Parameters and Structural Configurations on the Transmission Characteristics of Terahertz-Range Spoof Surface Plasmon Polariton Interconnects for Interchip Data Communication: A Finite Element Method Study
by K. M. Daiyan, Shaiokh Bin Abi, A. B. M. Harun-Ur Rashid and MST Shamim Ara Shawkat
Electronics 2023, 12(17), 3719; https://doi.org/10.3390/electronics12173719 - 2 Sep 2023
Viewed by 1954
Abstract
Interconnects have become a major obstacle in chip scaling. Spoof surface plasmon polariton (SSPP) modes have gained attention for their ability to manipulate light beyond diffraction limits at a given frequency, leading to SSPP interconnects. This article investigates the transmission characteristics of SSPP [...] Read more.
Interconnects have become a major obstacle in chip scaling. Spoof surface plasmon polariton (SSPP) modes have gained attention for their ability to manipulate light beyond diffraction limits at a given frequency, leading to SSPP interconnects. This article investigates the transmission characteristics of SSPP interconnect pairs placed side by side in the terahertz frequency range with comprehensive performance analysis. The proposed SSPP waveguide pair exhibits a maximum transmission coefficient of around −0.05 dB in the −3 dB band in the terahertz frequency range. Due to field confinement near the metal–dielectric interface, energy remains confined for the designed SSPP interconnect pair system. The proposed SSPP structure shows several bands in the terahertz frequency range, whereas conventional interconnects shows almost zero transmission at such frequencies. Additionally, the effect of geometric parameters on transmission coefficients (S21) and coupling coefficients (S41) has been investigated. Moreover, it has been shown that the bandwidth, as well as the upper cutoff frequency, can be tuned by varying the geometric parameters such as groove height, groove width and groove density. Since global interconnects undergo bending in actual circuits during distant data transmission on chips, geometric mismatches may occur between adjacent pairs of SSPP interconnects. Hence, it has also been examined how bending and mismatches affect transmission and coupling coefficients. Several SSPP schemes have been simulated, among which the best performance is obtained with 2 μm mismatch in groove height. For this optimized design, two corrugated metal interconnects are considered with groove heights of 20 μm and 22 μm, respectively, a groove width of 3 μm, a period of 20 μm, and the number of grooves at 50. For this particular configuration, an ultra-wide passband is found having a bandwidth of almost 400 GHz, with a signal reflection of below −12 dB and little insertion loss of ∼−1.43 dB. Full article
(This article belongs to the Special Issue Spoof Surface Plasmons: Theory, Designs and Applications)
Show Figures

Figure 1

13 pages, 5883 KiB  
Article
A Compact Hybrid G-band Heterodyne Receiver Integrated with Millimeter Microwave Integrated Circuits and Schottky Diode-Based Circuits
by Kun Huang, Liang Zhang, Ruoxue Li, Yaoling Tian, Yue He, Jun Jiang, Xianjin Deng and Wei Su
Electronics 2023, 12(13), 2806; https://doi.org/10.3390/electronics12132806 - 25 Jun 2023
Cited by 3 | Viewed by 1622
Abstract
This paper presents a compact hybrid G-band (170–260 GHz) heterodyne receiver module incorporating both Millimeter Microwave Integrated Circuits (MMICs) and a Schottky diode-based circuit. An on-chip sextupler and a Low Noise Amplifier (LNA), along with a diode-based Sub-Harmonic Mixer (SHM), are integrated into [...] Read more.
This paper presents a compact hybrid G-band (170–260 GHz) heterodyne receiver module incorporating both Millimeter Microwave Integrated Circuits (MMICs) and a Schottky diode-based circuit. An on-chip sextupler and a Low Noise Amplifier (LNA), along with a diode-based Sub-Harmonic Mixer (SHM), are integrated into the demonstrated singular module, which is carefully designed and arranged with the co-simulations in electromagnetic and thermal domain. Through this methodology, a terahertz receiver module is fabricated with a volume of only 27 × 20 × 20 mm3. The measured results indicate that the double-sideband conversion gain of the receiver is 10.5–17.5 dB from 195 GHz to 230 GHz, while the noise temperature is 1009–1158 K. As a result, this terahertz receiver provides recorded miniaturized hardware applicable for terahertz Integration of Sensing and Communication (ISAC) systems. Full article
Show Figures

Figure 1

Back to TopTop