Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = taurocholate transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2176 KiB  
Review
The Evolution of Cell Culture Systems to Study Hepatitis B Virus Pathogenesis and Antiviral Susceptibility
by Thabani Sibiya, Lunga Xaba, Lulama Mthethwa, Anil A. Chuturgoon and Nokukhanya Msomi
Viruses 2025, 17(8), 1057; https://doi.org/10.3390/v17081057 - 29 Jul 2025
Viewed by 333
Abstract
The global burden of hepatitis B virus (HBV) remains high, with ongoing concerted efforts to eliminate viral hepatitis as a public health concern by 2030. The absence of curative treatment against HBV makes it an active area of research to further study HBV [...] Read more.
The global burden of hepatitis B virus (HBV) remains high, with ongoing concerted efforts to eliminate viral hepatitis as a public health concern by 2030. The absence of curative treatment against HBV makes it an active area of research to further study HBV pathogenesis. In vitro cell culture systems are essential in exploration of molecular mechanisms for HBV propagation and the development of therapeutic targets for antiviral agents. The lack of an efficient cell culture system is one of the challenges limiting the development and study of novel antiviral strategies for HBV infection. However, the evolution of cell culture systems to study HBV pathogenesis and treatment susceptibility in vitro has made a significant contribution to public health. The currently available cell culture systems to grow HBV have their advantages and limitations, requiring further optimization. The discovery of sodium taurocholate co-transporting polypeptide (NTCP) as a receptor for HBV was a major breakthrough for the development of a robust cell model, allowing the study of de novo HBV infection through NTCP expression in the HepG2 hepatoma cell line. This review is aimed at highlighting the evolution of cell culture systems to study HBV pathogenesis and in vitro treatment susceptibility. Full article
Show Figures

Figure 1

16 pages, 3888 KiB  
Article
Gut Microbiota-Bile Acid Crosstalk Contributes to Meat Quality and Carcass Traits of Tan and Dorper Sheep
by Lixian Yang, Ran Cui, Zhen Li, Mingming Xue, Shuheng Chan, Pengxiang Xue, Xiaoyang Yang, Longmiao Zhang, Fenghua Lv and Meiying Fang
Int. J. Mol. Sci. 2025, 26(13), 6224; https://doi.org/10.3390/ijms26136224 - 27 Jun 2025
Viewed by 386
Abstract
Tan sheep outperform Dorper sheep in meat-quality traits, including muscle fiber characteristics and fatty acid composition, while Dorper sheep excel in carcass weight. However, the molecular mechanisms underlying these breed-specific traits, especially gut microbiota–bile acid (BA) interactions, remain poorly understood. As host–microbiota co-metabolites, [...] Read more.
Tan sheep outperform Dorper sheep in meat-quality traits, including muscle fiber characteristics and fatty acid composition, while Dorper sheep excel in carcass weight. However, the molecular mechanisms underlying these breed-specific traits, especially gut microbiota–bile acid (BA) interactions, remain poorly understood. As host–microbiota co-metabolites, BAs are converted by colonic microbiota via bile salt hydrolase (BSH) and dehydroxylases into secondary BAs, which activate BA receptors to regulate host lipid and glucose metabolism. This study analyzed colonic BA profiles in 8-month-old Tan and Dorper sheep, integrating microbiome and longissimus dorsi muscle transcriptome data to investigate the gut–muscle axis in meat-quality and carcass trait regulation. Results showed that Tan sheep had 1.6-fold higher secondary BA deoxycholic acid (DHCA) levels than Dorper sheep (p < 0.05), whereas Dorper sheep accumulated conjugated primary BAs glycocholic acid (GCA) and tauro-α-muricholic acid (p < 0.05). Tan sheep exhibited downregulated hepatic BA synthesis genes, including cholesterol 7α-hydroxylase (CYP7A1) and 27-hydroxylase (CYP27A1), alongside upregulated transport genes such as bile salt export pump (BSEP), sodium taurocholate cotransporting polypeptide (NTCP), and ATP-binding cassette subfamily B member 4 (ABCB4), with elevated gut BSH activity (p < 0.05). DHCA was strongly correlated with g_Ruminococcaceae_UCG-014, ENSOARG00000001393, and ENSOARG00000016726, muscle fiber density, diameter, and linoleic acid (C18:2n6t) (|r| > 0.5, p < 0.05). In contrast, GCA was significantly associated with g_Lachnoclostridium_10, g_Rikenellaceae_RC9_gut_group, ENSOARG0000001232, carcass weight, and net meat weight (|r| > 0.5, p < 0.05). In conclusion, breed-specific colonic BA profiles were shaped by host–microbiota interactions, with DHCA potentially promoting meat quality in Tan sheep via regulation of muscle fiber development and fatty acid deposition, and GCA influencing carcass traits in Dorper sheep. This study provides novel insights into the gut microbiota–bile acid axis in modulating ruminant phenotypic traits. Full article
(This article belongs to the Special Issue Molecular Regulation of Animal Fat and Muscle Development)
Show Figures

Figure 1

21 pages, 9801 KiB  
Article
Correction of a Traffic-Defective Missense ABCB11 Variant Responsible for Progressive Familial Intrahepatic Cholestasis Type 2
by Martine Lapalus, Elodie Mareux, Rachida Amzal, Emmanuelle Drège, Yosra Riahi, Sylvain Petit, Manon Banet, Thomas Falguières, Isabelle Callebaut, Bruno Figadère, Delphine Joseph, Emmanuel Gonzales and Emmanuel Jacquemin
Int. J. Mol. Sci. 2025, 26(11), 5232; https://doi.org/10.3390/ijms26115232 - 29 May 2025
Viewed by 431
Abstract
Progressive familial intrahepatic cholestasis type 2 (PFIC2) is a severe hepatocellular cholestasis due to biallelic variations in the ABCB11 (ATP-binding cassette B11) gene encoding the canalicular bile salt export pump (BSEP). Some missense variants identified in patients with PFIC2 do not traffic properly [...] Read more.
Progressive familial intrahepatic cholestasis type 2 (PFIC2) is a severe hepatocellular cholestasis due to biallelic variations in the ABCB11 (ATP-binding cassette B11) gene encoding the canalicular bile salt export pump (BSEP). Some missense variants identified in patients with PFIC2 do not traffic properly to the canalicular membrane. However, 4-phenybutyrate (4-PB) has been shown in vitro to partially correct the mis-trafficking of selected variants, resulting in an improvement of the medical conditions of corresponding PFIC2 patients. Herein, we report the ability of 4-PB analogous or homologous drugs and of non-4-PB related chemical correctors to rescue the canalicular expression and the activity of the folding-defective Abcb11R1128C variant. New compounds, either identified by screening a chemical library or designed by structural homology with 4-PB (or its metabolites) and synthesized, were evaluated in vitro for their ability to (i) correct the canalicular localization of Abcb11R1128C after transfection in hepatocellular polarized cell lines; (ii) restore the 3H-taurocholate transport of the Abcb11R1128C protein in Madin–Darby canine kidney (MDCK) cells stably co-expressing Abcb11 and the sodium taurocholate co-transporting polypeptide (Ntcp/Slc10A1). Glycerol phenylbutyrate (GPB), phenylacetate (PA, the active metabolite of 4-PB), 3-hydroxy-2-methyl-4-phenylbutyrate (HMPB, a 4-PB metabolite analog chemically synthesized in our laboratory) and 4-oxo-1,2,3,4-tetrahydro-naphthalene-carboxylate (OTNC, from the chemical library screening) significantly increased the proportion of canalicular Abcb11R1128C protein. GPB, PA, ursodeoxycholic acid (UDCA), alone or in combination with 4-PB, suberoylanilide hydroxamic acid (SAHA), C18, VX-445, and/or VX-661, significantly corrected both the traffic and the activity of Abcb11R1128C. Such correctors could represent new pharmacological insights for improving the condition of patients with ABCB11 deficiency due to missense variations affecting the transporter’s traffic. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 5591 KiB  
Article
Development and Transportation Pathway Evaluation of Liposomes with Bile Acids for Enhancing the Blood-Brain Barrier Penetration of Methotrexate
by Natthan Charernsriwilaiwat, Rattanan Thaitrong, Samarwadee Plianwong, Praneet Opanasopit, Pucharee Songprakhon and Thirapit Subongkot
Pharmaceutics 2025, 17(2), 269; https://doi.org/10.3390/pharmaceutics17020269 - 17 Feb 2025
Viewed by 1017
Abstract
Background/Objectives: The purpose of this study was to create bile acid-containing liposomes to improve methotrexate blood-brain barrier penetration and to assess the liposome transportation mechanism across the blood–brain barrier. Methods: The improvement of liposome penetration was investigated utilizing human brain microvascular [...] Read more.
Background/Objectives: The purpose of this study was to create bile acid-containing liposomes to improve methotrexate blood-brain barrier penetration and to assess the liposome transportation mechanism across the blood–brain barrier. Methods: The improvement of liposome penetration was investigated utilizing human brain microvascular endothelial cells in an in vitro blood-brain barrier model. Using confocal laser scanning microscopy (CLSM) and flow cytometry, liposomes were labeled with fluorescent phospholipids to facilitate their passage across the blood–brain barrier. Results: The produced liposomes with bile acid exhibited a negative surface charge and an average particle size of between 30 and 148 nm. According to an in vitro blood-brain barrier penetration study, the methotrexate penetration was increased by liposomes containing 1% glycocholic acid but not by liposomes containing taurocholic acid. For transport pathway evaluation across the blood-brain barrier of these liposomes, CLSM revealed that fluorescent liposomes were present inside cells treated with specific endocytosis inhibitors, indicating that the cellular internalization of the particles was not involved in endocytosis. Conclusions: Liposomes supplemented with 1% glycocholic acid could enhance the penetration of methotrexate across the blood-brain barrier, while taurocholic acid could not. The transport of liposomes with 1% glycocholic acid across the blood-brain barrier occurs via the transcellular pathway through which it penetrates cells. In contrast, the paracellular pathway was a minor pathway. Full article
Show Figures

Figure 1

19 pages, 2205 KiB  
Article
The PreS-Based Recombinant Vaccine VVX001 Induces Hepatitis B Virus Neutralizing Antibodies in a Low-Responder to HBsAg-Based HBV Vaccines
by Inna Tulaeva, Felix Lehmann, Nora Goldmann, Alexandra Dubovets, Daria Trifonova, Mikhail Tulaev, Carolin Cornelius, Milena Weber, Margarete Focke-Tejkl, Alexander Karaulov, Rainer Henning, David Niklas Springer, Ursula Wiedermann, Dieter Glebe and Rudolf Valenta
Vaccines 2024, 12(10), 1123; https://doi.org/10.3390/vaccines12101123 - 30 Sep 2024
Viewed by 2706
Abstract
Background: Approximately 10–20% of subjects vaccinated with HBsAg-based hepatitis B virus (HBV) vaccines are non-responders. BM32 is a recombinant grass pollen allergy vaccine containing the HBV-derived preS surface antigen as an immunological carrier protein. PreS includes the binding site of HBV to its [...] Read more.
Background: Approximately 10–20% of subjects vaccinated with HBsAg-based hepatitis B virus (HBV) vaccines are non-responders. BM32 is a recombinant grass pollen allergy vaccine containing the HBV-derived preS surface antigen as an immunological carrier protein. PreS includes the binding site of HBV to its receptor on hepatocytes. We investigated whether immunological non-responsiveness to HBV after repeated HBsAg-based vaccinations could be overcome by immunization with VVX001 (i.e., alum-adsorbed BM325, a component of BM32). Methods: A subject failing to develop protective HBV-specific immunity after HBsAg-based vaccination received five monthly injections of 20 µg VVX001. PreS-specific antibody responses were measured by enzyme-linked immunosorbent assay (ELISA) and micro-array technology. Serum reactivity to subviral particles of different HBV genotypes was determined by sandwich ELISA. PreS-specific T cell responses were monitored by carboxyfluorescein diacetate succinimidyl ester (CFSE) staining and subsequent flow cytometry. HBV neutralization was assessed using cultured HBV-infected HepG2 cells. Results: Vaccination with VVX001 induced a strong and sustained preS-specific antibody response composed mainly of the IgG1 subclass. PreS-specific IgG antibodies were primarily directed to the N-terminal part of preS containing the sodium taurocholate co-transporting polypeptide (NTCP) attachment site. IgG reactivity to subviral particles as well as to the N-terminal preS-derived peptides was comparable for HBV genotypes A–H. A pronounced reactivity of CD3+CD4+ lymphocytes specific for preS after the complete injection course remaining up to one year after the last injection was found. Maximal HBV neutralization (98.4%) in vitro was achieved 1 month after the last injection, which correlated with the maximal IgG reactivity to the N-terminal part of preS. Conclusions: Our data suggest that VVX001 may be used as a preventive vaccination against HBV even in non-responders to HBsAg-based HBV vaccines. Full article
(This article belongs to the Special Issue 2nd Edition of Antibody Response to Infection and Vaccination)
Show Figures

Figure 1

9 pages, 563 KiB  
Communication
The GLP-1 Receptor Agonist Liraglutide Decreases Primary Bile Acids and Serotonin in the Colon Independently of Feeding in Mice
by Katsunori Nonogaki and Takao Kaji
Int. J. Mol. Sci. 2024, 25(14), 7784; https://doi.org/10.3390/ijms25147784 - 16 Jul 2024
Cited by 2 | Viewed by 2569
Abstract
Liraglutide, a glucagon-like peptide 1 analog used to treat type 2 diabetes and obesity, is a potential new treatment modality for bile acid (BA) diarrhea. Here, we show that administration of liraglutide significantly decreased total BAs, especially the primary BAs, including cholic acid, [...] Read more.
Liraglutide, a glucagon-like peptide 1 analog used to treat type 2 diabetes and obesity, is a potential new treatment modality for bile acid (BA) diarrhea. Here, we show that administration of liraglutide significantly decreased total BAs, especially the primary BAs, including cholic acid, chenodeoxycholic acid, taurocholic acid, taurochenodeoxycholic acid, glycocholic acid, and β-muricholic acid, in the liver and feces. In addition, liraglutide significantly decreased tryptophan metabolites, including L-tryptophan, serotonin, 5-hydroxy indole-3-acetic acid, L-kynurenine, and xanthurenic acid, in the colon, whereas it significantly increased indole-3-propionic acid. Moreover, the administration of liraglutide remarkably decreased the expression of apical sodium-dependent bile acid transporter, which mediates BA uptake across the apical brush border member in the ileum, ileal BA binding protein, and fibroblast growth factor 15 in association with decreased expression of the BA-activated nuclear receptor farnesoid X receptor and the heteromeric organic solute transporter Ostα/β, which induces BA excretion, in the ileum. Liraglutide acutely decreased body weight and blood glucose levels in association with decreases in plasma insulin and serotonin levels in food-deprived mice. These findings suggest the potential of liraglutide as a novel inhibitor of primary BAs and serotonin in the colon. Full article
(This article belongs to the Special Issue Unveiling Metabolic Regulation Networks and Mechanisms)
Show Figures

Figure 1

35 pages, 1256 KiB  
Review
Transporter Proteins as Therapeutic Drug Targets—With a Focus on SGLT2 Inhibitors
by Nina Komaniecka, Sonia Maroszek, Maria Drozdzik, Stefan Oswald and Marek Drozdzik
Int. J. Mol. Sci. 2024, 25(13), 6926; https://doi.org/10.3390/ijms25136926 - 25 Jun 2024
Cited by 6 | Viewed by 3192
Abstract
Membrane transporters interact not only with endogenous substrates but are also engaged in the transport of xenobiotics, including drugs. While the coordinated function of uptake (solute carrier family—SLC and SLCO) and efflux (ATP-binding cassette family—ABC, multidrug and toxic compound extrusion family—MATE) transporter system [...] Read more.
Membrane transporters interact not only with endogenous substrates but are also engaged in the transport of xenobiotics, including drugs. While the coordinated function of uptake (solute carrier family—SLC and SLCO) and efflux (ATP-binding cassette family—ABC, multidrug and toxic compound extrusion family—MATE) transporter system allows vectorial drug transport, efflux carriers alone achieve barrier functions. The modulation of transport functions was proved to be effective in the treatment strategies of various pathological states. Sodium–glucose cotransporter-2 (SGLT2) inhibitors are the drugs most widely applied in clinical practice, especially in the treatment of diabetes mellitus and heart failure. Sodium taurocholate co-transporting polypeptide (NTCP) serves as virus particles (HBV/HDV) carrier, and inhibition of its function is applied in the treatment of hepatitis B and hepatitis D by myrcludex B. Inherited cholestatic diseases, such as Alagille syndrome (ALGS) and progressive familial intrahepatic cholestasis (PFIC) can be treated by odevixibat and maralixibat, which inhibit activity of apical sodium-dependent bile salt transporter (ASBT). Probenecid can be considered to increase uric acid excretion in the urine mainly via the inhibition of urate transporter 1 (URAT1), and due to pharmacokinetic interactions involving organic anion transporters 1 and 3 (OAT1 and OAT3), it modifies renal excretion of penicillins or ciprofloxacin as well as nephrotoxicity of cidofovir. This review discusses clinically approved drugs that affect membrane/drug transporter function. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

26 pages, 141589 KiB  
Article
Puerarin Modulates Hepatic Farnesoid X Receptor and Gut Microbiota in High-Fat Diet-Induced Obese Mice
by Ching-Wei Yang, Hsuan-Miao Liu, Zi-Yu Chang, Geng-Hao Liu, Hen-Hong Chang, Po-Yu Huang and Tzung-Yan Lee
Int. J. Mol. Sci. 2024, 25(10), 5274; https://doi.org/10.3390/ijms25105274 - 12 May 2024
Cited by 14 | Viewed by 3231
Abstract
Obesity is associated with alterations in lipid metabolism and gut microbiota dysbiosis. This study investigated the effects of puerarin, a bioactive isoflavone, on lipid metabolism disorders and gut microbiota in high-fat diet (HFD)-induced obese mice. Supplementation with puerarin reduced plasma alanine aminotransferase, liver [...] Read more.
Obesity is associated with alterations in lipid metabolism and gut microbiota dysbiosis. This study investigated the effects of puerarin, a bioactive isoflavone, on lipid metabolism disorders and gut microbiota in high-fat diet (HFD)-induced obese mice. Supplementation with puerarin reduced plasma alanine aminotransferase, liver triglyceride, liver free fatty acid (FFA), and improved gut microbiota dysbiosis in obese mice. Puerarin’s beneficial metabolic effects were attenuated when farnesoid X receptor (FXR) was antagonized, suggesting FXR-mediated mechanisms. In hepatocytes, puerarin ameliorated high FFA-induced sterol regulatory element-binding protein (SREBP) 1 signaling, inflammation, and mitochondrial dysfunction in an FXR-dependent manner. In obese mice, puerarin reduced liver damage, regulated hepatic lipogenesis, decreased inflammation, improved mitochondrial function, and modulated mitophagy and ubiquitin-proteasome pathways, but was less effective in FXR knockout mice. Puerarin upregulated hepatic expression of FXR, bile salt export pump (BSEP), and downregulated cytochrome P450 7A1 (CYP7A1) and sodium taurocholate transporter (NTCP), indicating modulation of bile acid synthesis and transport. Puerarin also restored gut microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of Clostridium celatum and Akkermansia muciniphila. This study demonstrates that puerarin effectively ameliorates metabolic disturbances and gut microbiota dysbiosis in obese mice, predominantly through FXR-dependent pathways. These findings underscore puerarin’s potential as a therapeutic agent for managing obesity and enhancing gut health, highlighting its dual role in improving metabolic functions and modulating microbial communities. Full article
(This article belongs to the Special Issue Gut Microbiota in Gastroenterology and Hepatology 2.0)
Show Figures

Figure 1

11 pages, 4842 KiB  
Article
Cytokine Response of Natural Killer Cells to Hepatitis B Virus Infection Depends on Monocyte Co-Stimulation
by Paul Kupke, Johanna Brucker, Jochen M. Wettengel, Ulrike Protzer, Jürgen J. Wenzel, Hans J. Schlitt, Edward K. Geissler and Jens M. Werner
Viruses 2024, 16(5), 741; https://doi.org/10.3390/v16050741 - 8 May 2024
Cited by 2 | Viewed by 2030
Abstract
Hepatitis B virus (HBV) is a major driver of chronic hepatic inflammation, which regularly leads to liver cirrhosis or hepatocellular carcinoma. Immediate innate immune cell response is crucial for the rapid clearance of the infection. Here, natural killer (NK) cells play a pivotal [...] Read more.
Hepatitis B virus (HBV) is a major driver of chronic hepatic inflammation, which regularly leads to liver cirrhosis or hepatocellular carcinoma. Immediate innate immune cell response is crucial for the rapid clearance of the infection. Here, natural killer (NK) cells play a pivotal role in direct cytotoxicity and the secretion of antiviral cytokines as well as regulatory function. The aim of this study was to further elucidate NK cell responses triggered by an HBV infection. Therefore, we optimized HBV in vitro models that reliably stimulate NK cells using hepatocyte-like HepG2 cells expressing the Na+-taurocholate co-transporting polypeptide (NTCP) and HepaRG cells. Immune cells were acquired from healthy platelet donors. Initially, HepG2-NTCP cells demonstrated higher viral replication compared to HepaRG cells. Co-cultures with immune cells revealed increased production of interferon-γ and tumor necrosis factor-α by NK cells, which was no longer evident in isolated NK cells. Likewise, the depletion of monocytes and spatial separation from target cells led to the absence of the antiviral cytokine production of NK cells. Eventually, the combined co-culture of isolated NK cells and monocytes led to a sufficient cytokine response of NK cells, which was also apparent when communication between the two immune cell subpopulations was restricted to soluble factors. In summary, our study demonstrates antiviral cytokine production by NK cells in response to HBV+ HepG2-NTCP cells, which is dependent on monocyte bystander activation. Full article
(This article belongs to the Special Issue Natural Killer Cell in Viral Infection)
Show Figures

Figure 1

23 pages, 8398 KiB  
Article
Cellular Uptake and Transport Mechanism Investigations of PEGylated Niosomes for Improving the Oral Delivery of Thymopentin
by Mengyang Liu, Darren Svirskis, Thomas Proft, Jacelyn Loh, Yuan Huang and Jingyuan Wen
Pharmaceutics 2024, 16(3), 397; https://doi.org/10.3390/pharmaceutics16030397 - 14 Mar 2024
Cited by 7 | Viewed by 2342
Abstract
Background: Although its immunomodulatory properties make thymopentin (TP5) appealing, its rapid metabolism and inactivation in the digestive system pose significant challenges for global scientists. PEGylated niosomal nanocarriers are hypothesized to improve the physicochemical stability of TP5, and to enhance its intestinal permeability for [...] Read more.
Background: Although its immunomodulatory properties make thymopentin (TP5) appealing, its rapid metabolism and inactivation in the digestive system pose significant challenges for global scientists. PEGylated niosomal nanocarriers are hypothesized to improve the physicochemical stability of TP5, and to enhance its intestinal permeability for oral administration. Methods: TP5-loaded PEGylated niosomes were fabricated using the thin film hydration method. Co-cultured Caco-2 and HT29 cells with different ratios were screened as in vitro intestinal models. The cytotoxicity of TP5 and its formulations were evaluated using an MTT assay. The cellular uptake and transport studies were investigated in the absence or presence of variable inhibitors or enhancers, and their mechanisms were explored. Results and Discussion: All TP5 solutions and their niosomal formulations were nontoxic to Caco-2 and HT-29 cells. The uptake of TP5-PEG-niosomes by cells relied on active endocytosis, exhibiting dependence on time, energy, and concentration, which has the potential to significantly enhance its cellular uptake compared to TP5 in solution. Nevertheless, cellular transport rates were similar between TP5 in solution and its niosomal groups. The cellular transport of TP5 in solution was carried out mainly through MRP5 endocytosis and a passive pathway and effluxed by MRP5 transporters, while that of TP5-niosomes and TP5-PEG-niosomes was carried out through adsorptive- and clathrin-mediated endocytosis requiring energy. The permeability and transport rate was further enhanced when EDTA and sodium taurocholate were used as the penetration enhancers. Conclusions: This research has illustrated that PEG-niosomes were able to enhance the cellular uptake and maintain the cellular transport of TP5. This study also shows this formulation’s potential to serve as an effective carrier for improving the oral delivery of peptides. Full article
(This article belongs to the Special Issue Advances in Oral Administration)
Show Figures

Figure 1

19 pages, 3334 KiB  
Article
High-Fat Diet-Induced Decreased Circulating Bile Acids Contribute to Obesity Associated with Gut Microbiota in Mice
by Haiying Cai, Junhui Zhang, Chang Liu, Thanh Ninh Le, Yuyun Lu, Fengqin Feng and Minjie Zhao
Foods 2024, 13(5), 699; https://doi.org/10.3390/foods13050699 - 25 Feb 2024
Cited by 25 | Viewed by 3232
Abstract
The altered circulating bile acids (BAs) modulate gut microbiota, energy metabolism and various physiological functions. BA profiles in liver, serum, ileum and feces of HFD-fed mice were analyzed with normal chow diet (NCD)-fed mice after 16-week feeding. Furthermore, gut microbiota was analyzed and [...] Read more.
The altered circulating bile acids (BAs) modulate gut microbiota, energy metabolism and various physiological functions. BA profiles in liver, serum, ileum and feces of HFD-fed mice were analyzed with normal chow diet (NCD)-fed mice after 16-week feeding. Furthermore, gut microbiota was analyzed and its correlation analysis with BA was performed. The result showed that long-term HFD feeding significantly decreased hepatic and serum BA levels, mainly attributed to the inhibition of hepatic BA synthesis and the reduced reabsorption efficiency of BAs in enterohepatic circulation. It also significantly impaired glucose and lipid homeostasis and gut microbiota in mice. We found significantly higher bile salt hydrolase activity in ileal microbes and a higher ratio of free BAs to conjugated BA content in ileal contents in HFD groups compared with NCD group mice, which might account for the activated intestinal farnesoid X receptor signaling on liver BA synthesis inhibition and reduced ileal reabsorption. The decreased circulating BAs were associated with the dysregulation of the lipid metabolism according to the decreased TGR5 signaling in the ileum and BAT. In addition, it is astonishing to find extremely high percentages of taurocholate and 12-OH BAs in liver and serum BA profiles of both groups, which was mainly attributed to the high substrate selectivity for 12-OH BAs of the intestinal BAs transporter during the ileal reabsorption of enterohepatic circulation. This study revealed a significant effect of long-term HFD feeding on the decreased circulating BA pool in mice, which impaired lipid homeostasis and gut microbiota, and collectively resulted in metabolic disorders and obesity. Full article
(This article belongs to the Special Issue The Interplay between Food Intake and Gut Microbiota)
Show Figures

Figure 1

12 pages, 767 KiB  
Article
Quantification of Bile Acids in Cerebrospinal Fluid: Results of an Observational Trial
by Lars-Olav Harnisch, Sophie Neugebauer, Diana Mihaylov, Abass Eidizadeh, Bozena Zechmeister, Ilko Maier and Onnen Moerer
Biomedicines 2023, 11(11), 2947; https://doi.org/10.3390/biomedicines11112947 - 1 Nov 2023
Cited by 3 | Viewed by 1619
Abstract
(1) Background: Bile acids, known as aids in intestinal fat digestion and as messenger molecules in serum, can be detected in cerebrospinal fluid (CSF), although the blood–brain barrier is generally an insurmountable obstacle for bile acids. The exact mechanisms of the occurrence, as [...] Read more.
(1) Background: Bile acids, known as aids in intestinal fat digestion and as messenger molecules in serum, can be detected in cerebrospinal fluid (CSF), although the blood–brain barrier is generally an insurmountable obstacle for bile acids. The exact mechanisms of the occurrence, as well as possible functions of bile acids in the central nervous system, are not precisely understood. (2) Methods: We conducted a single-center observational trial. The concentrations of 15 individual bile acids were determined using an in-house LC-MS/MS method in 54 patients with various acute and severe disorders of the central nervous system. We analyzed CSF from ventricular drainage taken within 24 h after placement, and blood samples were drawn at the same time for the presence and quantifiability of 15 individual bile acids. (3) Results: At a median time of 19.75 h after a cerebral insult, the concentration of bile acids in the CSF was minute and almost negligible. The CSF concentrations of total bile acids (TBAs) were significantly lower compared to the serum concentrations (serum 0.37 µmol/L [0.24, 0.89] vs. 0.14 µmol/L [0.05, 0.43]; p = 0.033). The ratio of serum-to-CSF bile acid levels calculated from the respective total concentrations were 3.10 [0.94, 14.64] for total bile acids, 3.05 for taurocholic acid, 14.30 [1.11, 27.13] for glycocholic acid, 0.0 for chenodeoxycholic acid, 2.19 for taurochenodeoxycholic acid, 1.91 [0.68, 8.64] for glycochenodeoxycholic acid and 0.77 [0.0, 13.79] for deoxycholic acid; other bile acids were not detected in the CSF. The ratio of CSF-to-serum S100 concentration was 0.01 [0.0, 0.02]. Serum total and conjugated (but not unconjugated) bilirubin levels and serum TBA levels were significantly correlated (total bilirubin p = 0.031 [0.023, 0.579]; conjugated bilirubin p = 0.001 [0.193, 0.683]; unconjugated p = 0.387 [−0.181, 0.426]). No correlations were found between bile acid concentrations and age, delirium, intraventricular blood volume, or outcome measured on a modified Rankin scale. (4) Conclusions: The determination of individual bile acids is feasible using the current LC-MS/MS method. The results suggest an intact blood–brain barrier in the patients studied. However, bile acids were detected in the CSF, which could have been achieved by active transport across the blood–brain barrier. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

14 pages, 610 KiB  
Review
Cell Culture Systems for Studying Hepatitis B and Hepatitis D Virus Infections
by Grace Sanghee Lee, Michael A. Purdy and Youkyung Choi
Life 2023, 13(7), 1527; https://doi.org/10.3390/life13071527 - 8 Jul 2023
Cited by 7 | Viewed by 6270
Abstract
The hepatitis B virus (HBV) and hepatitis D virus (HDV) infections cause liver disease, including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBV infection remains a major global health problem. In 2019, 296 million people were living with chronic hepatitis B and about 5% [...] Read more.
The hepatitis B virus (HBV) and hepatitis D virus (HDV) infections cause liver disease, including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBV infection remains a major global health problem. In 2019, 296 million people were living with chronic hepatitis B and about 5% of them were co-infected with HDV. In vitro cell culture systems are instrumental in the development of therapeutic targets. Cell culture systems contribute to identifying molecular mechanisms for HBV and HDV propagation, finding drug targets for antiviral therapies, and testing antiviral agents. Current HBV therapeutics, such as nucleoside analogs, effectively suppress viral replication but are not curative. Additionally, no effective treatment for HDV infection is currently available. Therefore, there is an urgent need to develop therapies to treat both viral infections. A robust in vitro cell culture system supporting HBV and HDV infections (HBV/HDV) is a critical prerequisite to studying HBV/HDV pathogenesis, the complete life cycle of HBV/HDV infections, and consequently identifying new therapeutics. However, the lack of an efficient cell culture system hampers the development of novel antiviral strategies for HBV/HDV infections. In vitro cell culture models have evolved with significant improvements over several decades. Recently, the development of the HepG2-NTCP sec+ cell line, expressing the sodium taurocholate co-transporting polypeptide receptor (NTCP) and self-assembling co-cultured primary human hepatocytes (SACC-PHHs) has opened new perspectives for a better understanding of HBV and HDV lifecycles and the development of specific antiviral drug targets against HBV/HDV infections. We address various cell culture systems along with different cell lines and how these cell culture systems can be used to provide better tools for HBV and HDV studies. Full article
(This article belongs to the Special Issue Epidemiology and Control of Hepatitis Viruses)
Show Figures

Figure 1

14 pages, 3297 KiB  
Article
Integrated Metabolomic and Transcriptomic Analysis Reveals Potential Gut-Liver Crosstalks in the Lipogenesis of Chicken
by Can Chen, Weilin Chen, Hao Ding, Genxi Zhang, Kaizhou Xie and Tao Zhang
Animals 2023, 13(10), 1659; https://doi.org/10.3390/ani13101659 - 17 May 2023
Cited by 3 | Viewed by 2303
Abstract
Growing evidence has shown the involvement of the gut–liver axis in lipogenesis and fat deposition. However, how the gut crosstalk with the liver and the potential role of gut–liver crosstalk in the lipogenesis of chicken remains largely unknown. In this study, to identify [...] Read more.
Growing evidence has shown the involvement of the gut–liver axis in lipogenesis and fat deposition. However, how the gut crosstalk with the liver and the potential role of gut–liver crosstalk in the lipogenesis of chicken remains largely unknown. In this study, to identify gut–liver crosstalks involved in regulating the lipogenesis of chicken, we first established an HFD-induced obese chicken model. Using this model, we detected the changes in the metabolic profiles of the cecum and liver in response to the HFD-induced excessive lipogenesis using ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) analysis. The changes in the gene expression profiles of the liver were examined by RNA sequencing. The potential gut–liver crosstalks were identified by the correlation analysis of key metabolites and genes. The results showed that a total of 113 and 73 differentially abundant metabolites (DAMs) between NFD and HFD groups were identified in the chicken cecum and liver, respectively. Eleven DAMs overlayed between the two comparisons, in which ten DAMs showed consistent abundance trends in the cecum and liver after HFD feeding, suggesting their potential as signaling molecules between the gut and liver. RNA sequencing identified 271 differentially expressed genes (DEGs) in the liver of chickens fed with NFD vs. HFD. Thirty-five DEGs were involved in the lipid metabolic process, which might be candidate genes regulating the lipogenesis of chicken. Correlation analysis indicated that 5-hydroxyisourate, alpha-linolenic acid, bovinic acid, linoleic acid, and trans-2-octenoic acid might be transported from gut to liver, and thereby up-regulate the expression of ACSS2, PCSK9, and CYP2C18 and down-regulate one or more genes of CDS1, ST8SIA6, LOC415787, MOGAT1, PLIN1, LOC423719, and EDN2 in the liver to enhance the lipogenesis of chicken. Moreover, taurocholic acid might be transported from the gut to the liver and contribute to HFD-induced lipogenesis by regulating the expression of ACACA, FASN, AACS, and LPL in the liver. Our findings contribute to a better understanding of gut–liver crosstalks and their potential roles in regulating chicken lipogenesis. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

9 pages, 1637 KiB  
Review
Key Factors for “Fishing” NTCP as a Functional Receptor for HBV and HDV
by Huan Yan and Chunli Wang
Viruses 2023, 15(2), 512; https://doi.org/10.3390/v15020512 - 12 Feb 2023
Cited by 1 | Viewed by 3747
Abstract
About ten years ago, Wenhui Li’s research group in China identified the sodium taurocholate co-transporting polypeptide (NTCP), a bile acid transporter predominantly expressed in the liver, as a functional receptor for hepatitis B virus (HBV) and its satellite hepatitis delta virus (HDV) through [...] Read more.
About ten years ago, Wenhui Li’s research group in China identified the sodium taurocholate co-transporting polypeptide (NTCP), a bile acid transporter predominantly expressed in the liver, as a functional receptor for hepatitis B virus (HBV) and its satellite hepatitis delta virus (HDV) through biochemical and genetic studies. This finding unraveled a longtime mystery in the HBV field and led to the establishment of efficient and easy-to-use HBV infection models, which paved the way for the in-depth study of the HBV entry mechanism and facilitated the development of therapeutics against HBV and HDV. The whole picture of the complex HBV entry process became clear upon the follow-up studies over the years, including the recent resolution found for the NTCP structure. As one of the first authors of the 2012 eLife paper on NTCP identification, here, I (H. Y.) share our experience on the bumpy and exciting journey of receptor hunting, particularly on the photo-cross-linking study and some detailed descriptions of the “fishing” process and summarize the key factors for our successful receptor identification. This review may also provide helpful insights for identifying a protein target by peptide or protein baits through cross-linking and immunoprecipitation. Full article
(This article belongs to the Special Issue Pathophysiology of Viral Hepatitis)
Show Figures

Figure 1

Back to TopTop