Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = tailings geochemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3340 KiB  
Article
Magnetic Properties as Proxies for Geochemical Prediction in Mining Tailings: A Semi-Supervised Spatial Approach
by Elizabeth J. Lam, Brian Keith, Jaume Bech, Christian Herrera, Javier Urrutia and Ítalo L. Montofré
Minerals 2025, 15(3), 197; https://doi.org/10.3390/min15030197 - 20 Feb 2025
Viewed by 554
Abstract
Mine tailings require careful monitoring and management, but traditional geochemical characterization methods are costly and time-consuming. This study demonstrates that magnetic properties can serve as effective proxies for predicting copper concentrations in mine tailings through an innovative spatial modeling approach. Analysis of magnetic [...] Read more.
Mine tailings require careful monitoring and management, but traditional geochemical characterization methods are costly and time-consuming. This study demonstrates that magnetic properties can serve as effective proxies for predicting copper concentrations in mine tailings through an innovative spatial modeling approach. Analysis of magnetic and geochemical measurements from a Chilean copper mine tailing showed that magnetic properties combined with spatial modeling techniques could predict copper concentrations with high accuracy (R2 = 0.873 ± 0.085). The spatial distribution of magnetic properties revealed coherent patterns that effectively predicted geochemical characteristics. This approach substantially reduces characterization costs compared to traditional methods while maintaining accuracy. Our findings establish magnetic properties as valuable screening tools for tailings characterization, offering mining operations a cost-effective approach to environmental monitoring and management. Full article
Show Figures

Figure 1

22 pages, 23363 KiB  
Article
3D Geostatistical Modeling and Metallurgical Investigation of Cu in Tailings Deposit: Characterization and Assessment of Potential Resources
by M’hamed Koucham, Yassine Ait-Khouia, Saâd Soulaimani, Mariam El-Adnani and Abdessamad Khalil
Minerals 2024, 14(9), 893; https://doi.org/10.3390/min14090893 - 30 Aug 2024
Cited by 5 | Viewed by 2149
Abstract
The management of mine tailings presents a global challenge. Re-mining these tailings to recover remaining metals could play a crucial role in reducing the volume of stored tailings, as historical mining methods were less efficient than those used today. Consequently, mine wastes have [...] Read more.
The management of mine tailings presents a global challenge. Re-mining these tailings to recover remaining metals could play a crucial role in reducing the volume of stored tailings, as historical mining methods were less efficient than those used today. Consequently, mine wastes have the potential to become unconventional resources for critical minerals. To assess this potential, critical minerals and metals in the mine tailings were investigated through sampling, characterization, and 3D geostatistical modeling. The Bleïda copper mine tailings in Morocco were modeled, and residual copper resources were estimated using ordinary kriging (OK). Tailings were systematically sampled at a depth of 1.8 m using a triangular grid and tubing method. The metallic and mineralogical content of the samples was analyzed, and a numerical 3D model of the tailing’s facility was created using topographic drone surveys, geochemical data, and geostatistical modeling. The results from the 3D block model of the Bleïda tailings facility reveal that the volume of deposited tailings is 3.73 million cubic meters (mm3), equivalent to 4.85 million tonnes (Mt). Furthermore, based on the average copper grade (~0.3% by weight) in the studied part of the tailings pond, the copper resources are estimated at 2760 tonnes. Mineralogical characterization indicates that this metallic content is mainly associated with sulfide and carbonate minerals, which exhibit a low degree of liberation. This study aims to serve as a reference for assessing the reprocessing feasibility of tailings in both abandoned and active mines, thereby contributing to the sustainable management of mine tailings facilities. Geostatistical modeling has proven effective in producing tonnage estimates for tailings storage facilities and should be adopted by the industry to reduce the technical and financial uncertainties associated with re-mining. Full article
Show Figures

Figure 1

18 pages, 4446 KiB  
Article
Major, Trace and Rare Earth Elements Geochemistry of Bottom Sediments in the Retiro Baixo Reservoir after the B1 Tailings Dam Rupture, Paraopeba River (Brazil)
by Diego S Sardinha, Mateus Sala Pinto, Paulo Henrique Bretanha Junker Menezes, Gunther Brucha, Jéssica Teixeira Silveira, Letícia Hirata Godoy, Deivid Arimatea Saldanha de Melo and Fernando Verassani Laureano
Minerals 2024, 14(6), 621; https://doi.org/10.3390/min14060621 - 18 Jun 2024
Cited by 1 | Viewed by 1635
Abstract
The rupture of an iron mining tailing dam in Brumadinho, Brazil, released around 10 million cubic meters of tailings, of which 1.6 Mm3 reached the Paraopeba River. In this work, a total of 30 samples from three bottom sediment cores were collected [...] Read more.
The rupture of an iron mining tailing dam in Brumadinho, Brazil, released around 10 million cubic meters of tailings, of which 1.6 Mm3 reached the Paraopeba River. In this work, a total of 30 samples from three bottom sediment cores were collected in the lower course of the Paraopeba River basin and analyzed for major, trace and rare earth elements by ICP-OES and ICP-MS. The sediments presented a range of compositions with different weathering histories, overall marked by depleted Ca2+, Na+ and K+ compared with the average UCC, PAAS and NASC and some advanced weathering trends. The samples presented a fractionation pattern characterized by a continuous depletion of light REEs from La to Sm and a regular decreased distribution of heavy REEs from Gd to Yb, and the Co/Th vs. La/Sc diagram indicates a predominant intermediate source. The upper samples presented the highest contents of REEs, probably due to the higher presence of iron and aluminum oxides and hydroxides, which can be related to more advanced weathering. The Al, Cu, Ni, V, Zn, Co, Mn, Ti, Fe and Si concentrations and the CF, EF and Igeo index values varied across the sediment core samples, demonstrating that there were long periods of geogenic or anthropogenic contributions. Full article
(This article belongs to the Special Issue Chemical Weathering Studies)
Show Figures

Figure 1

28 pages, 9615 KiB  
Article
Landscape-Scale Mining and Water Management in a Hyper-Arid Catchment: The Cuajone Mine, Moquegua, Southern Peru
by Morag Hunter, D. H. Nimalika Perera, Eustace P. G. Barnes, Hugo V. Lepage, Elias Escobedo-Pacheco, Noorhayati Idros, David Arvidsson-Shukur, Peter J. Newton, Luis de los Santos Valladares, Patrick A. Byrne and Crispin H. W. Barnes
Water 2024, 16(5), 769; https://doi.org/10.3390/w16050769 - 4 Mar 2024
Cited by 3 | Viewed by 3936
Abstract
The expansion of copper mining on the hyper-arid pacific slope of Southern Peru has precipitated growing concern for scarce water resources in the region. Located in the headwaters of the Torata river, in the department of Moquegua, the Cuajone mine, owned by Southern [...] Read more.
The expansion of copper mining on the hyper-arid pacific slope of Southern Peru has precipitated growing concern for scarce water resources in the region. Located in the headwaters of the Torata river, in the department of Moquegua, the Cuajone mine, owned by Southern Copper, provides a unique opportunity in a little-studied region to examine the relative impact of the landscape-scale mining on water resources in the region. Principal component and cluster analyses of the water chemistry data from 16 sites, collected over three seasons during 2017 and 2018, show distinct statistical groupings indicating that, above the settlement of Torata, water geochemistry is a function of chemical weathering processes acting upon underlying geological units, and confirming that the Cuajone mine does not significantly affect water quality in the Torata river. Impact mitigation strategies that firstly divert channel flow around the mine and secondly divert mine waste to the Toquepala river and tailings dam at Quebrada Honda remove the direct effects on the water quality in the Torata river for the foreseeable future. In the study area, our results further suggest that water quality has been more significantly impacted by urban effluents and agricultural runoff than the Cuajone mine. The increase in total dissolved solids in the waters of the lower catchment reflects the cumulative addition of dissolved ions through chemical weathering of the underlying geological units, supplemented by rapid recharge of surface waters contaminated by residues associated with agricultural and urban runoff through the porous alluvial aquifer. Concentrations in some of the major ions exceeded internationally recommended maxima for agricultural use, especially in the coastal region. Occasionally, arsenic and manganese contamination also reached unsafe levels for domestic consumption. In the lower catchment, below the Cuajone mine, data and multivariate analyses point to urban effluents and agricultural runoff rather than weathering of exposed rock units, natural or otherwise, as the main cause of contamination. Full article
Show Figures

Graphical abstract

15 pages, 5644 KiB  
Article
The Source, Mobility and Fate of Bismuth (Bi) in Legacy Mine Waste, Yxsjöberg, Sweden
by Lina P. B. Hällström and Jon Petter Gustafsson
Minerals 2024, 14(2), 122; https://doi.org/10.3390/min14020122 - 24 Jan 2024
Cited by 2 | Viewed by 2152
Abstract
The usage of bismuth (Bi), a critical and strategic raw material, has increased in the last 10 years. At present, the knowledge of Bi geochemistry is too limited to develop accurate mine waste and water management strategies to prevent environmental impact. Therefore, its [...] Read more.
The usage of bismuth (Bi), a critical and strategic raw material, has increased in the last 10 years. At present, the knowledge of Bi geochemistry is too limited to develop accurate mine waste and water management strategies to prevent environmental impact. Therefore, its geochemistry was studied in historical tailings in Yxsjöberg, Sweden. Intact tailings cores and shore samples were geochemically and mineralogically analyzed. Groundwater was sampled between 2016 and 2021 and analyzed for 71 elements and (SO4, F, Cl). The results were correlated with metals and dissolved organic matter (DOC), which have been previously published. The total concentrations, sequential extraction and scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM–EDS) mapping indicated that Bi had been mobilized from the primary mineral bismuthinite (Bi2S3). In the oxidized tailings from both the cores and shore, Bi was hypothesized to have adsorbed to iron (Fe) (hydr)oxides, which prohibited high concentrations of Bi leaching into the groundwater and surface water. Dissolved Bi in groundwater was significantly correlated with DOC. In surface water, dissolved Bi was transported more than 5 km from the tailings. This study indicates that Bi can become mobile from legacy mine waste due to the oxidation of bismuthinite and either be scavenged by adsorption of Fe (hydr)oxides or kept mobile in groundwater and surface water due to complexation with DOC. Full article
(This article belongs to the Special Issue Chemical Weathering Studies)
Show Figures

Graphical abstract

21 pages, 14573 KiB  
Article
Provenance of Coastal and Seabed Sediments Relative to Mining and Processing Wastes: The Case of Lavrion, Attiki Peninsula, Greece
by Stavros Savvas Triantafyllidis, Georgios Anastasakis, Anastasios Papanastasiou, Charalambos Stylianou, Nikolaos Kavros, Filothei K. Pappa, Stylianos Fotios Tombros, Michalis Fitros and Vasilios Skliros
Minerals 2024, 14(1), 33; https://doi.org/10.3390/min14010033 - 28 Dec 2023
Viewed by 1624
Abstract
A detailed textural, mineralogical, and geochemical investigation of beach sands and seabed sediments from Thorikos and Oxygono bays of the eastern coast of Lavrion is performed, with the objective the provenance of the ore types exploited, the processing and beneficiation types employed, and [...] Read more.
A detailed textural, mineralogical, and geochemical investigation of beach sands and seabed sediments from Thorikos and Oxygono bays of the eastern coast of Lavrion is performed, with the objective the provenance of the ore types exploited, the processing and beneficiation types employed, and the respective exploitation periods. The Oxygono Bay beach and seabed sands are highly heterogeneous, predominated by lithic clasts originating from surrounding lithologies. Examination of the fine-grained fraction from the seabed core revealed that only the upper 50 cm was affected by recent and ancient mining activity. Combining the mineralogy and geochemistry of Oxygono Bay sands with the radiochronological model of Pappa et al. (2018), four periods of recent exploitation (mid-19th—late 20th century) are distinguished: (1) The “1860–1875 A.D.”, involving exploitation of the ancient smelter slags, (2) the “1875–1900 A.D.”, with ongoing ancient smelter slag processing and the commencement of underground sulfide ore exploitation, (3) the “1900–1930 A.D.”, where heavy mining of the carbonate-hosted Pb–Zn–Ag ore occurs, (4) the “1930–1980”), where the implementation of flotation-type processing assisted in the exploitation of the poor skarn and porphyry-type ores. The latest “1980 A.D.—to date” period depicts the cessation of all mining and processing activities. The southern Thorikos Bay beach sands are homogeneous and fine-grained, are mainly composed of gangue and pyrite, and show elevated Fe, As, Pb, Zn, and Mn content. The southern Thorikos Bay beach sands clearly point to exploitation and processing by flotation of the carbonate-hosted Pb–Zn–Ag sulfide ore, and the tailings were disposed of from the nearby facilities to southern Thorikos Bay without any environmental concern during the “1930–1980 A.D.” period. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

22 pages, 15962 KiB  
Article
Metallogenic Prediction of the Zaozigou Gold Deposit Using 3D Geological and Geochemical Modeling
by Cheng Li, Bingli Liu, Keyan Xiao, Yunhui Kong, Lu Wang, Rui Tang, Miao Xie and Yixiao Wu
Minerals 2023, 13(9), 1205; https://doi.org/10.3390/min13091205 - 13 Sep 2023
Cited by 4 | Viewed by 2311
Abstract
Deep-seated mineralization prediction is an important scientific problem in the area of mineral resources exploration. The 3D metallogenic information extraction of geology and geochemistry can be of great help. This study uses 3D modeling technology to intuitively depict the spatial distribution of orebodies, [...] Read more.
Deep-seated mineralization prediction is an important scientific problem in the area of mineral resources exploration. The 3D metallogenic information extraction of geology and geochemistry can be of great help. This study uses 3D modeling technology to intuitively depict the spatial distribution of orebodies, fractures, and intrusive rocks. In particular, the geochemical models of 12 elements are established for geochemical metallogenic information extraction. Subsequently, the front halo element association of As-Sb-Hg, the near-ore halo element association of Au-Ag-Cu-Pb-Zn, and the tail halo element association of W-Mo-Bi are identified. Upon this foundation, the 3D convolutional neural network model is built and used for deep-seated mineralization prediction, which expresses a high performance (AUC = 0.99). Associated with the metallogenic regularity, two mineral exploration targets are delineated, which might be able to serve as beneficial achievements for deep exploration in the Zaozigou gold deposit. Full article
(This article belongs to the Special Issue Advances in 3D Geological Modeling and Metallogenic Prediction)
Show Figures

Figure 1

13 pages, 11847 KiB  
Article
Geochemical and Microbiological Composition of Soils and Tailings Surrounding the Komsomolsk Tailings, Kemerovo Region, Russia
by Natalya Abrosimova, Svetlana Bortnikova, Alexey Edelev, Valery Chernukhin, Alexander Reutsky, Nikolay Abrosimov and Ivan Gundyrev
Bacteria 2023, 2(3), 116-128; https://doi.org/10.3390/bacteria2030009 - 9 Jul 2023
Cited by 3 | Viewed by 2546
Abstract
Microorganisms have the potential to address environmental pollution, but the interaction mechanism between microorganisms and mine tailings is not well understood. This work was aimed at determining the bacterial isolates in soils and mine tailings and evaluating the distribution of metals, antimony (Sb), [...] Read more.
Microorganisms have the potential to address environmental pollution, but the interaction mechanism between microorganisms and mine tailings is not well understood. This work was aimed at determining the bacterial isolates in soils and mine tailings and evaluating the distribution of metals, antimony (Sb), and arsenic (As) in the soils around the Komsomolsk tailings. Areas with high concentrations of As, Sb, cadmium (Cd), and lead (Pb) were found. Assessment based on the value of the contamination factor (CF) indicated large-scale As, Sb, Pb, Cd, iron (Fe), bismuth (Bi), and beryllium (Be) pollution, especially in soils sampled from the northeast direction of the mine tailings. Soils had a higher number of CFUs per g of dry weight than did the tailings, ranging from 84 × 106 to 3.1 × 109 and from 20 × 106 to 1.7 × 109, respectively. Arsenic exhibited a positive statistical correlation with the number of CFUs of Agrococcus and Staphylococcus. In addition, a positive correlation was found between the concentration of Co and the number of CFUs of Moraxella and Microbacterium. The Sb exhibited a positive correlation with Streptomyces. These results can be used to develop methods for waste reclamation, including the use of isolated bacterial strains for arsenic removal by precipitation. Full article
Show Figures

Figure 1

20 pages, 5205 KiB  
Article
Quantification of Pollutants in Mining Ponds Using a Combination of LiDAR and Geochemical Methods—Mining District of Hiendelaencina, Guadalajara (Spain)
by Tomás Martín-Crespo, David Gomez-Ortiz, Vladyslava Pryimak, Silvia Martín-Velázquez, Inmaculada Rodríguez-Santalla, Nikoletta Ropero-Szymañska and Cristina de Ignacio-San José
Remote Sens. 2023, 15(5), 1423; https://doi.org/10.3390/rs15051423 - 3 Mar 2023
Cited by 2 | Viewed by 2301
Abstract
More than twenty years after the last mining operations were completed in the Hiendelaencina Mining District, it is necessary to carry out a geochemical characterisation of the tailings stored in two contiguous mine ponds. Both have significant amounts of quartz, siderite, barite and [...] Read more.
More than twenty years after the last mining operations were completed in the Hiendelaencina Mining District, it is necessary to carry out a geochemical characterisation of the tailings stored in two contiguous mine ponds. Both have significant amounts of quartz, siderite, barite and muscovite and show significant contents of As, Ba, Pb, Sb and Zn. The tailings show alkaline pH and low electrical conductivity values, which support the visual observation that rules out acid drainage into the environment. The comparison of the National Topographic Map of 1954 with LiDAR data from 2014 has allowed estimating the volume of abandoned waste. Based on the volume of slurry and its average density, the total tonnage of pollutants has been estimated at 279 ± 9 t stored in Pond North and 466 ± 11 t stored in Pond South. Although these are significant quantities that pose a risk to the environment and nearby populations, they are lower than those present in other Spanish districts, such as the Iberian Pyrite Belt or Cartagena-La Unión. The combined use of LiDAR data, aerial imagery and geochemical methods has proven to be very useful for the estimation of the volume of pollutants stored in mine ponds. Full article
Show Figures

Figure 1

23 pages, 1850 KiB  
Article
Mineralogy, Geochemistry and Environmental Hazards of Different Types of Mining Waste from a Former Mediterranean Metal Mining Area
by Roberto Rodríguez-Pacheco, Gregorio García, Ana Vanessa Caparrós-Ríos, Virginia Robles-Arenas, Cristóbal García-García, Rocío Millán, Araceli Pérez-Sanz and Luis Alberto Alcolea-Rubio
Land 2023, 12(2), 499; https://doi.org/10.3390/land12020499 - 17 Feb 2023
Cited by 9 | Viewed by 3039
Abstract
Mine waste constitutes one of the biggest environmental and management problems, both due to its quantity and its danger when they are rich in toxic elements. There is a wide variety of waste from the oxidation of ores in metal mining areas, both [...] Read more.
Mine waste constitutes one of the biggest environmental and management problems, both due to its quantity and its danger when they are rich in toxic elements. There is a wide variety of waste from the oxidation of ores in metal mining areas, both metal sulphide and other minerals. These residues may be enriched in potentially toxic elements that can spread and contaminate ecosystems, farmland and villages. This study has focused on the characterization and evaluation of residues derived from metal-bearing mining waste in abandoned mining areas. Mineralogy and geochemical characteristics were determined by XRD, WDXRF and TG-MS techniques. In addition, DIN 38414-S4 leaching tests were carried out to assess the risk and mobility of potentially toxic elements. Silicates and oxides were found as the main mineral groups, followed by sulphates. These tailings were particularly enriched in Zn, Pb, As, Sb and Cd, while their leachates had high or extreme metal content. Consequently, these mining wastes are considered toxic and hazardous, even for landfills. Sulphides, as the primary source, and sulphates from their oxidation, were the main sources of these pollutants. Sulphates, As, Zn, Cd and Cu determined the specific environmental impact of the different tailing types, which were grouped into different clusters according to their mineralogy and geochemistry. These results provided a better understanding of the environmental hazards associated with the different types of metal mining waste in the area studied. Full article
(This article belongs to the Special Issue Contamination of Soils and Environmental Risks)
Show Figures

Figure 1

26 pages, 16017 KiB  
Article
Single-Well Push–Pull Tracer Test Analyses to Determine Aquifer Reactive Transport Parameters at a Former Uranium Mill Site (Grand Junction, Colorado)
by Raymond H. Johnson, Charles J. Paradis, Ronald D. Kent, Aaron D. Tigar and Paul W. Reimus
Minerals 2023, 13(2), 228; https://doi.org/10.3390/min13020228 - 4 Feb 2023
Cited by 4 | Viewed by 3259
Abstract
At a former uranium mill site where tailings have been removed, prior work has determined several potential ongoing secondary uranium sources. These include locations with uranium sorbed to organic carbon, uranium in the unsaturated zone, and uranium associated with the presence of gypsum. [...] Read more.
At a former uranium mill site where tailings have been removed, prior work has determined several potential ongoing secondary uranium sources. These include locations with uranium sorbed to organic carbon, uranium in the unsaturated zone, and uranium associated with the presence of gypsum. To better understand uranium mobility controls at the site, four single-well push–pull tests (with a drift phase) were completed with the goal of deriving aquifer flow and contaminant transport parameters for inclusion in a future sitewide reactive transport model. This goes beyond the traditional use of a constant sorption distribution coefficient (Kd) and allows for the evaluation of alternative remedial injection fluids, which can produce variable Kd values. Dispersion was first removed from the resulting data to determine possible reactions before conducting reactive transport simulations. These initial analyses indicated the potential need to include cation exchange, uranium sorption, and gypsum dissolution. A reactive transport model using multiple layers to account for partially penetrating wells was completed using the PHT-USG reactive transport modeling code and calibrated using PEST. The model results quantify the hydraulic conductivity and dispersion parameters using the injected tracer concentrations. Uranium sorption, cation exchange, and gypsum dissolution parameters were quantified by comparing the simulated versus observed geochemistry. All simulations required some cation exchange and calcite equilibrium, and one simulation required gypsum dissolution to improve the model fit for calcium and sulfate. Uranium sorption parameters were not strongly influenced by the other parameter values but were highly influenced by uranium concentrations during the drift phase, with possible kinetic rate limitations. Thus, a future recommendation for such push–pull tests is to collect more geochemical data during the drift phase. The final uranium sorption parameters were within the range of values determined from prior column testing. The flow and transport parameters derived from these single-well push–pull tests will provide initial parameters for any future sitewide reactive transport model. Full article
(This article belongs to the Special Issue Uranium: Geochemistry and Mineralogy)
Show Figures

Figure 1

17 pages, 13655 KiB  
Article
Current State of the Gold Mining Waste from the Ores of the Ursk Deposit (Western Siberia, Russia)
by Nataliya Yurkevich, Polina Osipova, Leonid Tsibizov, Ekaterina Tsibizova, Irina Fadeeva, Sergey Volynkin, Kristina Tulisova and Tatyana Kuleshova
Appl. Sci. 2022, 12(20), 10610; https://doi.org/10.3390/app122010610 - 20 Oct 2022
Cited by 6 | Viewed by 2016
Abstract
The article presents the original results of the investigation of sulfide-bearing mine tailings dumps (Ursk, Western Siberia, Russia), the adjacent territory, and acid mine drainage flows. The novelty of this study is related to integration of geophysical and geochemical data. The geoelectrical structure [...] Read more.
The article presents the original results of the investigation of sulfide-bearing mine tailings dumps (Ursk, Western Siberia, Russia), the adjacent territory, and acid mine drainage flows. The novelty of this study is related to integration of geophysical and geochemical data. The geoelectrical structure of the dump and the drainage valley was determined using the electrical resistivity tomography (ERT) method. Magnetic anomalies above the surface of the site were identified using ground magnetic surveys. The orthophotomap and a digital elevation model were obtained on the basis of aerial photography from an unmanned aircraft. The model of thermal imaging allows us to identify a number of temperature anomalies in the upper part of the dump slope and filtration zone in the drainage valley, caused by exothermic reactions. The digital relief model was constructed comprising three zones: (1) oxidation, (2) leaching, and (3) mixing and dilution. The oxidation zone is marked by low electrical resistivity (1–10 Ω·m), low pH values of the drainage waters (pH 3.61), low values of the modulus of the magnetic induction vector, and heating by +5 °C compared to the solid dump material that is not actively exposed to water. The oxidative conditions and low pH values favor the dilution of the Fe2+ compounds in the drainage solutions, which also contain Cu (3000 μg/L), Pb (1200 μg/L), As (1300 μg/L), and Hg (34 μg/L). The zone of the primary geochemical barrier is formed within the first 400 m, where the major proportion of dissolved elements if deposited. The second iron–aluminum sorption geochemical barrier is formed at a distance of 1000 m at the mixing zone with the Ur River. The stable geochemistry of surface waters, formed due to the inflow of drainage waters into the Ur River and further into the reservoir, persists at a distance of up to 7.7 km from the dump. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 4187 KiB  
Review
Evolution of Sulfidic Legacy Mine Tailings: A Review of the Wheal Maid Site, UK
by Verity Fitch, Anita Parbhakar-Fox, Richard Crane and Laura Newsome
Minerals 2022, 12(7), 848; https://doi.org/10.3390/min12070848 - 1 Jul 2022
Cited by 2 | Viewed by 4255
Abstract
Historic tailings dams and their associated mine waste can pose a significant risk to human and environmental health. The Wheal Maid mine site, Cornwall, UK, serves as an example of the temporal evolution of a tailings storage facility after mining has ceased and [...] Read more.
Historic tailings dams and their associated mine waste can pose a significant risk to human and environmental health. The Wheal Maid mine site, Cornwall, UK, serves as an example of the temporal evolution of a tailings storage facility after mining has ceased and the acid-generating waste subjected to surficial processes. This paper discusses its designation as a contaminated land site and reviews our current understanding of the geochemistry, mineralogy, and microbiology of the Wheal Maid tailings, from both peer-reviewed journal articles and unpublished literature. We also present new data on waste characterisation and detailed mineral chemistry and data from laboratory oxidation experiments. Particularly of interest at Wheal Maid is the presence of pyrite-bearing “Grey Tailings”, which, under typical environmental conditions at the Earth’s surface, would be expected to have undergone oxidation and subsequently formed acidic and metalliferous mine drainage (AMD). The results identified a number of mechanisms that could explain the lack of pyrite oxidation in the Grey Tailings, including a lack of nutrients inhibiting microbial Fe(II) oxidation, passivation of pyrite mineral surfaces with tailings processing chemicals, and an abundance of euhedral pyrite grains. Such research areas need further scrutiny in order to inform the design of future tailings facilities and associated AMD management protocols. Full article
(This article belongs to the Special Issue Management of Abandoned Mine)
Show Figures

Graphical abstract

17 pages, 3300 KiB  
Article
Impact of Variability in Precipitation Patterns on the Geochemistry of Pyritic Uranium Tailings Rehabilitated with Saturated Cover Technology
by Roselyne Gagné-Turcotte, Nicolas Reynier, Dominic Larivière, Nail R. Zagrtdenov, Richard Goulet and Philippa Huntsman
Mining 2022, 2(2), 385-401; https://doi.org/10.3390/mining2020020 - 4 Jun 2022
Cited by 2 | Viewed by 2250
Abstract
Increasing variability in precipitation patterns is expected to result from climate change in Canada. This effect has the potential to affect the performances of saturated covers in inhibiting acid rock drainage (ARD) and metal leaching (ML) processes. Because ARD and ML may cause [...] Read more.
Increasing variability in precipitation patterns is expected to result from climate change in Canada. This effect has the potential to affect the performances of saturated covers in inhibiting acid rock drainage (ARD) and metal leaching (ML) processes. Because ARD and ML may cause the release of deleterious chemical species into the environment, such climate-change-driven impact was investigated using trickle leach columns. The physical, chemical, and mineralogical characteristics of the tailings as well as chemical composition of the leachate were measured before and after the column study. Results from the experiment showed that higher variability in precipitation regimes could enhance leaching of uranium. Leaching ranged from 67.1 to 90.1% of the total amount of U, with greater values associated with higher variability in precipitation patterns. Lower water levels and prolonged drought periods led to higher oxygen fluxes to the U tailings and dissolution of carbonate-bearing minerals. The release of carbonates could have enhanced uranium leaching through the formation of stable uranium-carbonate complexes in solution. Overall, this study shows that water level variation caused by varying precipitation patterns can significantly affect the drainage chemistry of saturated cover systems for which the level fluctuates freely near the tailings–cover interface. Full article
Show Figures

Figure 1

17 pages, 54065 KiB  
Article
Heavy Metals in the Mainstream Water of the Yangtze River Downstream: Distribution, Sources and Health Risk Assessment
by Yang Jin, Quanping Zhou, Xiaolong Wang, Hong Zhang, Guoqiang Yang, Ting Lei, Shijia Mei, Hai Yang, Lin Liu, Hui Yang, Jinsong Lv and Yuehua Jiang
Int. J. Environ. Res. Public Health 2022, 19(10), 6204; https://doi.org/10.3390/ijerph19106204 - 19 May 2022
Cited by 12 | Viewed by 2863
Abstract
Since the mainstream of the Yangtze River lower reach is an important drinking water source for residents alongside it, it is essential to investigate the concentration, distribution characteristics and health risks of heavy metals in the water. In this study, a total of [...] Read more.
Since the mainstream of the Yangtze River lower reach is an important drinking water source for residents alongside it, it is essential to investigate the concentration, distribution characteristics and health risks of heavy metals in the water. In this study, a total of 110 water samples were collected on both the left and right banks from the upstream to the downstream. Principal component analysis (PCA) was used to determine the sources of heavy metals. Their non-carcinogenic and carcinogenic risks were studied with health risk assessment models, and uncertainties were determined through Monte Carlo simulation. Results showed that concentrations of all heavy metals were significantly lower than the relevant authoritative standards in the studied area. From the upstream to the downstream, Ni, Cu and Cr had similar concentration distribution rules and mainly originated from human industrial activities. Pb, Cd and Zn had a fluctuating but increasing trend, which was mainly due to the primary geochemistry, traffic pollution and agricultural activities. The maximum As concentration appeared in the upstream mainly because of the carbonatite weathering or mine tail water discharge. Concentrations of Zn, As, Cd and Pb on the left bank were higher than those on the right bank, while concentrations of Cu, Ni and Cr on the right bank were higher than those on the left bank. The non-carcinogenic risk index (HI) was less than 1 (except of L11), and HI on the left bank was higher than that on the right bank. The carcinogenic risk (CR) was generally larger than 1.0 × 10−4, CR on the right bank overall was higher than that on the left bank, and the health risk of kids was greater than that of adults. Furthermore, Monte Carlo simulation results and the actual calculated values were basically the same. Full article
(This article belongs to the Special Issue Water Pollution: Human Health and Ecological Risks)
Show Figures

Figure 1

Back to TopTop