Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = tail lifting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 7794 KB  
Article
Design and Performance Study of Small Multirotor UAVs with Adjunctive Folding-Wing Range Extender
by Ronghao Zhang, Yang Lu, Xice Xu, Heyang Zhang and Kai Guan
Drones 2025, 9(12), 877; https://doi.org/10.3390/drones9120877 - 18 Dec 2025
Viewed by 522
Abstract
Small multi-rotor UAVs face endurance limitations during long-range missions due to high rotor energy consumption and limited battery capacity. This paper proposes a folding-wing range extender integrating a sliding-rotating two-degree-of-freedom folding wing—which, when deployed, quadruples the fuselage length yet folds within its profile—and [...] Read more.
Small multi-rotor UAVs face endurance limitations during long-range missions due to high rotor energy consumption and limited battery capacity. This paper proposes a folding-wing range extender integrating a sliding-rotating two-degree-of-freedom folding wing—which, when deployed, quadruples the fuselage length yet folds within its profile—and a tail-thrust propeller. The device can be rapidly installed on host small multi-rotor UAVs. During cruise, it utilizes wing unloading and incoming horizontal airflow to reduce rotor power consumption, significantly extending range while minimally impacting portability, operational convenience, and maneuverability. To evaluate its performance, a 1-kg-class quadrotor test platform and matching folding-wing extender were developed. An energy consumption model was established using Blade Element Momentum Theory, followed by simulation analysis of three flight conditions. Results show that after installation, the required rotor power decreases substantially with increasing speed, while total system power growth slows noticeably. Although the added weight and drag increase low-speed power consumption, net range extension emerges near 15 m/s and intensifies with speed. Subsequent parametric sensitivity analysis and mission profile analysis indicate that weight reduction and aerodynamic optimization can effectively enhance the device’s performance. Furthermore, computational fluid dynamics (CFD) analysis confirms the effectiveness of the dihedral wing design in mitigating mutual interference between the rotor and the wing. Flight tests covering five conditions validated the extender’s effectiveness, demonstrating at 20 m/s cruise: 20% reduction in total power, 25% improvement in endurance/range, 34% lower specific power, and 52% higher equivalent lift-to-drag ratio compared to the baseline UAV. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

17 pages, 7175 KB  
Article
Design and Numerical Evaluation of Trailing Edge Deflection Distance-Based Morphing Wing
by Periyasamy Sivanandi, Nathish Sanjay, Senthilkumar Chidambaram and Suresh Varatharaj
Eng 2025, 6(12), 354; https://doi.org/10.3390/eng6120354 - 6 Dec 2025
Viewed by 324
Abstract
This project’s focus is to create a morphing wing with variable geometry that will improve aerodynamic performance. The NACA 0018 airfoil, known for its stable aerodynamic characteristics and symmetrical shape, is chosen as a base airfoil for modification in this approach. To investigate [...] Read more.
This project’s focus is to create a morphing wing with variable geometry that will improve aerodynamic performance. The NACA 0018 airfoil, known for its stable aerodynamic characteristics and symmetrical shape, is chosen as a base airfoil for modification in this approach. To investigate the effects of flexible trailing edge deformation under aerodynamic loading, various new morphing airfoil designs have been designed and analyzed. Both the performance results of a conventional hinged wing design and morphing airfoil designs were compared. Identifying the most effective airfoil design that could produce higher lift-to-drag ratios, less turbulence, and better overall aerodynamic behavior was the main goal. Because of its elasticity and flexibility, natural rubber latex (Hevea brasiliensis) was utilized as the primary skin material. This allows for a seamless, hinge-free morphing wing. To evaluate aerodynamic efficiency, structural integrity, and material behavior under various situations, computational fluid dynamics simulations were carried out. The most promising airfoil design was determined based on performance. By reducing drag, increasing lift, and reducing mechanical complexity, this new approach offers a sustainable and effective substitute for traditional wing designs, advancing the development of adaptive aeronautical structures. Full article
Show Figures

Figure 1

17 pages, 2002 KB  
Article
Hippotherapy in the Treatment of CMD and Bruxism in Dentistry
by Margrit-Ann Geibel, Daniela Kildal, Amina Maria Geibel and Sibylle Ott
Animals 2025, 15(17), 2587; https://doi.org/10.3390/ani15172587 - 3 Sep 2025
Viewed by 984
Abstract
Dysfunctions and disorders of the craniomandibular system are accompanied by pathophysiological changes of muscle groups in the throat/neck and facial area, e.g., pain in the jaw and muscles of mastication and disturbance of occlusion, leading to teeth injury (loss of dental hard tissue, [...] Read more.
Dysfunctions and disorders of the craniomandibular system are accompanied by pathophysiological changes of muscle groups in the throat/neck and facial area, e.g., pain in the jaw and muscles of mastication and disturbance of occlusion, leading to teeth injury (loss of dental hard tissue, fractures/sensibility disorders, etc.). For muscular dysfunctions, even in the context of psychosomatic disorders and chronic stress, hippotherapy is particularly suitable, since it helps actively to relieve muscle tensions. In the current project we combined hippotherapy with progressive muscle relaxation (PMR) to achieve a synergistic effect. The horses used for therapy (two mares and five geldings between seven and twenty-one years old) were especially suitable because of their calm temperament. In two cases, trained therapy horses were used; in five other cases, the patients used their own horses, which were not specially trained. Right from the beginning, the project was accompanied by veterinary support. Conditions of horse keeping (active stable, same-sex groups, no boxes) were assessed as well as the horses themselves prior to, during, and after each therapy unit. In patients, cortisol, as a quantifiable parameter for stress, was measured before and after each therapy unit. From before the start until the end of each therapy unit of 15 min, the heart rate variability (HRV) of both patients and horses was registered continuously and synchronously. In addition, the behavior of the horses was monitored and recorded on video by an experienced coach and a veterinarian. The stress load during the tension phases in the therapy units was low, perceivable in the horses lifting their heads and a slightly shortened stride length. Likewise, the horses reflected the patients’ relaxation phases, so that at the end of the units the horses were physically and psychically relaxed, too, noticeable by lowering their necks, free ear movement, and a decreasing heart frequency (HF). Altogether, the horses benefited from the treatment, too. Obvious stress signs like unrest, head tossing, tail swishing, or tense facial expressions were not noticed at any time. Twenty jumpers served as a control group in different situations (training, tournament, and leisure riding). Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

20 pages, 5660 KB  
Article
Performance Enhancement of Autonomous Sailboats via CFD-Optimized Wing–Tail Sail Configurations
by Tianci Ding, Cunwei Tian, Huimin Wang, Changbin Xu, Jiaqi Ye, Aijiao Gong, Mingfei Liu and Tao Xia
J. Mar. Sci. Eng. 2025, 13(9), 1640; https://doi.org/10.3390/jmse13091640 - 27 Aug 2025
Viewed by 1234
Abstract
The development of energy-efficient propulsion systems for autonomous sailboats requires innovative sail designs that balance aerodynamic performance and maritime operational reliability. This study presents a novel rigid wing sail system comprising a NACA 0020 main sail with an embedded NACA 0018 tail sail, [...] Read more.
The development of energy-efficient propulsion systems for autonomous sailboats requires innovative sail designs that balance aerodynamic performance and maritime operational reliability. This study presents a novel rigid wing sail system comprising a NACA 0020 main sail with an embedded NACA 0018 tail sail, specifically designed for uncrewed ocean navigation. Through systematic CFD analysis using ANSYS Fluent 2022R1, three configurations were compared: (1) the proposed hybrid wing–tail system, (2) a single main wing sail, and (3) traditional flap sails. The investigation focused on two key design parameters—tail sail area (25–40% of main sail area) and deflection angle (0–15°)—that were evaluated across angles of attack from 0° to 30° under typical marine wind conditions. The results reveal three critical findings: First, the hybrid system achieves a 29.5% higher peak lift coefficient than a single wing sail and an 11.6% improvement over slotted-flap sails. Second, increasing the tail sail area to 35% of the main sail optimizes both the lift coefficient (CL max = 1.16) and the lift-to-drag ratio (L/D = 7.5 at 9° angles of attack). Third, as the tail deflection angle increases, the maximum lift–drag ratio shifts forward, and at small angles of attack, the maximum lift–drag ratio increases by 40%. The hybrid wing–tail sail design proposed in this study significantly enhances the aerodynamic performance of uncrewed sailing boats, providing new insights for the sustainable development of marine renewable energy technologies and autonomous vessels. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 3534 KB  
Article
Lift–Thrust Integrated Ducted-Grid Fusion Configuration Design for a Ducted Fan Tail-Sitter UAV
by Lei Liu and Baigang Mi
Appl. Sci. 2025, 15(14), 7687; https://doi.org/10.3390/app15147687 - 9 Jul 2025
Viewed by 1072
Abstract
A new lift enhancement scheme is designed for the cruise flight process of a tail-sitter UAV (Unmanned Aerial Vehicle), proposing a fusion configuration with embedded grid channels on the duct wall. The low pressure zone at the lip of the duct is induced [...] Read more.
A new lift enhancement scheme is designed for the cruise flight process of a tail-sitter UAV (Unmanned Aerial Vehicle), proposing a fusion configuration with embedded grid channels on the duct wall. The low pressure zone at the lip of the duct is induced to expand through the grid channels, forming a significant force component difference with the non-grid side, thereby generating significant lift effects for the propeller of the ducted fan during level flight. Taking a ducted fan system as an example, a design method for embedding grids into the ducted wall is established. By using the sliding mesh technique to simulate propeller rotation, the effects of annular distribution angle, grid channel width, circumferential and flow direction grid quantity on its aerodynamic performance are evaluated. The results indicate that the ducted fan embedded in the grid can generate a lift about 22.16% of total thrust without significantly affecting thrust and power characteristics. The increase in circumferential distribution angle increases within a reasonable range and benefits the lift of the propeller. However, the larger the grid width, the more it affects the lip and tail of the duct. Ultimately, the overall effect actually deteriorates the performance. The number of circumferential grids has a relatively small impact. As the number of flow grids increases, the aerodynamic characteristics of the entire fusion configuration significantly improves, due to its favorable induction of airflow at the lip and tail of the duct, as well as blocking the dissipation of blade-tip vortices. Full article
(This article belongs to the Special Issue Multidisciplinary Collaborative Design of Aircraft)
Show Figures

Figure 1

20 pages, 7193 KB  
Article
Optimization of Trailing-Edge Unloading for Lambda-Wing UAV Using B-Spline Trailing-Edge Twist Method
by Chengen Yuan, Dongli Ma, Yuhong Jia and Liang Zhang
Drones 2025, 9(7), 462; https://doi.org/10.3390/drones9070462 - 28 Jun 2025
Viewed by 823
Abstract
As a commonly used configuration for advanced unmanned aerial vehicles (UAVs), the flying-wing configuration suffers from pitching moment trimming issues due to the lack of horizontal tail. The UAV either needs to unload lift at the trailing edge or needs to increase the [...] Read more.
As a commonly used configuration for advanced unmanned aerial vehicles (UAVs), the flying-wing configuration suffers from pitching moment trimming issues due to the lack of horizontal tail. The UAV either needs to unload lift at the trailing edge or needs to increase the wingtip twist angle at the cost of losing the lift-to-drag ratio. The commonly used methods for solving pitching moment trimming issues are compared and analyzed in this paper, and it is found that the method of trailing-edge twist has advantages under cruising lift coefficient. Furthermore, a trailing-edge twist deformation parameterized model that can deform multiple critical sections is designed with relevant grids. The multi-objective genetic algorithm is used to optimize the parameterized model and obtain the optimized results. Through comparative analysis, it is found that the optimized trailing-edge twist model has an advantage in distributing the pitching moment. By optimizing the distribution of aerodynamic forces and moments, cruise trim is achieved with only a 1.43% cost to the cruise lift-to-drag ratio compared to the initial model. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

22 pages, 4482 KB  
Article
RCS Special Analysis Method for Non-Cooperative Aircraft Based on Inverse Reconfiguration Coupled with Aerodynamic Optimization
by Guoxu Feng, Chuan Wei, Jie Huang, Juyi Long and Yang Bai
Aerospace 2025, 12(7), 573; https://doi.org/10.3390/aerospace12070573 - 24 Jun 2025
Viewed by 949
Abstract
To address the challenge of evaluating a radar cross-section (RCS) for a non-cooperative aircraft with limited aerodynamic shape information, this paper presents a multi-source, data-driven inverse reconstruction method. This approach integrates data fusion techniques to facilitate an initial shape reconstruction, followed by an [...] Read more.
To address the challenge of evaluating a radar cross-section (RCS) for a non-cooperative aircraft with limited aerodynamic shape information, this paper presents a multi-source, data-driven inverse reconstruction method. This approach integrates data fusion techniques to facilitate an initial shape reconstruction, followed by an iterative optimization process that utilizes computational fluid dynamics (CFD) to enhance the shape, accounting for the aerodynamic performance. Additionally, an inverse deduction analysis is effectively employed to ascertain the characteristics of the power system, leading to the design of a double S-curved tail nozzle layout with stealth capabilities. An aerodynamic analysis demonstrates that at Mach 0.6, the lift-to-drag ratio peaks at 27.3 for the attack angle of 4°, after which it declines as the angle increases. At higher angles of attack, complex flow separation occurs and expands with the increasing angle. The electromagnetic simulation results indicate that under vertical polarization, the omnidirectional RCS reaches its peak as the incident angle is deflected downward by 10° and reduces with the growth of the angle, demonstrating angular robustness. Conversely, under horizontal polarization, the RCS is more sensitive to edge-induced rounding. The findings illustrate that this methodology enables accurate shape modeling for non-cooperative targets, thereby providing a fairly solid basis for stealth performance evaluation and the assessment of surprise effectiveness. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

24 pages, 1678 KB  
Article
An Adaptation of Nonlinear Aerodynamic Models for Non-Traditional Control Effectors
by Christian R. Bolander and Douglas F. Hunsaker
Aerospace 2025, 12(5), 426; https://doi.org/10.3390/aerospace12050426 - 10 May 2025
Viewed by 763
Abstract
This paper presents the development of a novel aerodynamic model tailored for the Bio-Inspired Rotating Empennage (BIRE), a non-traditional fixed-wing aircraft empennage inspired by avian flight. The BIRE replaces the conventional vertical stabilizer with an extra degree of freedom for the horizontal stabilizer, [...] Read more.
This paper presents the development of a novel aerodynamic model tailored for the Bio-Inspired Rotating Empennage (BIRE), a non-traditional fixed-wing aircraft empennage inspired by avian flight. The BIRE replaces the conventional vertical stabilizer with an extra degree of freedom for the horizontal stabilizer, which is allowed to rotate about the body-fixed x axis. This empennage is similar to the tail of a bird, and allows control of both longitudinal and lateral moments. However, such a design introduces complex nonlinear longitudinal and lateral aerodynamic interactions, not typically accounted for in most fixed-wing aircraft aerodynamic models below stall. This work presents a nonlinear sinusoidal aerodynamic model that can be used for fixed-wing aircraft with this type of empennage. Although the aerodynamic model is constructed to accurately capture the degrees of freedom of this particular empennage design, similar methods could be used to develop other aerodynamic models for non-traditional control effectors. A large dataset of low-fidelity aerodynamic data was generated using a modern numerical lifting-line algorithm, and these data were fit to the nonlinear sinusoidal aerodynamic model. A method for fitting the data is demonstrated, and the results show that the nonlinear sinusoidal aerodynamic model can be fit to the data with an accuracy of less than 10% of the maximum deviation of the aerodynamic coefficients in root-mean-square error. The underlying physics of many of the longitudinal and lateral nonlinear sinusoidal aerodynamic properties of the aircraft are discussed in detail. The methodology presented here can be extended to other non-traditional control effectors, encouraging innovative approaches in aerodynamic modeling and aircraft design. In contrast, choosing to model control effectors using the traditional, linear approach can obscure key aerodynamic behaviors key for trim and control analyses. The study’s findings underscore the importance of developing adaptable aerodynamic models to support the advancement of next-generation aircraft designs and control systems. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 9084 KB  
Article
Dynamics Simulation and Optimization of Gliding Tail Decoy
by Huayu Jia, Huilong Zheng, Shunbo Huo and Hong Zhou
Aerospace 2025, 12(3), 212; https://doi.org/10.3390/aerospace12030212 - 6 Mar 2025
Cited by 1 | Viewed by 1137
Abstract
In this paper, a gliding tail decoy for a UAV is proposed, which can be discarded as a decoy when the UAV encounters danger. Based on an aerodynamic model of the tail decoy, a nonlinear dynamics model of the tail decoy gliding in [...] Read more.
In this paper, a gliding tail decoy for a UAV is proposed, which can be discarded as a decoy when the UAV encounters danger. Based on an aerodynamic model of the tail decoy, a nonlinear dynamics model of the tail decoy gliding in the air is generated, and a three-layer pyramid general design architecture of the tail decoy is established. In order to subsequently analyze the dynamic characteristics and gliding trajectory of the gliding tail decoy, a gliding trajectory simulation software is developed based on the dynamics model of the gliding tail. Selecting the pre-optimized tail shape as the research object, and analyzing the influence of deployment speed and deployment posture angle on the tail trajectory, it was found that a deployment speed of 60 m/s and a deployment posture angle of 8° are more conducive to the tail obtaining a larger gliding distance. In addition, the effectiveness of the optimization method for the gliding tail in this article was verified. It was found that after optimizing the shape of the gliding tail, the lift coefficient increased in the range of 0°~14°, and the gliding distance increased by 4.2%. Full article
Show Figures

Figure 1

23 pages, 14366 KB  
Article
Effects of Longitudinal External Magnetic Field on Metal Transfer Behavior and Spatter Formation in CO2 Arc Welding
by Dang Khoi Le, Shinichi Tashiro, Bin Xu, Anthony B. Murphy, Quang Ngoc Trinh, Van Hanh Bui, Toshifumi Yuji, Sarizam B. Mamat, Kenta Yamanaka, Manabu Tanaka and Lei Xiao
Materials 2025, 18(3), 537; https://doi.org/10.3390/ma18030537 - 24 Jan 2025
Cited by 2 | Viewed by 1574
Abstract
Excessive spatter formation in conventional CO2 arc welding significantly diminishes welding quality and efficiency, posing a critical challenge for industrial applications. To address this issue, this study investigated the mechanisms of metal transfer behavior and spatter formation under the influence of a [...] Read more.
Excessive spatter formation in conventional CO2 arc welding significantly diminishes welding quality and efficiency, posing a critical challenge for industrial applications. To address this issue, this study investigated the mechanisms of metal transfer behavior and spatter formation under the influence of a longitudinal magnetic field (LMF) using a shadow-graph technique with high-speed imaging and back-laser illumination, also coupled with Computational Fluid Dynamics (CFD)-based arc-droplet numerical simulations. The results show that increasing the magnetic flux density (MFD) from 0 to 2 mT shifted the transfer mode from the repelled transfer to the globular transfer, while higher MFDs (3–4 mT) induced rotating repelled transfer. The globular transfer at 2 mT was considered to be primarily produced by the centrifugal effect due to the rotational motion of the molten metal inside the droplet, which was caused by the Lorentz force affected by LMF. The higher droplet temperature in this condition also contributed to forming this transfer mode, preventing the formation of repelled transfer through a decrease in the arc pressure. On the contrary, in the higher MFDs, the droplet temperature decreased to increase the arc pressure, lifting the droplet up. Furthermore, the very strong centrifugal effect rotated the molten metal column around the wire axis to induce the rotating repelled transfer. The spatter formation was found to occur with the two-stage motion of the curved long tail without LMF and at 4 mT, and also with the exploding molten metal column at 4 mT, due to an imbalance of the Lorentz force acting on the molten metal. On the other hand, the neck formation facilitated smooth droplet detachment without forming the curved long tail at 2 mT, reducing spatter significantly. These findings offer valuable insights for optimizing welding quality and efficiency by stabilizing globular transfer under an optimal LMF. Full article
(This article belongs to the Collection Welding and Joining Processes of Materials)
Show Figures

Figure 1

26 pages, 14021 KB  
Review
A Review of Plume Research in the Collection Process of Deep-Sea Polymetallic Nodules
by Lixin Xu, Xiu Li, Yajiao Liu, Peilin Dou, Zhichao Hong and Chaoshuai Han
Water 2024, 16(23), 3379; https://doi.org/10.3390/w16233379 - 24 Nov 2024
Cited by 2 | Viewed by 4373
Abstract
The plumes generated during the collection of polymetallic nodules in the deep sea may have a significant impact on the marine ecosystem. Therefore, this article reviews the progress in deep-sea mining and monitoring technologies related to plumes. It is suggested that specific areas [...] Read more.
The plumes generated during the collection of polymetallic nodules in the deep sea may have a significant impact on the marine ecosystem. Therefore, this article reviews the progress in deep-sea mining and monitoring technologies related to plumes. It is suggested that specific areas of environmental interest (APEIs) and positive altitude characteristic regions (such as seamounts and hills) in the process of polymetallic nodule collection can serve as refuges for benthic organisms and provide a biological basis for the recovery of biodiversity in mining areas. Water-supported vessels, pipeline lifting systems, and hydraulic collection methods are the least disruptive and most promising methods. By sorting out the deep-sea mining process, plumes can be roughly classified into seabed disturbance plumes and tailing plumes. The best way to address plume formation is at the source when developing environmentally friendly mining vehicles. The evaluation of plumes is crucial for the sustainable development of the environment and seabed resources. However, the mechanism is not clear at present. Therefore, laboratory simulation and in situ monitoring need to be coordinated, and attention should be paid to the impact on benthic marine organisms as much as possible during original operations. Plume research in the deep-sea mining process will also provide favorable support for the possible future development of seabed resources. Full article
(This article belongs to the Special Issue Emerging Challenges in Ocean Engineering and Environmental Effects)
Show Figures

Figure 1

18 pages, 8118 KB  
Article
Numerical Investigation of an NACA 13112 Morphing Airfoil
by Mădălin-Dorin Feraru, Daniel Măriuța, Marius Stoia-Djeska and Lucian-Teodor Grigorie
Biomimetics 2024, 9(10), 635; https://doi.org/10.3390/biomimetics9100635 - 18 Oct 2024
Cited by 3 | Viewed by 1888
Abstract
This article presents a numerical study on the 2D aerodynamic characteristics of an airfoil with a morphed camber. The operational regime of the main rotor blade of the IAR 330 PUMA helicopter was encompassed in CFD simulations, performed over an angle of attack [...] Read more.
This article presents a numerical study on the 2D aerodynamic characteristics of an airfoil with a morphed camber. The operational regime of the main rotor blade of the IAR 330 PUMA helicopter was encompassed in CFD simulations, performed over an angle of attack range of α=[3°; 18°], and a Mach number of M=0.38. Various degrees of camber adjustment were smoothly implemented to the trailing-edge section of the NACA13112 airfoil, with a corresponding chord length of c=600 mm at the Reynolds number, Re=5.138×106, and the resulting changes in static lift and drag were calculated. The study examines the critical parameters that affect the configuration of the morphing airfoil, particularly the length of the trailing edge morphing. This analysis demonstrates that increasing the morphed camber near the trailing edge enhances lift capability and indicates that the maximum lift of the airfoil depends on the morphed chord length. The suggested approach demonstrates potential and can be implemented across various categories of aerodynamic structures, such as propeller blade sections, tails, or wings. Full article
Show Figures

Figure 1

19 pages, 9442 KB  
Article
Optimal Selection of Active Jet Parameters for a Ducted Tail Wing Aimed at Improving Aerodynamic Performance
by Huayu Jia, Huilong Zheng, Hong Zhou and Shunbo Huo
Aerospace 2024, 11(10), 851; https://doi.org/10.3390/aerospace11100851 - 15 Oct 2024
Cited by 2 | Viewed by 1274
Abstract
The foldable tail of the box-type launch vehicle poses a risk of mechanical jamming during the launch process, which is not conducive to the smooth completion of the flight mission. The integrated nonfolding ducted tail proposed in this article can solve the problem [...] Read more.
The foldable tail of the box-type launch vehicle poses a risk of mechanical jamming during the launch process, which is not conducive to the smooth completion of the flight mission. The integrated nonfolding ducted tail proposed in this article can solve the problem of storing the tail in the launch box. Moreover, traditional mechanical control surfaces have been eliminated, and active jet control has been adopted to control the pitch direction of the flight attitude, which can improve the structural reliability of the tail wing. By studying the effects of parameters such as momentum coefficient, jet hole position, jet hole height, and jet angle on improving the aerodynamic performance of ducted tail wing, relatively good jet parameters are selected. Research has found that compared with jet hole height and jet angle, momentum coefficient and jet hole position are more effective in improving the aerodynamic performance of ducted tail wings. Under a trailing edge jet, a relatively good jet condition occurs when the jet hole height is equal to0.25% of the aerodynamic chord length, and the jet angle is equal to 0°. At this time, with the increase of the jet momentum coefficient, the effect of increasing the lift of the ducted tail wing is the best. Finally, a comparative analysis is conducted on the lift and drag characteristics between the ducted tail wing and traditional tail wing, and it is found that the ducted tail wing can generate lift at a 0° attack angle and will not stall in the high attack angle range of 12°~22°, with broad application prospects. Full article
(This article belongs to the Special Issue Aerodynamic Numerical Optimization in UAV Design)
Show Figures

Figure 1

27 pages, 19850 KB  
Article
Aerodynamic Optimization and Characterization of a Ducted Tail for a Box-Launched Aircraft
by Huayu Jia, Huilong Zheng, Hong Zhou and Qian Zhang
Appl. Sci. 2024, 14(15), 6496; https://doi.org/10.3390/app14156496 - 25 Jul 2024
Cited by 2 | Viewed by 1713
Abstract
The tail wing of box-launched aircraft needs to be folded in the launch box, which can easily cause malfunctions during flight deployment. This article presents a ducted tail wing aircraft that does not require folding of the tail wing. To address the nonlinear [...] Read more.
The tail wing of box-launched aircraft needs to be folded in the launch box, which can easily cause malfunctions during flight deployment. This article presents a ducted tail wing aircraft that does not require folding of the tail wing. To address the nonlinear problem of lift coefficient in the ducted tail, an aerodynamic optimization method for ducted tails based on the sparrow search algorithm with back-propagation (SSA-BP) neural network approximate model and multi-objective genetic algorithm fusion is proposed, with the goal of improving the lift-to-drag ratio and linearization degree of the lift curve. The linearization degree of the optimized tail lift coefficient curve is significantly improved, and the lift-to-drag ratio is significantly improved under cruising conditions. Based on this optimization result, the shape of the tail wing and fuselage combination was optimized, and the optimal configuration of the ducted tail wing aircraft was selected, providing a reference for the design of ducted tail wing aircraft. Full article
(This article belongs to the Special Issue Applications of Aerodynamics in Aeronautical Engineering)
Show Figures

Figure 1

24 pages, 9159 KB  
Article
Stability and Controller Research of Double-Wing FMAV System Based on Controllable Tail
by Yichen Zhang, Yiming Xiao, Qingcheng Guo, Feng Cui, Jiaxin Zhao, Guangping Wu, Chaofeng Wu and Wu Liu
Biomimetics 2024, 9(8), 449; https://doi.org/10.3390/biomimetics9080449 - 24 Jul 2024
Cited by 2 | Viewed by 2069
Abstract
This study aimed to enhance the stability and response speed of a passive stabilized double-wing flapping micro air vehicle (FMAV) by implementing a feedback-controlled biomimetic tail. A model for flapping wings accurately calculated the lift force with only a 2.4% error compared to [...] Read more.
This study aimed to enhance the stability and response speed of a passive stabilized double-wing flapping micro air vehicle (FMAV) by implementing a feedback-controlled biomimetic tail. A model for flapping wings accurately calculated the lift force with only a 2.4% error compared to the experimental data. Experimental tests established the relationship between control torque and tail area, swing angle, and wing–tail spacing. A stability model for the double-wing FMAV was developed, incorporating stabilizing sails. Linearization of the hovering state facilitated the design of a simulation controller to improve response speed. By adjusting the feedback loops of velocity, angle, and angular velocity, the tail controller reduced the angle simulation response time from 4 s to 0.1 s and the velocity response time from 5.64 s to 0.1 s. In take-off experiments, a passive stabilized prototype with an adjustable tail angle exhibited enhanced flight stability compared to fixed tails, reducing standard deviation by 72.96% at a 0° take-off angle and 56.85% at a 5° take-off angle. The control axis standard deviation decreased by 38.06% compared to the passive stability axis, confirming the effectiveness of the designed tail angle controller in reducing angular deflection and improving flight stability. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

Back to TopTop