Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = synthetic bacterial consortium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3148 KiB  
Article
Engineering a Cross-Feeding Synthetic Bacterial Consortium for Degrading Mixed PET and Nylon Monomers
by Ida Putu Wiweka Dharmasiddhi, Jinjin Chen, Bahareh Arab, Ching Lan, Christian Euler, C. Perry Chou and Yilan Liu
Processes 2025, 13(2), 375; https://doi.org/10.3390/pr13020375 - 30 Jan 2025
Cited by 1 | Viewed by 1420
Abstract
Plastics are indispensable to modern life, but their widespread use has created an environmental crisis due to inefficient waste management. Mixed plastic waste, comprising diverse polymers, presents significant recycling challenges due to the high costs of sorting and processing, leading to ecosystem accumulation [...] Read more.
Plastics are indispensable to modern life, but their widespread use has created an environmental crisis due to inefficient waste management. Mixed plastic waste, comprising diverse polymers, presents significant recycling challenges due to the high costs of sorting and processing, leading to ecosystem accumulation and harmful by-product generation. This study addresses this issue by engineering a synthetic bacterial consortium (SBC) designed to degrade mixed plastic monomers. The consortium pairs Escherichia coli Nissle 1917, which uses ethylene glycol (EG), a monomer derived from polyethylene terephthalate (PET), as a carbon source, with Pseudomonas putida KT2440, which metabolizes hexamethylenediamine (HD), a monomer from nylon-6,6, as a nitrogen source. Adaptive evolution of the SBC revealed a novel metabolic interaction where P. putida developed the ability to degrade both EG and HD, while E. coli played a critical role in degrading glycolate, mitigating its by-product toxicity. The evolved cross-feeding pattern enhanced biomass production, metabolic efficiency, and community stability compared to monocultures. The consortium’s performance was validated through flux balance analysis (FBA), high-performance liquid chromatography (HPLC), and growth assays. These findings highlight the potential of cross-feeding SBCs in addressing complex plastic waste, offering a promising avenue for sustainable bioremediation and advancing future polymer degradation strategies. Full article
Show Figures

Figure 1

13 pages, 833 KiB  
Article
Impact of Phycosphere-Isolated Marine Bacteria on Nutritional Value, Growth, and Nutrient Uptake of Co-Cultured Chaetoceros calcitrans
by Mélissa Angeline Liberia Gonçalves, Melissa López-Vela, Alejandro Palacios-Espinosa, Mirella Romero-Bastidas, Maurilia Rojas-Contreras and Paola Magallón-Servín
Resources 2024, 13(9), 116; https://doi.org/10.3390/resources13090116 - 24 Aug 2024
Cited by 2 | Viewed by 2034
Abstract
Microalgae offer distinct advantages as a nutritional source for aquaculture and as a means of wastewater bioremediation. Studying the phycosphere bacteria and understanding their complex interactions is essential to optimizing high-quality biomass growth. This study aimed to isolate, characterize, and identify bacteria from [...] Read more.
Microalgae offer distinct advantages as a nutritional source for aquaculture and as a means of wastewater bioremediation. Studying the phycosphere bacteria and understanding their complex interactions is essential to optimizing high-quality biomass growth. This study aimed to isolate, characterize, and identify bacteria from the phycosphere of marine microalgae and to determine their potential to enhance growth, metabolism, and bioremediation capabilities of Chaetoceros calcitrans in stress nutrient-poor media simulating aquaculture wastewater enriched with nitrate, nitrite, or phosphorus. Bacterial characterization included tests for auxin and siderophore production, biofilm formation, amylase activity, phosphate solubilization, mobility, and antagonism evaluation. When Alteromonas macleodii, Bacillus cereus, and Marinobacter sp. were selected and then enriched (107 CFU/mL) in co-culture with C. calcitrans, growth levels significantly increased in four of six Synthetic Aquaculture Wastewater (SAW) media. Pigment levels were higher in five of six SAW media, and lipid levels were higher in SAW rich in nitrite (SAWni50) and phosphorus (SAWpho50). In addition, C. calcitrans with or without the bacterial consortium demonstrated excellent phosphorus bioremediation, achieving 67.6% average removal in SAWpho50. Nitrate and nitrite assimilation rates were approximately 10% in SAWna and SAWni50. This study marks the inaugural identification of these bacteria as microalga growth-promoting bacteria (MGPB) for enhancing growth and lipid and pigment production in C. calcitrans, and it also documents a maximum of 69.13% phosphorus removal. Full article
Show Figures

Figure 1

18 pages, 9237 KiB  
Article
A Synergistic Indole-3-Acetic Acid-Producing Synthetic Bacterial Consortium Benefits Walnut Seedling Growth
by Qi Cheng, Shanshan Sun, Xin Ning, Minhang Qiao, Wenxuan Chen, Pengrui Zhang, Kai Liu and Yanqin Ding
Agronomy 2024, 14(8), 1657; https://doi.org/10.3390/agronomy14081657 - 28 Jul 2024
Cited by 3 | Viewed by 1902
Abstract
Synthetic microbial communities (SynComs) have been shown to be an ecofriendly alternative for promoting plant growth. However, the mechanisms by which SynCom inoculants drive plant growth promotion in rhizosphere soil are still not fully explored. Herein, we designed a three-strain consortium based on [...] Read more.
Synthetic microbial communities (SynComs) have been shown to be an ecofriendly alternative for promoting plant growth. However, the mechanisms by which SynCom inoculants drive plant growth promotion in rhizosphere soil are still not fully explored. Herein, we designed a three-strain consortium based on the biocompatibility among strains and indole-3-acetic acid (IAA) production. The consortium containing Bacillus safensis 5-49, Bacillus stratosphericus 5-54, and Bacillus halotolerans 6-30 possessed a synergistic effect on IAA production and biofilm formation. Genetic analysis suggested that IAA was synthesized through tryptophan-dependent pathways in the strains. The consortium outperformed the plant growth-promoting effect observed with single strains, showing an increase in walnut (Juglans regia) seedling dry weight by 92.3% over the non-inoculated plants after 60 days of cultivation. This effect was underpinned by the synergistic interactions of the consortium, which was evidenced by the significantly increased relative abundance of Bacillus and tryptophan metabolism-associated genes in the rhizosphere of consortium-inoculated plants. Meanwhile, the consortium increased the relative abundance of indigenous Pseudomonas in rhizosphere soil, providing a synergistic effect on improving soil enzyme activities and thus available nutrients. The available N, P, and K contents in the consortium-inoculated plant rhizosphere were 3.77–28.4% higher than those in non-inoculated samples. This work provided an efficient bacterial consortium and proposed the mode of action by which this consortium improved plant growth and soil fertility. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

28 pages, 9710 KiB  
Article
Evolutionary Algorithms in a Bacterial Consortium of Synthetic Bacteria
by Sara Lledó Villaescusa and Rafael Lahoz-Beltra
Algorithms 2023, 16(12), 571; https://doi.org/10.3390/a16120571 - 17 Dec 2023
Viewed by 2445
Abstract
At present, synthetic biology applications are based on the programming of synthetic bacteria with custom-designed genetic circuits through the application of a top-down strategy. These genetic circuits are the programs that implement a certain algorithm, the bacterium being the agent or shell responsible [...] Read more.
At present, synthetic biology applications are based on the programming of synthetic bacteria with custom-designed genetic circuits through the application of a top-down strategy. These genetic circuits are the programs that implement a certain algorithm, the bacterium being the agent or shell responsible for the execution of the program in a given environment. In this work, we study the possibility that instead of programming synthesized bacteria through a custom-designed genetic circuit, it is the circuit itself which emerges as a result of the evolution simulated through an evolutionary algorithm. This study is conducted by performing in silico experiments in a community composed of synthetic bacteria in which one species or strain behaves as pathogenic bacteria against the rest of the non-pathogenic bacteria that are also part of the bacterial consortium. The goal is the eradication of the pathogenic strain through the evolutionary programming of the agents or synthetic bacteria. The results obtained suggest the plausibility of the evolutionary design of the appropriate genetic circuit resulting from the application of a bottom-up strategy and therefore the experimental feasibility of the evolutionary programming of synthetic bacteria. Full article
(This article belongs to the Collection Feature Paper in Metaheuristic Algorithms and Applications)
Show Figures

Figure 1

23 pages, 1839 KiB  
Review
Plant Growth-Promoting Bacteria of Soil: Designing of Consortia Beneficial for Crop Production
by Anna M. Timofeeva, Maria R. Galyamova and Sergey E. Sedykh
Microorganisms 2023, 11(12), 2864; https://doi.org/10.3390/microorganisms11122864 - 26 Nov 2023
Cited by 24 | Viewed by 4659
Abstract
Plant growth-promoting bacteria are commonly used in agriculture, particularly for seed inoculation. Multispecies consortia are believed to be the most promising form of these bacteria. However, designing and modeling bacterial consortia to achieve desired phenotypic outcomes in plants is challenging. This review aims [...] Read more.
Plant growth-promoting bacteria are commonly used in agriculture, particularly for seed inoculation. Multispecies consortia are believed to be the most promising form of these bacteria. However, designing and modeling bacterial consortia to achieve desired phenotypic outcomes in plants is challenging. This review aims to address this challenge by exploring key antimicrobial interactions. Special attention is given to approaches for developing soil plant growth-promoting bacteria consortia. Additionally, advanced omics-based methods are analyzed that allow soil microbiomes to be characterized, providing an understanding of the molecular and functional aspects of these microbial communities. A comprehensive discussion explores the utilization of bacterial preparations in biofertilizers for agricultural applications, focusing on the intricate design of synthetic bacterial consortia with these preparations. Overall, the review provides valuable insights and strategies for intentionally designing bacterial consortia to enhance plant growth and development. Full article
(This article belongs to the Special Issue Latest Review Papers in Plant Microbe Interactions 2023)
Show Figures

Figure 1

14 pages, 2844 KiB  
Article
Bioaugmentation Potential Investigation Using a Phenol Affinity Analysis of Three Acinetobacter Strains in a Multi-Carbon-Source Condition
by Dezső-Róbert Fikó, Botond Ráduly, István Máthé, Tamás Felföldi, Szabolcs Lányi and Szabolcs Szilveszter
Water 2023, 15(15), 2815; https://doi.org/10.3390/w15152815 - 3 Aug 2023
Cited by 1 | Viewed by 1766
Abstract
Bioaugmentation potential and phenol substrate affinity in a multi-carbon-source condition for three Acinetobacter strains (Acinetobacter towneri CFII-87, Acinetobacter johnsonii CFII-99A and Acinetobacter sp. CFII-98) were demonstrated. First, the phenol biodegradation ability of the strains was analyzed in batch experiments with phenol as [...] Read more.
Bioaugmentation potential and phenol substrate affinity in a multi-carbon-source condition for three Acinetobacter strains (Acinetobacter towneri CFII-87, Acinetobacter johnsonii CFII-99A and Acinetobacter sp. CFII-98) were demonstrated. First, the phenol biodegradation ability of the strains was analyzed in batch experiments with phenol as the sole carbon source. All strains degraded phenol at 100 and 500 mg·L−1 initial concentrations; the maximum specific growth rates were 0.59 and 0.30 d−1 for A. towneri CFII-87, 0.50 and 0.20 d−1 for A. johnsonii CFII-99A, and 0.64 and 0.29 d−1 for A. sp. CFII-98, respectively. For the two tested phenol concentrations, no lag phase was observed for the A. towneri CFII-87 strain, A. sp. CFII-98 presented 4 h and 8 h lag phase, while A. johnsonii CFII-99A presented 3 h and 12 h lag phases. Phenol carbon source dependency of the strains was tested in a multi-carbon-source condition (on phenol-rich synthetic wastewater), both for individual strains and for a consortium prepared as an equal mixture of the three strains. The strains A. towneri CFII-87 and A. sp. CFII-98 and the consortia degraded phenol in 16 h while there was no other significant carbon source consumption during the 48 h trial, as shown by the constant non-phenolic residual chemical oxygen demand (COD) and volatile suspended solids (VSS) concentration after the depletion of phenol. The strain A. johnsonii CFII-99A, however, consumed phenol within 24 h and a further decrease in non-phenolic COD and increase in biomass was also observed upon the depletion of phenol. The highest specific phenol removal rate of 282.11 mg phenol·g VSS∙h−1 was observed in the case of the strain A. towneri CFII-87, followed by A. sp. CFII-98, the consortium and A. johnsonii CFII-99A with 178.84, 146.76 and 141.01 mg phenol·g VSS∙h−1, respectively. Two bacterial strains (A. towneri CFII-87, A. sp. CFII-98) presented a strong affinity to phenol, utilizing it as a primary carbon source, and thus, their use in the bioaugmentation of wastewater bioreactors indicated the viable potential to increase the phenol removal rate of these systems. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 3486 KiB  
Article
Study on the Degradation of a Semi-Synthetic Lignin–Acrylic Acid Hydrogel with Common Bacteria Found in Natural Attenuation Processes
by Humberto D. Jiménez-Torres, Saira L. Hernández-Olmos, Eire Reynaga-Delgado and Eulogio Orozco-Guareño
Polymers 2023, 15(12), 2588; https://doi.org/10.3390/polym15122588 - 6 Jun 2023
Cited by 1 | Viewed by 1968
Abstract
In this study, lignin was chemically modified to promote hydrogel degradation as a source of carbon and nitrogen for a bacterial consortium consisting of P. putida F1, B. cereus and, B. paramycoides. A hydrogel was synthesized using acrylic acid (AA), acrylamide [...] Read more.
In this study, lignin was chemically modified to promote hydrogel degradation as a source of carbon and nitrogen for a bacterial consortium consisting of P. putida F1, B. cereus and, B. paramycoides. A hydrogel was synthesized using acrylic acid (AA), acrylamide (AM), and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and cross-linked with the modified lignin. The structural changes and mass loss in the hydrogel, as well as its final composition, were evaluated as functions of the growth of the selected strains in a culture broth with the powdered hydrogel. The average loss was 18.4% wt. The hydrogel was characterized using FTIR spectroscopy, scanning electronic microscopy (SEM), elemental analysis (EA), and thermogravimetric analysis (TGA) before and after bacterial treatment. FTIR showed that the carboxylic groups present in both the lignin and the acrylic acid of the hydrogel decreased during bacterial growth. The bacteria showed a preference for the biomaterial components of the hydrogel. SEM demonstrated superficial morphological changes in the hydrogel. The results reveal that the hydrogel was assimilated by the bacterial consortium while preserving the water retention capacity of the material and that the microorganisms carried out a partial biodegradation of the hydrogel. The results of the EA and TGA confirm that the bacterial consortium not only degraded the biopolymer (lignin), but also used the synthetic hydrogel as a carbon source to degrade its polymeric chains and modified original properties. This modification with lignin as a crosslinker (which is a waste product of the paper industry) is therefore proposed to promote hydrogel degradation. Full article
(This article belongs to the Topic Recent Advances in Hydrogels)
Show Figures

Figure 1

22 pages, 9370 KiB  
Article
Molecular Docking of Lac_CB10: Highlighting the Great Potential for Bioremediation of Recalcitrant Chemical Compounds by One Predicted Bacteroidetes CopA-Laccase
by Bárbara Bonfá Buzzo, Silvana Giuliatti, Pâmela Aparecida Maldaner Pereira, Elisângela Soares Gomes-Pepe and Eliana Gertrudes de Macedo Lemos
Int. J. Mol. Sci. 2023, 24(12), 9785; https://doi.org/10.3390/ijms24129785 - 6 Jun 2023
Cited by 9 | Viewed by 2415
Abstract
Laccases are multicopper oxidases (MCOs) with a broad application spectrum, particularly in second-generation ethanol biotechnology and the bioremediation of xenobiotics and other highly recalcitrant compounds. Synthetic pesticides are xenobiotics with long environmental persistence, and the search for their effective bioremediation has mobilized the [...] Read more.
Laccases are multicopper oxidases (MCOs) with a broad application spectrum, particularly in second-generation ethanol biotechnology and the bioremediation of xenobiotics and other highly recalcitrant compounds. Synthetic pesticides are xenobiotics with long environmental persistence, and the search for their effective bioremediation has mobilized the scientific community. Antibiotics, in turn, can pose severe risks for the emergence of multidrug-resistant microorganisms, as their frequent use for medical and veterinary purposes can generate constant selective pressure on the microbiota of urban and agricultural effluents. In the search for more efficient industrial processes, some bacterial laccases stand out for their tolerance to extreme physicochemical conditions and their fast generation cycles. Accordingly, to expand the range of effective approaches for the bioremediation of environmentally important compounds, the prospection of bacterial laccases was carried out from a custom genomic database. The best hit found in the genome of Chitinophaga sp. CB10, a Bacteroidetes isolate obtained from a biomass-degrading bacterial consortium, was subjected to in silico prediction, molecular docking, and molecular dynamics simulation analyses. The putative laccase CB10_180.4889 (Lac_CB10), composed of 728 amino acids, with theoretical molecular mass values of approximately 84 kDa and a pI of 6.51, was predicted to be a new CopA with three cupredoxin domains and four conserved motifs linking MCOs to copper sites that assist in catalytic reactions. Molecular docking studies revealed that Lac_CB10 had a high affinity for the molecules evaluated, and the affinity profiles with multiple catalytic pockets predicted the following order of decreasing thermodynamically favorable values: tetracycline (−8 kcal/mol) > ABTS (−6.9 kcal/mol) > sulfisoxazole (−6.7 kcal/mol) > benzidine (−6.4 kcal/mol) > trimethoprim (−6.1 kcal/mol) > 2,4-dichlorophenol (−5.9 kcal/mol) mol. Finally, the molecular dynamics analysis suggests that Lac_CB10 is more likely to be effective against sulfisoxazole-like compounds, as the sulfisoxazole-Lac_CB10 complex exhibited RMSD values lower than 0.2 nm, and sulfisoxazole remained bound to the binding site for the entire 100 ns evaluation period. These findings corroborate that LacCB10 has a high potential for the bioremediation of this molecule. Full article
Show Figures

Figure 1

11 pages, 586 KiB  
Article
Cyanide Biodegradation by a Native Bacterial Consortium and Its Potential for Goldmine Tailing Biotreatment
by María José Alvarado-López, Sofía E. Garrido-Hoyos, María Elena Raynal-Gutiérrez, Elie G. El-Kassis, Víctor M. Luque-Almagro and Genoveva Rosano-Ortega
Water 2023, 15(8), 1595; https://doi.org/10.3390/w15081595 - 20 Apr 2023
Cited by 11 | Viewed by 4489
Abstract
A native cyanide-degrading bacterial consortium was isolated from goldmine tailing sediments. Mine tailings are toxic effluents due to their metal–cyanide complexes. The bacterial consortium was able to degrade an initial sodium cyanide concentration ranging from 5 to 120 mg L−1 in alkaline [...] Read more.
A native cyanide-degrading bacterial consortium was isolated from goldmine tailing sediments. Mine tailings are toxic effluents due to their metal–cyanide complexes. The bacterial consortium was able to degrade an initial sodium cyanide concentration ranging from 5 to 120 mg L−1 in alkaline synthetic wastewater (pH > 9.2), for a maximum of 15 days. The free cyanide biodegradation efficiency was 98% for the highest initial free cyanide concentration tested and followed a first-order kinetic profile, with an estimated kinetic rate constant of 0.12 ± 0.011 d−1. The cyanide-degrading consortium was streaked with serial dilutions on a specific medium (R2A). 16S rRNA gene sequencing and mass spectrometry proteomic fingerprinting of the isolates showed that the bacterial strains belonged to Microbacterium paraoxydans, Brevibacterium casei, Brevundimonas vesicularis, Bacillus cereus and Cellulosimicrobium sp. The first four genera had previously been identified as cyanide-degrading bacteria. Microbacterium and Brevibacterium had previously been found in alkaline conditions, showing resistance to heavy metals. As for Cellulosimicrobium, to our knowledge, this is the first study to implicate it directly or indirectly in cyanide biodegradation. In this research, these genera were identified as functional bacteria for cyanide degradation, and they might be suitable for mine tailing biotechnological tertiary treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

23 pages, 1104 KiB  
Article
A Culturomics-Based Bacterial Synthetic Community for Improving Resilience towards Arsenic and Heavy Metals in the Nutraceutical Plant Mesembryanthemum crystallinum
by Noris J. Flores-Duarte, Eloísa Pajuelo, Enrique Mateos-Naranjo, Salvadora Navarro-Torre, Ignacio D. Rodríguez-Llorente, Susana Redondo-Gómez and José A. Carrasco López
Int. J. Mol. Sci. 2023, 24(8), 7003; https://doi.org/10.3390/ijms24087003 - 10 Apr 2023
Cited by 16 | Viewed by 3682
Abstract
Plant-growth-promoting bacteria (PGPB) help plants thrive in polluted environments and increase crops yield using fewer inputs. Therefore, the design of tailored biofertilizers is of the utmost importance. The purpose of this work was to test two different bacterial synthetic communities (SynComs) from the [...] Read more.
Plant-growth-promoting bacteria (PGPB) help plants thrive in polluted environments and increase crops yield using fewer inputs. Therefore, the design of tailored biofertilizers is of the utmost importance. The purpose of this work was to test two different bacterial synthetic communities (SynComs) from the microbiome of Mesembryanthemum crystallinum, a moderate halophyte with cosmetic, pharmaceutical, and nutraceutical applications. The SynComs were composed of specific metal-resistant plant-growth-promoting rhizobacteria and endophytes. In addition, the possibility of modulating the accumulation of nutraceutical substances by the synergetic effect of metal stress and inoculation with selected bacteria was tested. One of the SynComs was isolated on standard tryptone soy agar (TSA), whereas the other was isolated following a culturomics approach. For that, a culture medium based on M. crystallinum biomass, called Mesem Agar (MA), was elaborated. Bacteria of three compartments (rhizosphere soil, root endophytes, and shoot endophytes) were isolated on standard TSA and MA media, stablishing two independent collections. All bacteria were tested for PGP properties, secreted enzymatic activities, and resistance towards As, Cd, Cu, and Zn. The three best bacteria from each collection were selected in order to produce two different consortiums (denominated TSA- and MA-SynComs, respectively), whose effect on plant growth and physiology, metal accumulation, and metabolomics was evaluated. Both SynComs, particularly MA, improved plant growth and physiological parameters under stress by a mixture of As, Cd, Cu, and Zn. Regarding metal accumulation, the concentrations of all metals/metalloids in plant tissues were below the threshold for plant metal toxicity, indicating that this plant is able to thrive in polluted soils when assisted by metal/metalloid-resistant SynComs and could be safely used for pharmaceutical purposes. Initial metabolomics analyses depict changes in plant metabolome upon exposure to metal stress and inoculation, suggesting the possibility of modulating the concentration of high-value metabolites. In addition, the usefulness of both SynComs was tested in a crop plant, namely Medicago sativa (alfalfa). The results demonstrate the effectiveness of these biofertilizers in alfalfa, improving plant growth, physiology, and metal accumulation. Full article
Show Figures

Figure 1

23 pages, 5350 KiB  
Article
Development of a Multicomponent Microbiological Soil Inoculant and Its Performance in Sweet Potato Cultivation
by Viktor Dávid Nagy, Anuar Zhumakayev, Mónika Vörös, Ádám Bordé, Adrienn Szarvas, Attila Szűcs, Sándor Kocsubé, Péter Jakab, Tamás Monostori, Biljana D. Škrbić, Edina Mohai, Lóránt Hatvani, Csaba Vágvölgyi and László Kredics
Microorganisms 2023, 11(4), 914; https://doi.org/10.3390/microorganisms11040914 - 31 Mar 2023
Cited by 3 | Viewed by 3136
Abstract
The cultivation and consumption of sweet potato (Ipomoea batatas) are increasing globally. As the usage of chemical fertilizers and pest control agents during its cultivation may lead to soil, water and air pollution, there is an emerging need for environment-friendly, biological [...] Read more.
The cultivation and consumption of sweet potato (Ipomoea batatas) are increasing globally. As the usage of chemical fertilizers and pest control agents during its cultivation may lead to soil, water and air pollution, there is an emerging need for environment-friendly, biological solutions enabling increased amounts of healthy crop and efficient disease management. Microbiological agents for agricultural purposes gained increasing importance in the past few decades. Our goal was to develop an agricultural soil inoculant from multiple microorganisms and test its application potential in sweet potato cultivation. Two Trichoderma strains were selected: Trichoderma ghanense strain SZMC 25217 based on its extracellular enzyme activities for the biodegradation of plant residues, and Trichoderma afroharzianum strain SZMC 25231 for biocontrol purposes against fungal plant pathogens. The Bacillus velezensis strain SZMC 24986 proved to be the best growth inhibitor of most of the nine tested strains of fungal species known as plant pathogens, therefore it was also selected for biocontrol purposes against fungal plant pathogens. Arthrobacter globiformis strain SZMC 25081, showing the fastest growth on nitrogen-free medium, was selected as a component with possible nitrogen-fixing potential. A Pseudomonas resinovorans strain, SZMC 25872, was selected for its ability to produce indole-3-acetic acid, which is among the important traits of potential plant growth-promoting rhizobacteria (PGPR). A series of experiments were performed to test the selected strains for their tolerance to abiotic stress factors such as pH, temperature, water activity and fungicides, influencing the survivability in agricultural environments. The selected strains were used to treat sweet potato in two separate field experiments. Yield increase was observed for the plants treated with the selected microbial consortium (synthetic community) in comparison with the control group in both cases. Our results suggest that the developed microbial inoculant has the potential to be used in sweet potato plantations. To the best of our knowledge, this is the first report about the successful application of a fungal-bacterial consortium in sweet potato cultivation. Full article
(This article belongs to the Special Issue Plant Growth-Promoting Microorganisms for Sustainable Agriculture)
Show Figures

Figure 1

16 pages, 2260 KiB  
Article
Production, Application, and Efficacy of Biodefoamers from Bacillus, Aeromonas, Klebsiella, Comamonas spp. Consortium for the Defoamation of Poultry Slaughterhouse Wastewater
by Cynthia Dlangamandla, Seteno K. O. Ntwampe, Moses Basitere, Boredi S. Chidi, Benjamin I. Okeleye and Melody R. Mukandi
Water 2023, 15(4), 655; https://doi.org/10.3390/w15040655 - 8 Feb 2023
Cited by 4 | Viewed by 2584
Abstract
Activated sludge (AS) treatment systems’ major limitation is the nuisance foaming at the surface of the aeration basin in wastewater treatment plants (WWTPs). This foam can be stabilized by biofoamers and surfactants in the wastewater to be treated. In order to control foam, [...] Read more.
Activated sludge (AS) treatment systems’ major limitation is the nuisance foaming at the surface of the aeration basin in wastewater treatment plants (WWTPs). This foam can be stabilized by biofoamers and surfactants in the wastewater to be treated. In order to control foam, synthetic defoamers are used; however, these defoamers are toxic to the environment. This study aimed to optimize the production of biodefoamers by quantifying foam reduction efficiency and foam collapse by the isolate pervasive to poultry slaughterhouse wastewater (PSW). Before their identification and characterization, nine bacterial isolates were isolated and assessed for foam reduction efficiency. These organisms produced minute biodefoamers under various conditions generated on the response surface methodology (RSM). The isolates that produced biodefoamers with high foam reduction efficiency and at a lower foam collapse rate were Bacillus, Aeromonas, Klebsiella, and Commamonas spp. consortia. At 4% (v defoamer/v PSW), the crude defoamers produced by the consortium had 96% foam reduction efficiency at 1.7 mm/s foam collapse rate, which was comparable to 96% foam reduction efficiency and 2.5 mm/s foam collapse rate for active silicone polymer antifoam A/defoamer by Sigma-Aldrich, a synthetic defoamer. At 2.5 mm/s, all of which were achieved at pH 7 and in less than 50 s. The application of the biodefoamer resulted in sludge compacted flocs, with filament protruding flocs observed when a synthetic defoamer was used. The biodefoamer showed the presence of alkane, amine, carboxyl and hydroxyl groups, which indicated a polysaccharide core structure. The 1H NMR analysis further confirmed that the biodefoamers were carbohydrate polymers. This study reports for the first time on the efficiency and comparability of a biodefoamer to a synthetic defoamer. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 1759 KiB  
Article
Enhanced Degradation of Ciprofloxacin in Floating Treatment Wetlands Augmented with Bacterial Cells Immobilized on Iron Oxide Nanoparticles
by Syed Wajid Ali Shah, Mujaddad ur Rehman, Azam Hayat, Razia Tahseen, Sadia Bajwa, Ejazul Islam, Syed Najaf Hasan Naqvi, Ghulam Shabir, Samina Iqbal, Muhammad Afzal and Nabeel Khan Niazi
Sustainability 2022, 14(22), 14997; https://doi.org/10.3390/su142214997 - 13 Nov 2022
Cited by 7 | Viewed by 2798
Abstract
Antibiotic contamination of water is an emerging global issue with severe implications for both public health and the environment. Ciprofloxacin (CIP) is a synthetic fluoroquinolone antibiotic, which is broadly used in human and veterinary medicines around the world to treat various bacterial infections. [...] Read more.
Antibiotic contamination of water is an emerging global issue with severe implications for both public health and the environment. Ciprofloxacin (CIP) is a synthetic fluoroquinolone antibiotic, which is broadly used in human and veterinary medicines around the world to treat various bacterial infections. The presence of CIP in the aquatic environment poses serious health problems to human beings and other living entities. Floating treatment wetland (FTW) is a low-cost and eco-friendly wastewater remediation technology. In the current study, the Canna indica. (Indian shot) was vegetated in a floatable mat to develop FTWs. A consortium of three bacterial strains, Acinetobacter lwoffii ACRH76, Bacillus pumulis C2A1, and Acinetobacter sp. HN3, was immobilized on iron oxide nanoparticles (Fe3O4-NPs) and augmented in the FTWs for the remediation of CIP-contaminated (100 mg/L) water. The augmentation of bacteria (immobilized or free) in the FTWs significantly enhanced the removal of CIP from water. The maximum reduction in CIP (98%), chemical oxygen demand (COD; 90%), biochemical oxygen demand (BOD; 93%) and total organic carbon (TOC; 95%) was observed in FTWs that had Fe3O4-NP supported bacteria. This study reveals that FTWs have a great potential to remove the CIP from contaminated water, albeit its CIP removal efficiency was substantially enhanced by augmentation with Fe3O4-NPs supported bacteria. Full article
Show Figures

Figure 1

12 pages, 1325 KiB  
Article
Surface Properties and Biological Activities on Bacteria Cells by Biobased Surfactants for Antifouling Applications
by Maria da Gloria C. da Silva, Maria Eduarda P. da Silva, Anderson O. de Medeiros, Hugo M. Meira and Leonie A. Sarubbo
Surfaces 2022, 5(3), 383-394; https://doi.org/10.3390/surfaces5030028 - 28 Aug 2022
Cited by 6 | Viewed by 2803
Abstract
Microfouling is the deposition of inorganic and organic material on surfaces and can cause economic losses. This deposition affects the performance of vessels, causes corrosion, clogging of equipment and contaminates the surfaces of medical items and the surface of machinery that handles food; [...] Read more.
Microfouling is the deposition of inorganic and organic material on surfaces and can cause economic losses. This deposition affects the performance of vessels, causes corrosion, clogging of equipment and contaminates the surfaces of medical items and the surface of machinery that handles food; it is controlled by cleaning products that contain synthetic surfactants in their formulations. Biobased products provide a promising basis to produce sustainable chemicals such as surfactants. In the present study, the biobased surfactants glyceryl laurate and hydroxystearic acid were synthesized and evaluated for stability at different pH values, salinity and temperatures. In addition, bioactivity tests against Pseudomonas aeruginosa (UCP 0992) and Bacillus cereus (UCP 1516) were also performed. Biobased surfactants glyceryl laurate and hydroxystearic acid showed excellent stability against temperature, pH, salinity and emulsifying activities for different kinds of oils; prevented bacterial adhesion by almost 100%; and affected the production of EPS by both bacteria and their consortium when compared to a synthetic surfactant SDS. The results showed the potential of these substances for application as an alternative antifouling non-biocide. Full article
Show Figures

Figure 1

15 pages, 1343 KiB  
Article
“Unity and Struggle of Opposites” as a Basis for the Functioning of Synthetic Bacterial Immobilized Consortium That Continuously Degrades Organophosphorus Pesticides
by Elena Efremenko, Nikolay Stepanov, Olga Maslova, Olga Senko, Aysel Aslanli and Ilya Lyagin
Microorganisms 2022, 10(7), 1394; https://doi.org/10.3390/microorganisms10071394 - 11 Jul 2022
Cited by 16 | Viewed by 2132
Abstract
This work was aimed at the development of an immobilized artificial consortium (IMAC) based on microorganisms belonging to the Gram-positive and Gram-negative bacterial cells capable of jointly carrying out the rapid and effective degradation of different organophosphorus pesticides (OPPs): paraoxon, parathion, methyl parathion, [...] Read more.
This work was aimed at the development of an immobilized artificial consortium (IMAC) based on microorganisms belonging to the Gram-positive and Gram-negative bacterial cells capable of jointly carrying out the rapid and effective degradation of different organophosphorus pesticides (OPPs): paraoxon, parathion, methyl parathion, diazinon, chlorpyrifos, malathion, dimethoate, and demeton-S-methyl. A cryogel of poly(vinyl alcohol) was applied as a carrier for the IMAC. After a selection was made between several candidates of the genera Rhodococcus and Pseudomonas, the required combination of two cultures (P. esterophilus and R. ruber) was found. A further change in the ratio between the biomass of the cells inside the granules of IMAC, increasing the packing density of cells inside the same granules and decreasing the size of the granules with IMAC, gave a 225% improvement in the degradation activity of the cell combination. The increase in the velocity and the OPP degradation degree was 4.5 and 16 times greater than the individual P. esterophilus and R. ruber cells, respectively. Multiple uses of the obtained IMAC were demonstrated. The increase in IMAC lactonase activity confirmed the role of the cell quorum in the action efficiency of the synthetic biosystem. The co-inclusion of natural strains in a carrier during immobilization strengthened the IMAC activities without the genetic enhancement of the cells. Full article
(This article belongs to the Special Issue Microbial Biodegradation and Biotransformation)
Show Figures

Figure 1

Back to TopTop