Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = syngeneic tumour models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5952 KB  
Article
P-21 Kinase 1 or 4 Knockout Stimulated Anti-Tumour Immunity Against Pancreatic Cancer by Enhancing Vascular Normalisation
by Arian Ansardamavandi, Chelsea Dumesny, Yi Ma, Li Dong, Sarah Ellis, Ching-Seng Ang, Mehrdad Nikfarjam and Hong He
Int. J. Mol. Sci. 2025, 26(17), 8357; https://doi.org/10.3390/ijms26178357 - 28 Aug 2025
Cited by 1 | Viewed by 837
Abstract
Pancreatic ductal adenocarcinoma (PDA) exhibits diverse molecular aberrancies that contribute to its aggressive behaviour and poor patient survival. P-21-activated kinase 1 (PAK1) and PAK4 drive the tumorigenesis of PDA. However, their roles in tumour vasculature and the impact on immune response are unclear. [...] Read more.
Pancreatic ductal adenocarcinoma (PDA) exhibits diverse molecular aberrancies that contribute to its aggressive behaviour and poor patient survival. P-21-activated kinase 1 (PAK1) and PAK4 drive the tumorigenesis of PDA. However, their roles in tumour vasculature and the impact on immune response are unclear. This study aims to investigate the effects of PAK1 and PAK4 on tumour vasculature, immune cell infiltration, and the connection between using PAK1-knockout (KO), PAK4 KO, and wild-type (WT) PDA cells in cell-based and mouse experiments. Tumour tissues isolated from a syngeneic mouse model were immuno-stained to determine the changes in tumour vasculature and immune cell infiltration/activation, followed by a proteomic study to assess biological processes involved. PAK1KO or PAK4KO suppressed tumour growth by reducing angiogenesis while enhancing vascular normalisation, enhanced the infiltration/activation of T-cells and dendritic cells associated with upregulation of ICAM-1 and VCAM-1 in the tumour microenvironment, and stimulated vascular immune crosstalk via an ICAM-1-mediated mechanism. This was supported by proteomic profiles indicating the regulation of endothelial cell and leukocyte trans-endothelial migration in PAK1- or PAK4-knockout tumours. In conclusion, PAK1KO or PAK4KO enhanced tumour vascular normalisation while reducing angiogenesis, stimulating immune cell infiltration and activation to suppress tumour growth. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

12 pages, 668 KB  
Article
Xenogeneic Testicular Cell Vaccination Induces Long-Term Anti-Cancer Immunity in Mice
by Victor I. Seledtsov, Ayana B. Dorzhieva, Adas Darinskas, Alexei A. von Delwig, Elena A. Blinova and Galina V. Seledtsova
Curr. Issues Mol. Biol. 2025, 47(6), 443; https://doi.org/10.3390/cimb47060443 - 10 Jun 2025
Viewed by 1706
Abstract
Cancer/testis antigen (CTA) gene products are expressed in most malignant tumours, while under normal conditions their expression is primarily restricted to testicular cells. In this study, we investigated the prophylactic application of a xenogeneic (ram-derived) testicular cell (TC) vaccine for cancer prevention in [...] Read more.
Cancer/testis antigen (CTA) gene products are expressed in most malignant tumours, while under normal conditions their expression is primarily restricted to testicular cells. In this study, we investigated the prophylactic application of a xenogeneic (ram-derived) testicular cell (TC) vaccine for cancer prevention in an experimental animal model. C57BL/6 mice were immunised three times with either xenogeneic (ram) or syngeneic (mouse) formaldehyde-fixed spermatogenic tissue-derived cells. Following vaccination, mice were implanted with live B16 melanoma or LLC carcinoma cells. Tumour-bearing mice were subsequently assessed for survival and immunological parameters indicative of anti-cancer immunity. Xenogeneic vaccination with TCs induced cross-reactive immune responses to both B16 melanoma and LLC carcinoma antigens (Ags), as determined by an MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Prophylactic vaccination with xenogeneic TCs (xTCs), but not syngeneic TCs (sTCs), significantly improved survival rates, with 30% of vaccinated mice surviving after LLC carcinoma implantation. The induced immunity was long-lasting as mice implanted with LLC carcinoma cells 3–6 months post-vaccination exhibited prolonged survival. Furthermore, lymphoid cells from surviving vaccinated mice were capable of adoptively transferring anti-cancer immunity to naïve animals, significantly increasing their survival rates upon subsequent LLC carcinoma cell implantation. Vaccinated mice bearing LLC tumours exhibited a reduction in regulatory CD4⁺CD25⁺Foxp3⁺ T cells in the spleen, with no effect observed in the central memory CD4⁺CD44⁺CD62L⁺ T-cell compartment. Moreover, vaccinated mice displayed increased interferon gamma (IFN-γ) levels in the blood, with no significant changes in interleukin-10 (IL-10) levels. Prophylactic vaccination with xenogeneic CTAs effectively induces long-term, stable anti-cancer immunity, demonstrating potential for future immunopreventive strategies. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

12 pages, 2911 KB  
Article
High-Pressure Delivery of Oncolytic Viruses via Needle-Free Injection Preserves Therapeutic Activity
by Aida Said, Huy-Dung Hoang, Nathalie Earl, Xiao Xiang, Nadeem Siddiqui, Marceline Côté and Tommy Alain
Cancers 2023, 15(23), 5655; https://doi.org/10.3390/cancers15235655 - 30 Nov 2023
Cited by 1 | Viewed by 2798
Abstract
Intratumoural delivery of oncolytic viruses (OVs) to solid tumours is currently performed via multiple percutaneous methods of needle injections (NI). In this study, we investigated the potential use of a novel delivery approach, needle-free injection (NFI), to administer OVs to subcutaneous tumours. The [...] Read more.
Intratumoural delivery of oncolytic viruses (OVs) to solid tumours is currently performed via multiple percutaneous methods of needle injections (NI). In this study, we investigated the potential use of a novel delivery approach, needle-free injection (NFI), to administer OVs to subcutaneous tumours. The stability and genetic integrity of several RNA and DNA viruses exposed to high-pressure jet injectors were first evaluated in vitro. We demonstrate that replication competence and infectivity of the viruses remained unchanged after NFI, as compared to traditional NI. Using the oncolytic Vesicular Stomatitis Virus expressing luciferase (VSVΔ51-Luc) in the syngeneic CT26 subcutaneous tumour model, we show that NFI administration not only successfully delivers infectious particles but also increases the dissemination of the virus within the tumour tissues when compared to NI. Furthermore, mice treated with VSVΔ51-Luc by NFI delivery showed similar reduction in tumour growth and survival compared to those with needle-administered virus. These results indicate that NFI represents a novel approach to administer and potentially increase the spread of OVs within accessible solid tumours, highlighting its usefulness in virotherapy. Full article
(This article belongs to the Special Issue Oncolytic Viruses: A Key Step toward Cancer Immunotherapy)
Show Figures

Figure 1

16 pages, 8878 KB  
Article
Inhibition of EphA3 Expression in Tumour Stromal Cells Suppresses Tumour Growth and Progression
by Mary E. Vail, Rae H. Farnsworth, Linda Hii, Stacey Allen, Sakshi Arora, Robin L. Anderson, Ross A. Dickins, Akira Orimo, Sunny Z. Wu, Alexander Swarbrick, Andrew M. Scott and Peter W. Janes
Cancers 2023, 15(18), 4646; https://doi.org/10.3390/cancers15184646 - 20 Sep 2023
Cited by 9 | Viewed by 3663
Abstract
Tumour progression relies on interactions with untransformed cells in the tumour microenvironment (TME), including cancer-associated fibroblasts (CAFs), which promote blood supply, tumour progression, and immune evasion. Eph receptor tyrosine kinases are cell guidance receptors that are most active during development but re-emerge in [...] Read more.
Tumour progression relies on interactions with untransformed cells in the tumour microenvironment (TME), including cancer-associated fibroblasts (CAFs), which promote blood supply, tumour progression, and immune evasion. Eph receptor tyrosine kinases are cell guidance receptors that are most active during development but re-emerge in cancer and are recognised drug targets. EphA3 is overexpressed in a wide range of tumour types, and we previously found expression particularly in stromal and vascular tissues of the TME. To investigate its role in the TME, we generated transgenic mice with inducible shRNA-mediated knockdown of EphA3 expression. EphA3 knockdown was confirmed in aortic mesenchymal stem cells (MSCs), which displayed reduced angiogenic capacity. In mice with syngeneic lung tumours, EphA3 knockdown reduced vasculature and CAF/MSC-like cells in tumours, and inhibited tumour growth, which was confirmed also in a melanoma model. Single cell RNA sequencing analysis of multiple human tumour types confirmed EphA3 expression in CAFs, including in breast cancer, where EphA3 was particularly prominent in perivascular- and myofibroblast-like CAFs. Our results thus indicate expression of the cell guidance receptor EphA3 in distinct CAF subpopulations is important in supporting tumour angiogenesis and tumour growth, highlighting its potential as a therapeutic target. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Graphical abstract

20 pages, 2808 KB  
Article
Core Fucosylation Mediated by the FucT-8 Enzyme Affects TRAIL-Induced Apoptosis and Sensitivity to Chemotherapy in Human SW480 and SW620 Colorectal Cancer Cells
by Rubén López-Cortés, Isabel Correa Pardo, Laura Muinelo-Romay, Almudena Fernández-Briera and Emilio Gil-Martín
Int. J. Mol. Sci. 2023, 24(15), 11879; https://doi.org/10.3390/ijms241511879 - 25 Jul 2023
Cited by 9 | Viewed by 2799
Abstract
Epithelial cells can undergo apoptosis by manipulating the balance between pro-survival and apoptotic signals. In this work, we show that TRAIL-induced apoptosis can be differentially regulated by the expression of α(1,6)fucosyltransferase (FucT-8), the only enzyme in mammals that transfers the α(1,6)fucose residue to [...] Read more.
Epithelial cells can undergo apoptosis by manipulating the balance between pro-survival and apoptotic signals. In this work, we show that TRAIL-induced apoptosis can be differentially regulated by the expression of α(1,6)fucosyltransferase (FucT-8), the only enzyme in mammals that transfers the α(1,6)fucose residue to the pentasaccharide core of complex N-glycans. Specifically, in the cellular model of colorectal cancer (CRC) progression formed using the human syngeneic lines SW480 and SW620, knockdown of the FucT-8-encoding FUT8 gene significantly enhanced TRAIL-induced apoptosis in SW480 cells. However, FUT8 repression did not affect SW620 cells, which suggests that core fucosylation differentiates TRAIL-sensitive premetastatic SW480 cells from TRAIL-resistant metastatic SW620 cells. In this regard, we provide evidence that phosphorylation of ERK1/2 kinases can dynamically regulate TRAIL-dependent apoptosis and that core fucosylation can control the ERK/MAPK pro-survival pathway in which SW480 and SW620 cells participate. Moreover, the depletion of core fucosylation sensitises primary tumour SW480 cells to the combination of TRAIL and low doses of 5-FU, oxaliplatin, irinotecan, or mitomycin C. In contrast, a combination of TRAIL and oxaliplatin, irinotecan, or bevacizumab reinforces resistance of FUT8-knockdown metastatic SW620 cells to apoptosis. Consequently, FucT-8 could be a plausible target for increasing apoptosis and drug response in early CRC. Full article
(This article belongs to the Special Issue Molecular Biomarkers in Cancer and Their Applications)
Show Figures

Graphical abstract

24 pages, 4460 KB  
Article
Preclinical Evaluation of a 64Cu-Based Theranostic Approach in a Murine Model of Multiple Myeloma
by Cassandra Métivier, Patricia Le Saëc, Joëlle Gaschet, Catherine Chauvet, Séverine Marionneau-Lambot, Peter O. Hofgaard, Bjarne Bogen, Julie Pineau, Nathalie Le Bris, Raphaël Tripier, Cyrille Alliot, Férid Haddad, Michel Chérel, Nicolas Chouin, Alain Faivre-Chauvet and Latifa Rbah-Vidal
Pharmaceutics 2023, 15(7), 1817; https://doi.org/10.3390/pharmaceutics15071817 - 25 Jun 2023
Cited by 6 | Viewed by 2958
Abstract
Although the concept of theranostics is neither new nor exclusive to nuclear medicine, it is a particularly promising approach for the future of nuclear oncology. This approach is based on the use of molecules targeting specific biomarkers in the tumour or its microenvironment, [...] Read more.
Although the concept of theranostics is neither new nor exclusive to nuclear medicine, it is a particularly promising approach for the future of nuclear oncology. This approach is based on the use of molecules targeting specific biomarkers in the tumour or its microenvironment, associated with optimal radionuclides which, depending on their emission properties, allow the combination of diagnosis by molecular imaging and targeted radionuclide therapy (TRT). Copper-64 has suitable decay properties (both β+ and β- decays) for PET imaging and potentially for TRT, making it both an imaging and therapy agent. We developed and evaluated a theranostic approach using a copper-64 radiolabelled anti-CD138 antibody, [64Cu]Cu-TE1PA-9E7.4 in a MOPC315.BM mouse model of multiple myeloma. PET imaging using [64Cu]Cu-TE1PA-9E7.4 allows for high-resolution PET images. Dosimetric estimation from ex vivo biodistribution data revealed acceptable delivered doses to healthy organs and tissues, and a very encouraging tumour absorbed dose for TRT applications. Therapeutic efficacy resulting in delayed tumour growth and increased survival without inducing major or irreversible toxicity has been observed with 2 doses of 35 MBq administered at a 2-week interval. Repeated injections of [64Cu]Cu-TE1PA-9E7.4 are safe and can be effective for TRT application in this syngeneic preclinical model of MM. Full article
(This article belongs to the Special Issue Recent Advances in Radiopharmacy)
Show Figures

Figure 1

23 pages, 10884 KB  
Article
Engineering Rapalog-Inducible Genetic Switches Based on Split-T7 Polymerase to Regulate Oncolytic Virus-Driven Production of Tumour-Localized IL-12 for Anti-Cancer Immunotherapy
by Nikolas T. Martin, Mathieu J. F. Crupi, Zaid Taha, Joanna Poutou, Jack T. Whelan, Sydney Vallati, Julia Petryk, Ricardo Marius, Bradley Austin, Taha Azad, Mason Boulanger, Tamara Burgess, Ilson Sanders, Camille Victoor, Bryan C. Dickinson, Jean-Simon Diallo, Carolina S. Ilkow and John C. Bell
Pharmaceuticals 2023, 16(5), 709; https://doi.org/10.3390/ph16050709 - 7 May 2023
Cited by 8 | Viewed by 5039
Abstract
The approval of different cytokines as anti-neoplastic agents has been challenged by dose-limiting toxicities. Although reducing dose levels affords improved tolerability, efficacy is precluded at these suboptimal doses. Strategies combining cytokines with oncolytic viruses have proven to elicit potent survival benefits in vivo, [...] Read more.
The approval of different cytokines as anti-neoplastic agents has been challenged by dose-limiting toxicities. Although reducing dose levels affords improved tolerability, efficacy is precluded at these suboptimal doses. Strategies combining cytokines with oncolytic viruses have proven to elicit potent survival benefits in vivo, despite promoting rapid clearance of the oncolytic virus itself. Herein, we developed an inducible expression system based on a Split-T7 RNA polymerase for oncolytic poxviruses to regulate the spatial and temporal expression of a beneficial transgene. This expression system utilizes approved anti-neoplastic rapamycin analogues for transgene induction. This treatment regimen thus offers a triple anti-tumour effect through the oncolytic virus, the induced transgene, and the pharmacologic inducer itself. More specifically, we designed our therapeutic transgene by fusing a tumour-targeting chlorotoxin (CLTX) peptide to interleukin-12 (IL-12), and demonstrated that the constructs were functional and cancer-selective. We next encoded this construct into the oncolytic vaccinia virus strain Copenhagen (VV-iIL-12mCLTX), and were able to demonstrate significantly improved survival in multiple syngeneic murine tumour models through both localized and systemic virus administration, in combination with rapalogs. In summary, our findings demonstrate that rapalog-inducible genetic switches based on Split-T7 polymerase allow for regulation of the oncolytic virus-driven production of tumour-localized IL-12 for improved anti-cancer immunotherapy. Full article
(This article belongs to the Special Issue AdV and AAV Mediated Gene Delivery)
Show Figures

Graphical abstract

12 pages, 3327 KB  
Article
Functional and Phenotypic Characterisations of Common Syngeneic Tumour Cell Lines as Estrogen Receptor-Positive Breast Cancer Models
by Maria Lambouras, Charlotte Roelofs, Melrine Pereira, Emily Gruber, Jessica L. Vieusseux, Patrick Lanteri, Cameron N. Johnstone, Fenella Muntz, Sandra O’Toole, Lisa M. Ooms, Christina A. Mitchell, Robin L. Anderson and Kara L. Britt
Int. J. Mol. Sci. 2023, 24(6), 5666; https://doi.org/10.3390/ijms24065666 - 16 Mar 2023
Cited by 4 | Viewed by 4234
Abstract
Estrogen receptor-positive breast cancers (ER+ BCas) are the most common form of BCa and are increasing in incidence, largely due to changes in reproductive practices in recent decades. Tamoxifen is prescribed as a component of standard-of-care endocrine therapy for the treatment and [...] Read more.
Estrogen receptor-positive breast cancers (ER+ BCas) are the most common form of BCa and are increasing in incidence, largely due to changes in reproductive practices in recent decades. Tamoxifen is prescribed as a component of standard-of-care endocrine therapy for the treatment and prevention of ER+ BCa. However, it is poorly tolerated, leading to low uptake of the drug in the preventative setting. Alternative therapies and preventatives for ER+ BCa are needed but development is hampered due to a paucity of syngeneic ER+ preclinical mouse models that allow pre-clinical experimentation in immunocompetent mice. Two ER-positive models, J110 and SSM3, have been reported in addition to other tumour models occasionally shown to express ER (for example 4T1.2, 67NR, EO771, D2.0R and D2A1). Here, we have assessed ER expression and protein levels in seven mouse mammary tumour cell lines and their corresponding tumours, in addition to their cellular composition, tamoxifen sensitivity and molecular phenotype. By immunohistochemical assessment, SSM3 and, to a lesser extent, 67NR cells are ER+. Using flow cytometry and transcript expression we show that SSM3 cells are luminal in nature, whilst D2.0R and J110 cells are stromal/basal. The remainder are also stromal/basal in nature; displaying a stromal or basal Epcam/CD49f FACS phenotype and stromal and basal gene expression signatures are overrepresented in their transcript profile. Consistent with a luminal identity for SSM3 cells, they also show sensitivity to tamoxifen in vitro and in vivo. In conclusion, the data indicate that the SSM3 syngeneic cell line is the only definitively ER+ mouse mammary tumour cell line widely available for pre-clinical research. Full article
(This article belongs to the Special Issue Hormone Signaling in Cancers and Cancer-Promoting Pathologies)
Show Figures

Figure 1

10 pages, 1099 KB  
Article
Imaging Memory T-Cells Stratifies Response to Adjuvant Metformin Combined with αPD-1 Therapy
by Julian L. Goggi, Siddesh V. Hartimath, Shivashankar Khanapur, Boominathan Ramasamy, Zan Feng Chin, Peter Cheng, Hui Xian Chin, You Yi Hwang and Edward G. Robins
Int. J. Mol. Sci. 2022, 23(21), 12892; https://doi.org/10.3390/ijms232112892 - 25 Oct 2022
Cited by 5 | Viewed by 2492
Abstract
The low response rates associated with immune checkpoint inhibitor (ICI) use has led to a surge in research investigating adjuvant combination strategies in an attempt to enhance efficacy. Repurposing existing drugs as adjuvants accelerates the pace of cancer immune therapy research; however, many [...] Read more.
The low response rates associated with immune checkpoint inhibitor (ICI) use has led to a surge in research investigating adjuvant combination strategies in an attempt to enhance efficacy. Repurposing existing drugs as adjuvants accelerates the pace of cancer immune therapy research; however, many combinations exacerbate the immunogenic response elicited by ICIs and can lead to adverse immune-related events. Metformin, a widely used type 2 diabetes drug is an ideal candidate to repurpose as it has a good safety profile and studies suggest that metformin can modulate the tumour microenvironment, promoting a favourable environment for T cell activation but has no direct action on T cell activation on its own. In the current study we used PET imaging with [18F]AlF-NOTA-KCNA3P, a radiopharmaceutical specifically targeting KV1.3 the potassium channel over-expressed on active effector memory T-cells, to determine whether combining PD1 with metformin leads to an enhanced immunological memory response in a preclinical colorectal cancer model. Flow cytometry was used to assess which immune cell populations infiltrate the tumours in response to the treatment combination. Imaging with [18F]AlF-NOTA-KCNA3P demonstrated that adjuvant metformin significantly improved anti-PD1 efficacy and led to a robust anti-tumour immunological memory response in a syngeneic colon cancer model through changes in tumour infiltrating effector memory T-cells. Full article
Show Figures

Figure 1

11 pages, 1781 KB  
Article
Imaging Effector Memory T-Cells Predicts Response to PD1-Chemotherapy Combinations in Colon Cancer
by Julian L. Goggi, Shivashankar Khanapur, Siddesh V. Hartimath, Boominathan Ramasamy, Peter Cheng, Hui-Xian Chin, Jun-Rong Tang, You-Yi Hwang and Edward G. Robins
Biomedicines 2022, 10(10), 2343; https://doi.org/10.3390/biomedicines10102343 - 20 Sep 2022
Cited by 3 | Viewed by 2267
Abstract
Often, patients fail to respond to immune checkpoint inhibitor (ICI) treatment despite favourable biomarker status. Numerous chemotherapeutic agents have been shown to promote tumour immunogenicity when used in conjunction with ICIs; however, little is known about whether such combination therapies lead to a [...] Read more.
Often, patients fail to respond to immune checkpoint inhibitor (ICI) treatment despite favourable biomarker status. Numerous chemotherapeutic agents have been shown to promote tumour immunogenicity when used in conjunction with ICIs; however, little is known about whether such combination therapies lead to a lasting immune response. Given the potential toxicity of ICI–chemotherapy combinations, identification of biomarkers that accurately predict how individuals respond to specific treatment combinations and whether these responses will be long lasting is of paramount importance. In this study, we explored [18F]AlF-NOTA-KCNA3P, a peptide radiopharmaceutical that targets the Kv1.3 potassium channel overexpressed on T-effector memory (TEM) cells as a PET imaging biomarker for lasting immunological memory response. The first-line colon cancer chemotherapies oxaliplatin and 5-fluorouracil were assessed in a syngeneic colon cancer model, either as monotherapies or in combination with PD1, comparing radiopharmaceutical uptake to memory-associated immune cells in the tumour. [18F]AlF-NOTA-KCNA3P reliably separated tumours with immunological memory responses from non-responding tumours and could be used to measure Kv1.3-expressing TEM cells responsible for durable immunological memory response to combination therapy in vivo. Full article
Show Figures

Figure 1

17 pages, 3001 KB  
Article
OATD-02 Validates the Benefits of Pharmacological Inhibition of Arginase 1 and 2 in Cancer
by Marcin Mikołaj Grzybowski, Paulina Seweryna Stańczak, Paulina Pomper, Roman Błaszczyk, Bartłomiej Borek, Anna Gzik, Julita Nowicka, Karol Jędrzejczak, Joanna Brzezińska, Tomasz Rejczak, Nazan Cemre Güner-Chalimoniuk, Agnieszka Kikulska, Michał Mlącki, Jolanta Pęczkowicz-Szyszka, Jacek Olczak, Adam Gołębiowski, Karolina Dzwonek, Paweł Dobrzański and Zbigniew Zasłona
Cancers 2022, 14(16), 3967; https://doi.org/10.3390/cancers14163967 - 17 Aug 2022
Cited by 26 | Viewed by 7695
Abstract
Background: Arginases play essential roles in metabolic pathways, determining the fitness of both immune and tumour cells. Along with the previously validated role of ARG1 in cancer, the particular significance of ARG2 as a therapeutic target has emerged as its levels correlate with [...] Read more.
Background: Arginases play essential roles in metabolic pathways, determining the fitness of both immune and tumour cells. Along with the previously validated role of ARG1 in cancer, the particular significance of ARG2 as a therapeutic target has emerged as its levels correlate with malignant phenotype and poor prognosis. These observations unveil arginases, and specifically ARG2, as well-validated and promising therapeutic targets. OATD-02, a new boronic acid derivative, is the only dual inhibitor, which can address the benefits of pharmacological inhibition of arginase 1 and 2 in cancer. Methods: The inhibitory activity of OATD-02 was determined using recombinant ARG1 and ARG2, as well as in a cellular system using primary hepatocytes and macrophages. In vivo antitumor activity was determined in syngeneic models of colorectal and kidney carcinomas (CT26 and Renca, respectively), as well as in an ARG2-dependent xenograft model of leukaemia (K562). Results: OATD-02 was shown to be a potent dual (ARG1/ARG2) arginase inhibitor with a cellular activity necessary for targeting ARG2. Compared to a reference inhibitor with predominant extracellular activity towards ARG1, we have shown improved and statistically significant antitumor efficacy in the CT26 model and an immunomodulatory effect reflected by Treg inhibition in the Renca model. Importantly, OATD-02 had a superior activity when combined with other immunotherapeutics. Finally, OATD-02 effectively inhibited the proliferation of human K562 leukemic cells both in vitro and in vivo. Conclusions: OATD-02 is a potent small-molecule arginase inhibitor with optimal drug-like properties, including PK/PD profile. Excellent activity against intracellular ARG2 significantly distinguishes OATD-02 from other arginase inhibitors. OATD-02 represents a very promising drug candidate for the combined treatment of tumours, and is the only pharmacological tool that can effectively address the benefits of ARG1/ARG2 inhibition. OATD-02 will enter clinical trials in cancer patients in 2022. Full article
(This article belongs to the Topic Advances in Anti-Cancer Drugs)
Show Figures

Figure 1

18 pages, 814 KB  
Article
An Examination of the Anti-Cancer Properties of Plant Cannabinoids in Preclinical Models of Mesothelioma
by Emily K. Colvin, Amanda L. Hudson, Lyndsey L. Anderson, Ramyashree Prasanna Kumar, Iain S. McGregor, Viive M. Howell and Jonathon C. Arnold
Cancers 2022, 14(15), 3813; https://doi.org/10.3390/cancers14153813 - 5 Aug 2022
Cited by 11 | Viewed by 9749
Abstract
Mesothelioma is an aggressive cancer with limited treatment options and a poor prognosis. Phytocannabinoids possess anti-tumour and palliative properties in multiple cancers, however their effects in mesothelioma are unknown. We investigated the anti-cancer effects and potential mechanisms of action for several phytocannabinoids in [...] Read more.
Mesothelioma is an aggressive cancer with limited treatment options and a poor prognosis. Phytocannabinoids possess anti-tumour and palliative properties in multiple cancers, however their effects in mesothelioma are unknown. We investigated the anti-cancer effects and potential mechanisms of action for several phytocannabinoids in mesothelioma cell lines. A panel of 13 phytocannabinoids inhibited growth of human (MSTO and H2452) and rat (II-45) mesothelioma cells in vitro, and cannabidiol (CBD) and cannabigerol (CBG) were the most potent compounds. Treatment with CBD or CBG resulted in G0/G1 arrest, delayed entry into S phase and induced apoptosis. CBD and CBG also significantly reduced mesothelioma cell migration and invasion. These effects were supported by changes in the expression of genes associated with the cell cycle, proliferation, and cell movement following CBD or CBG treatment. Gene expression levels of CNR1, GPR55, and 5HT1A also increased with CBD or CBG treatment. However, treatment with CBD or CBG in a syngeneic orthotopic rat mesothelioma model was unable to increase survival. Our data show that cannabinoids have anti-cancer effects on mesothelioma cells in vitro and alternatives of drug delivery may be needed to enhance their effects in vivo. Full article
(This article belongs to the Special Issue Recent Research on Mesothelioma)
Show Figures

Graphical abstract

12 pages, 1514 KB  
Article
Imaging Kv1.3 Expressing Memory T Cells as a Marker of Immunotherapy Response
by Julian L. Goggi, Shivashankar Khanapur, Boominathan Ramasamy, Siddesh V. Hartimath, Tang Jun Rong, Peter Cheng, Yun Xuan Tan, Xin Yi Yeo, Sangyong Jung, Stephanie Shee Min Goay, Seow Theng Ong, You Yi Hwang, K. George Chandy and Edward G. Robins
Cancers 2022, 14(5), 1217; https://doi.org/10.3390/cancers14051217 - 26 Feb 2022
Cited by 10 | Viewed by 3668
Abstract
Immune checkpoint inhibitors have shown great promise, emerging as a new pillar of treatment for cancer; however, only a relatively small proportion of recipients show a durable response to treatment. Strategies that reliably differentiate durably-responding tumours from non-responsive tumours are a critical unmet [...] Read more.
Immune checkpoint inhibitors have shown great promise, emerging as a new pillar of treatment for cancer; however, only a relatively small proportion of recipients show a durable response to treatment. Strategies that reliably differentiate durably-responding tumours from non-responsive tumours are a critical unmet need. Persistent and durable immunological responses are associated with the generation of memory T cells. Effector memory T cells associated with tumour response to immune therapies are characterized by substantial upregulation of the potassium channel Kv1.3 after repeated antigen stimulation. We have developed a new Kv1.3 targeting radiopharmaceutical, [18F]AlF-NOTA-KCNA3P, and evaluated whether it can reliably differentiate tumours successfully responding to immune checkpoint inhibitor (ICI) therapy targeting PD-1 alone or combined with CLTA4. In a syngeneic colon cancer model, we compared tumour retention of [18F]AlF-NOTA-KCNA3P with changes in the tumour immune microenvironment determined by flow cytometry. Imaging with [18F]AlF-NOTA-KCNA3P reliably differentiated tumours responding to ICI therapy from non-responding tumours and was associated with substantial tumour infiltration of T cells, especially Kv1.3-expressing CD8+ effector memory T cells. Full article
(This article belongs to the Collection Imaging Biomarker in Oncology)
Show Figures

Figure 1

19 pages, 3006 KB  
Article
Spontaneous Physical Activity in Obese Condition Favours Antitumour Immunity Leading to Decreased Tumour Growth in a Syngeneic Mouse Model of Carcinogenesis
by Delphine Le Guennec, Marie Goepp, Marie-Chantal Farges, Stéphanie Rougé, Marie-Paule Vasson, Florence Caldefie-Chezet and Adrien Rossary
Cancers 2022, 14(1), 59; https://doi.org/10.3390/cancers14010059 - 23 Dec 2021
Cited by 3 | Viewed by 3059
Abstract
Our goal was to evaluate the effect of spontaneous physical activity on tumour immunity during aging. Elderly (n = 10/group, 33 weeks) ovariectomized C57BL/6J mice fed a hyperlipidic diet were housed in standard (SE) or enriched (EE) environments. After 4 weeks, orthotopic [...] Read more.
Our goal was to evaluate the effect of spontaneous physical activity on tumour immunity during aging. Elderly (n = 10/group, 33 weeks) ovariectomized C57BL/6J mice fed a hyperlipidic diet were housed in standard (SE) or enriched (EE) environments. After 4 weeks, orthotopic implantation of syngeneic mammary cancer EO771 cells was performed to explore the immune phenotyping in the immune organs and the tumours, as well as the cytokines in the tumour and the plasma. EE lowered circulating myostatin, IL-6 and slowed down tumour growth. Spleen and inguinal lymph node weights reduced in relation to SE. Within the tumours, EE induced a lower content of lymphoid cells with a decrease in Th2, Treg and MDCS; and, conversely, a greater quantity of Tc and TAMs. While no change in tumour NKs cells occurred, granzyme A and B expression increased as did that of perforin 1. Spontaneous physical activity in obese conditions slowed tumour growth by decreasing low-grade inflammation, modulating immune recruitment and efficacy within the tumour. Full article
Show Figures

Figure 1

17 pages, 8515 KB  
Article
Deletion of Col15a1 Modulates the Tumour Extracellular Matrix and Leads to Increased Tumour Growth in the MMTV-PyMT Mouse Mammary Carcinoma Model
by Guillermo Martínez-Nieto, Ritva Heljasvaara, Anne Heikkinen, Hanne-Kaisa Kaski, Raman Devarajan, Otto Rinne, Charlotta Henriksson, Emmi Thomson, Camilla von Hertzen, Ilkka Miinalainen, Heli Ruotsalainen, Taina Pihlajaniemi and Sanna-Maria Karppinen
Int. J. Mol. Sci. 2021, 22(18), 9978; https://doi.org/10.3390/ijms22189978 - 15 Sep 2021
Cited by 17 | Viewed by 4134
Abstract
Basement membrane (BM) zone-associated collagen XV (ColXV) has been shown to suppress the malignancy of tumour cells, and its restin domain can inhibit angiogenesis. In human breast cancer, as well as in many other human carcinomas, ColXV is lost from the epithelial BM [...] Read more.
Basement membrane (BM) zone-associated collagen XV (ColXV) has been shown to suppress the malignancy of tumour cells, and its restin domain can inhibit angiogenesis. In human breast cancer, as well as in many other human carcinomas, ColXV is lost from the epithelial BM zone prior to tumour invasion. Here, we addressed the roles of ColXV in breast carcinogenesis using the transgenic MMTV-PyMT mouse mammary carcinoma model. We show here for the first time that the inactivation of Col15a1 in mice leads to changes in the fibrillar tumour matrix and to increased mammary tumour growth. ColXV is expressed by myoepithelial and endothelial cells in mammary tumours and is lost from the ductal BM along with the loss of the myoepithelial layer during cancer progression while persisting in blood vessels and capillaries, even in invasive tumours. However, despite the absence of anti-angiogenic restin domain, neovascularisation was reduced rather than increased in the ColXV-deficient mammary tumours compared to controls. We also show that, in robust tumour cell transplantation models or in a chemical-induced fibrosarcoma model, the inactivation of Col15a1 does not affect tumour growth or angiogenesis. In conclusion, our results support the proposed tumour suppressor function of ColXV in mammary carcinogenesis and reveal diverse roles of this collagen in different cancer types. Full article
(This article belongs to the Special Issue Extracellular Matrix in the Tumor Microenvironment)
Show Figures

Figure 1

Back to TopTop