Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,764)

Search Parameters:
Keywords = sustainability concept

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1937 KiB  
Article
Intelligent Rebar Optimization Framework for Urban Transit Infrastructure: A Case Study of a Diaphragm Wall in a Singapore Mass Rapid Transit Station
by Daniel Darma Widjaja and Sunkuk Kim
Smart Cities 2025, 8(4), 130; https://doi.org/10.3390/smartcities8040130 (registering DOI) - 7 Aug 2025
Abstract
As cities densify, deep underground infrastructure construction such as mass rapid transit (MRT) systems increasingly demand smarter, digitalized, and more sustainable approaches. RC diaphragm walls, essential to these systems, present challenges due to complex rebar configurations, spatial constraints, and high material usage and [...] Read more.
As cities densify, deep underground infrastructure construction such as mass rapid transit (MRT) systems increasingly demand smarter, digitalized, and more sustainable approaches. RC diaphragm walls, essential to these systems, present challenges due to complex rebar configurations, spatial constraints, and high material usage and waste, factors that contribute significantly to carbon emissions. This study presents an AI-assisted rebar optimization framework to improve constructability and reduce waste in MRT-related diaphragm wall construction. The framework integrates the BIM concept with a custom greedy hybrid Python-based metaheuristic algorithm based on the WOA, enabling optimization through special-length rebar allocation and strategic coupler placement. Unlike conventional approaches reliant on stock-length rebars and lap splicing, this approach incorporates constructability constraints and reinforcement continuity into the optimization process. Applied to a high-density MRT project in Singapore, it demonstrated reductions of 19.76% in rebar usage, 84.57% in cutting waste, 17.4% in carbon emissions, and 14.57% in construction cost. By aligning digital intelligence with practical construction requirements, the proposed framework supports smart city goals through resource-efficient practices, construction innovation, and urban infrastructure decarbonization. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
28 pages, 566 KiB  
Article
How Do Performance Shortfalls Shape on Entrepreneurial Orientation? The Role of Managerial Overconfidence and Myopia
by Xiaolong Liu and Yi Xie
Sustainability 2025, 17(15), 7154; https://doi.org/10.3390/su17157154 - 7 Aug 2025
Abstract
In an era of rapid technological advancement—particularly with the accelerated development of artificial intelligence and digital technologies—entrepreneurship enables firms to dynamically adjust their strategies in response to environmental uncertainty and helps them maintain sustainable competitive advantages over time. As a key concept in [...] Read more.
In an era of rapid technological advancement—particularly with the accelerated development of artificial intelligence and digital technologies—entrepreneurship enables firms to dynamically adjust their strategies in response to environmental uncertainty and helps them maintain sustainable competitive advantages over time. As a key concept in entrepreneurship research, entrepreneurial orientation (EO) has long attracted scholarly attention. However, existing studies on EO have primarily focused on its specific outcomes, while insufficient attention has been paid to its antecedents from the perspective of internal threats. Under the threat of performance shortfalls, firms’ strategic choices are influenced not only by resource constraints but also by managerial cognitive biases. Drawing on Behavioral Theory of the Firm, we explore the moderating roles of managerial overconfidence and myopia in the relationship between performance shortfalls and EO. This study aims to uncover the cognitive “black box” behind why some firms are more likely to trigger entrepreneurial behavior in adverse situations. Based on panel data from 2822 A-share listed companies in China spanning the period from 2009 to 2020, and using a fixed-effects regression model, our findings indicate that both historical and social performance shortfalls have significant positive effects on EO. Further analysis reveals that the positive impact of performance shortfalls on EO is attenuated under conditions of heightened managerial overconfidence and myopia. By enriching the boundary conditions of EO from a cognitive perspective, this study provides a theoretical explanation for how firms can engage in entrepreneurial behavior under threat by reducing cognitive biases, thereby offering both theoretical and managerial insights into how firms can maintain sustainable development under crisis conditions. Full article
Show Figures

Figure 1

14 pages, 646 KiB  
Review
The Role of Sensor Technologies in Estrus Detection in Beef Cattle: A Review of Current Applications
by Inga Merkelytė, Artūras Šiukščius and Rasa Nainienė
Animals 2025, 15(15), 2313; https://doi.org/10.3390/ani15152313 - 7 Aug 2025
Abstract
Modern beef cattle reproductive management faces increasing challenges due to the growing global demand for beef. Reproductive efficiency is a critical factor determining the productivity and profitability of beef cattle operations. Optimal reproductive performance in a beef cattle herd is achieved when each [...] Read more.
Modern beef cattle reproductive management faces increasing challenges due to the growing global demand for beef. Reproductive efficiency is a critical factor determining the productivity and profitability of beef cattle operations. Optimal reproductive performance in a beef cattle herd is achieved when each cow produces one calf per year, maintaining a calving interval of 365 days. However, this goal is difficult to achieve, as the gestation period in beef cows lasts approximately 280 days, leaving only 80–85 days for successful conception. Traditional methods, such as visual estrus detection, are becoming increasingly unreliable due to expanding herd sizes and the subjectivity of visual observation. Additionally, silent estrus—where ovulation occurs without noticeable behavioral changes—further complicates the accurate estrous-based identification of the optimal insemination period. To enhance reproductive efficiency, advanced technologies are increasingly being integrated into cattle management. Sensor-based monitoring systems, including accelerometers, pedometers, and ruminoreticular boluses, enable the precise tracking of activity changes associated with the estrous cycle. Furthermore, infrared thermography offers a non-invasive method for detecting body temperature fluctuations, allowing for more accurate estrus identification and optimized timing of insemination. The use of these innovative technologies has the potential to significantly improve reproductive efficiency in beef cattle herds and contribute to overall farm productivity and sustainability. The objective of this review is to examine advancements in smart technologies applied to beef cattle reproductive management, presenting commercially available technologies and recent scientific studies on innovative systems. The focus is on sensor-based monitoring systems and infrared thermography for optimizing reproduction. Additionally, the challenges associated with these technologies and their potential to enhance reproductive efficiency and sustainability in the beef cattle industry are discussed. Despite the benefits of advanced technologies, their implementation in cattle farms is hindered by financial and technical challenges. High initial investment costs and the complexity of data analysis may limit their adoption, particularly in small and medium-sized farms. However, the continuous development of these technologies and their adaptation to farmers’ needs may significantly contribute to more efficient and sustainable reproductive management in beef cattle production. Full article
(This article belongs to the Special Issue Reproductive Management Strategies for Dairy and Beef Cows)
Show Figures

Figure 1

39 pages, 5974 KiB  
Article
Metamodeling Approach to Sociotechnical Systems’ External Context Digital Twins Building: A Higher Education Case Study
by Ana Perisic, Ines Perisic, Marko Lazic and Branko Perisic
Appl. Sci. 2025, 15(15), 8708; https://doi.org/10.3390/app15158708 - 6 Aug 2025
Abstract
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of [...] Read more.
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of the underlying technical system. The fact that the relevant social concepts are more mature than the supporting technologies qualifies the digital transformation of sociotechnical systems as a reengineering rather than an engineering endeavor. Preserving the social mission throughout the digital transformation process in varying social contexts is mandatory, making the digital twins (DT) methodology application a contemporary research hotspot. In this research, we combined continuous transformation STS theory principles, an observer-based system-of-sociotechnical-systems (SoSTS) architecture model, and digital twinning methods to address common STS context representation challenges. Additionally, based on model-driven systems engineering methodology and meta-object-facility principles, the research specifies the universal meta-concepts and meta-modeling templates, supporting the creation of arbitrary sociotechnical systems’ external context digital twins. Due to the inherent diversity, significantly influenced by geopolitical, economic, and cultural influencers, a higher education external context specialization illustrates the reusability potentials of the proposed universal meta-concepts. Substituting higher-education-related meta-concepts and meta-models with arbitrary domain-dependent specializations further fosters the proposed universal meta-concepts’ reusability. Full article
Show Figures

Figure 1

19 pages, 276 KiB  
Article
Science Education as a Pathway to Sustainable Awareness: Teachers’ Perceptions on Fostering Understanding of Humans and the Environment: A Qualitative Study
by Ali Al-Barakat, Rommel AlAli, Sarah Alotaibi, Jawaher Alrashood, Ali Abdullatif and Ashraf Zaher
Sustainability 2025, 17(15), 7136; https://doi.org/10.3390/su17157136 - 6 Aug 2025
Abstract
Sustainability education has become a global priority in educational systems, aiming to equip learners with the knowledge, values, and skills necessary to address complex environmental and social challenges. This study specifically aims to understand the role of science education in promoting students’ awareness [...] Read more.
Sustainability education has become a global priority in educational systems, aiming to equip learners with the knowledge, values, and skills necessary to address complex environmental and social challenges. This study specifically aims to understand the role of science education in promoting students’ awareness of sustainability and their understanding of the interconnected relationship between humans and the environment, based on the perceptions and practices of primary science teachers in Al-Ahsa, Saudi Arabia. A qualitative approach was utilized, which included semi-structured interviews complemented by classroom observations as primary data collection instruments. The targeted participants comprised a purposive sample consisting of forty-nine primary-level science instructors from the Al-Ahsa district, located in eastern Saudi Arabia. Emergent concepts from open and axial coding processes by using grounded theory were developed with the gathered data. Based on the findings, teachers perceive science teaching not only as knowledge delivery but as an opportunity to cultivate critical thinking and nurture eco-friendly actions among pupils. Classroom practices that underscore environmental values and principles of sustainability foster a transformative view of the teacher’s role beyond traditional boundaries. The data also highlighted classroom practices that integrate environmental values and sustainability principles, reflecting a transformative perspective on the teacher’s educational role. Full article
17 pages, 1105 KiB  
Systematic Review
Teaching and Learning of Time in Early Mathematics Education: A Systematic Literature Review
by Jorryt van Bommel and Maria Walla
Educ. Sci. 2025, 15(8), 1003; https://doi.org/10.3390/educsci15081003 - 6 Aug 2025
Abstract
This systematic literature review investigates how the concept of time is taught and learned in early mathematics education. While young children are commonly expected to learn how to tell time, this review explores what additional aspects should be emphasised to foster a deeper [...] Read more.
This systematic literature review investigates how the concept of time is taught and learned in early mathematics education. While young children are commonly expected to learn how to tell time, this review explores what additional aspects should be emphasised to foster a deeper and more sustainable understanding of time. Using the EBSCO database, 36 relevant articles published up to December 2024 were identified. To cover different aspects related to the teaching and learning of time, peer-reviewed scientific articles as well as practice-based reports were included in the search. A majority of the articles focused on clock reading as an aspect of time. The aspects duration, sequencing, and measurement of time also frequently appeared whereas expressions of time, or cross-disciplinary aspects were seldom mentioned. Drawing on the findings, this review proposes a comprehensive framework outlining key aspects that should be included in early mathematics education to support the teaching and learning of time. Full article
Show Figures

Figure 1

24 pages, 8197 KiB  
Article
Reuse of Decommissioned Tubular Steel Wind Turbine Towers: General Considerations and Two Case Studies
by Sokratis Sideris, Charis J. Gantes, Stefanos Gkatzogiannis and Bo Li
Designs 2025, 9(4), 92; https://doi.org/10.3390/designs9040092 - 6 Aug 2025
Abstract
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach [...] Read more.
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach is deemed far more efficient than ordinary steel recycling, due to the fact that it contributes towards reducing both the cost of the new project and the associated carbon emissions. Along these lines, the feasibility of utilizing steel wind turbine towers (WTTs) as part of a new structure is investigated herein, considering that wind turbines are decommissioned after a nominal life of approximately 25 years due to fatigue limitations. General principles of structural steel reuse are first presented in a systematic manner, followed by two case studies. Realistic data about the geometry and cross-sections of previous generation models of WTTs were obtained from the Greek Center for Renewable Energy Sources and Savings (CRES), including drawings and photographic material from their demonstrative wind farm in the area of Keratea. A specific wind turbine was selected that is about to exceed its life expectancy and will soon be decommissioned. Two alternative applications for the reuse of the tower were proposed and analyzed, with emphasis on the structural aspects. One deals with the use of parts of the tower as a small-span pedestrian bridge, while the second addresses the transformation of a tower section into a water storage tank. Several decision factors have contributed to the selection of these two reuse scenarios, including, amongst others, the geometric compatibility of the decommissioned wind turbine tower with the proposed applications, engineering intuition about the tower having adequate strength for its new role, the potential to minimize fatigue loads in the reused state, the minimization of cutting and joining processes as much as possible to restrain further CO2 emissions, reduction in waste material, the societal contribution of the potential reuse applications, etc. The two examples are briefly presented, aiming to demonstrate the concept and feasibility at the preliminary design level, highlighting the potential of decommissioned WTTs to find proper use for their future life. Full article
Show Figures

Figure 1

18 pages, 2879 KiB  
Article
Smartphone-Compatible Colorimetric Detection of CA19-9 Using Melanin Nanoparticles and Deep Learning
by Turgut Karademir, Gizem Kaleli-Can and Başak Esin Köktürk-Güzel
Biosensors 2025, 15(8), 507; https://doi.org/10.3390/bios15080507 - 5 Aug 2025
Abstract
Paper-based colorimetric biosensors represent a promising class of low-cost diagnostic tools that do not require external instrumentation. However, their broader applicability is limited by the environmental concerns associated with conventional metal-based nanomaterials and the subjectivity of visual interpretation. To address these challenges, this [...] Read more.
Paper-based colorimetric biosensors represent a promising class of low-cost diagnostic tools that do not require external instrumentation. However, their broader applicability is limited by the environmental concerns associated with conventional metal-based nanomaterials and the subjectivity of visual interpretation. To address these challenges, this study introduces a proof-of-concept platform—using CA19-9 as a model biomarker—that integrates naturally derived melanin nanoparticles (MNPs) with machine learning-based image analysis to enable environmentally sustainable and analytically robust colorimetric quantification. Upon target binding, MNPs induce a concentration-dependent color transition from yellow to brown. This visual signal was quantified using a machine learning pipeline incorporating automated region segmentation and regression modeling. Sensor areas were segmented using three different algorithms, with the U-Net model achieving the highest accuracy (average IoU: 0.9025 ± 0.0392). Features extracted from segmented regions were used to train seven regression models, among which XGBoost performed best, yielding a Mean Absolute Percentage Error (MAPE) of 17%. Although reduced sensitivity was observed at higher analyte concentrations due to sensor saturation, the model showed strong predictive accuracy at lower concentrations, which are especially challenging for visual interpretation. This approach enables accurate, reproducible, and objective quantification of colorimetric signals, thereby offering a sustainable and scalable alternative for point-of-care diagnostic applications. Full article
(This article belongs to the Special Issue AI-Enabled Biosensor Technologies for Boosting Medical Applications)
Show Figures

Figure 1

17 pages, 1869 KiB  
Article
Optimization of Stresses near Reinforced Holes in Relation to Sustainable Design of Composite Structural Elements
by Bartosz Miller, Marta Maksymovych, Olesia Maksymovych and Fedir Gagauz
Sustainability 2025, 17(15), 7103; https://doi.org/10.3390/su17157103 - 5 Aug 2025
Abstract
A method for selecting mechanical properties and geometry of reinforcing overlays to increase the strength of composite structural elements with holes has been developed. The method is based on the developed algorithm for calculating stress concentration near holes reinforced with inserted rings or [...] Read more.
A method for selecting mechanical properties and geometry of reinforcing overlays to increase the strength of composite structural elements with holes has been developed. The method is based on the developed algorithm for calculating stress concentration near holes reinforced with inserted rings or glued composite reinforcing overlays. The determination of stresses near holes and overlays is reduced to solving a system of singular integral equations. The kernels of these equations are constructed using Green’s solution, which allows a reduction in the number of equations to four. It is shown that the stress concentration near holes can be significantly reduced by optimizing the thickness, elastic properties, and shape of the overlays. The stress calculations performed based on the three-dimensional theory of elasticity confirmed the reliability of the results obtained within the framework of the plane problem of an anisotropic body. The results obtained, in accordance with the concept of sustainable development, enable the develop simple methods for increasing reliability, reducing material consumption, and reducing the manufacturing and operating costs of composite structures in the aerospace and mechanical engineering industries. Full article
Show Figures

Figure 1

28 pages, 14684 KiB  
Article
SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments
by Athenee Teofilo, Qian (Chayn) Sun and Marco Amati
Smart Cities 2025, 8(4), 128; https://doi.org/10.3390/smartcities8040128 - 4 Aug 2025
Viewed by 176
Abstract
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. [...] Read more.
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. However, their application in solar energy planning remains underexplored. This study introduces SDT4Solar, a novel SDT-based framework designed to integrate city-scale rooftop solar planning through 3D building semantisation, solar modelling, and a unified geospatial database. By leveraging advanced spatial modelling and Internet of Things (IoT) technologies, SDT4Solar facilitates high-resolution 3D solar potential simulations, improving the accuracy and equity of solar infrastructure deployment. We demonstrate the framework through a proof-of-concept implementation in Ballarat East, Victoria, Australia, structured in four key stages: (a) spatial representation of the urban built environment, (b) integration of multi-source datasets into a unified geospatial database, (c) rooftop solar potential modelling using 3D simulation tools, and (d) dynamic visualization and analysis in a testbed environment. Results highlight SDT4Solar’s effectiveness in enabling data-driven, spatially explicit decision-making for rooftop PV deployment. This work advances the role of SDTs in urban energy transitions, demonstrating their potential to optimise efficiency in solar infrastructure planning. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

26 pages, 1697 KiB  
Review
Integrating Climate Risk in Cultural Heritage: A Critical Review of Assessment Frameworks
by Julius John Dimabayao, Javier L. Lara, Laro González Canoura and Steinar Solheim
Heritage 2025, 8(8), 312; https://doi.org/10.3390/heritage8080312 - 4 Aug 2025
Viewed by 247
Abstract
Climate change poses an escalating threat to cultural heritage (CH), driven by intensifying climate-related hazards and systemic vulnerabilities. In response, risk assessment frameworks and methodologies (RAFMs) have emerged to evaluate and guide adaptation strategies for safeguarding heritage assets. This study conducts a state-of-the-art [...] Read more.
Climate change poses an escalating threat to cultural heritage (CH), driven by intensifying climate-related hazards and systemic vulnerabilities. In response, risk assessment frameworks and methodologies (RAFMs) have emerged to evaluate and guide adaptation strategies for safeguarding heritage assets. This study conducts a state-of-the-art (SotA) review of 86 unique RAFMs using a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-guided systematic approach to assess their scope, methodological rigor, alignment with global climate and disaster risk reduction (DRR) frameworks, and consistency in conceptual definitions of hazard, exposure, and vulnerability. Results reveal a growing integration of Intergovernmental Panel on Climate Change (IPCC)-based climate projections and alignment with international policy instruments such as the Sendai Framework and United Nations Sustainable Development Goals (UN SDGs). However, notable gaps persist, including definitional inconsistencies, particularly in the misapplication of vulnerability concepts; fragmented and case-specific methodologies that challenge comparability; and limited integration of intangible heritage. Best practices include participatory stakeholder engagement, scenario-based modeling, and incorporation of multi-scale risk typologies. This review advocates for more standardized, interdisciplinary, and policy-aligned frameworks that enable scalable, culturally sensitive, and action-oriented risk assessments, ultimately strengthening the resilience of cultural heritage in a changing climate. Full article
Show Figures

Figure 1

14 pages, 379 KiB  
Essay
Is Platform Capitalism Socially Sustainable?
by Andrea Fumagalli
Sustainability 2025, 17(15), 7071; https://doi.org/10.3390/su17157071 - 4 Aug 2025
Viewed by 158
Abstract
This theoretical essay aims to analyze some of the socio-economic innovations introduced by Platform Capitalism Specifically, it focuses on two main aspects: first, the digital platform as a radical organizational innovation. Digital platforms represent a structural novelty in the market economy, signaling a [...] Read more.
This theoretical essay aims to analyze some of the socio-economic innovations introduced by Platform Capitalism Specifically, it focuses on two main aspects: first, the digital platform as a radical organizational innovation. Digital platforms represent a structural novelty in the market economy, signaling a new organization of production and labor. Second, the essay examines the role of platforms in directly generating value through the concept of “network value”. To this end, it explores the function of “business intelligence” as a strategic and competitive tool. Finally, the paper discusses the key issues associated with platform capitalism, which could threaten its social sustainability and contribute to economic and financial instability. These issues include the increasing commodification of everyday activities, the devaluation of paid labor in favor of free production driven by platform users (the so-called prosumers), and the emergence of proprietary and financial monopolies. Hence, digital platforms do not inherently ensure comprehensive social and environmental sustainability unless supported by targeted economic policy interventions. Conclusively, it is emphasized that defining robust social welfare frameworks—which account for emerging value creation processes—is imperative. Simultaneously, policymakers must incentivize the proliferation of cooperative platforms capable of fostering experimental circular economy models aligned with ecological sustainability. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

16 pages, 448 KiB  
Essay
The Application of a Social Identity Approach to Measure and Mechanise the Goals, Practices, and Outcomes of Social Sustainability
by Sarah Vivienne Bentley
Soc. Sci. 2025, 14(8), 480; https://doi.org/10.3390/socsci14080480 - 4 Aug 2025
Viewed by 239
Abstract
Today, ‘social sustainability’ is a key feature of many organisations’ environmental, social, and governance strategies, as well as underpinning sustainable development goals. The term refers to the implementation of targets such as reduced societal inequalities, the promotion of social well-being, and the practice [...] Read more.
Today, ‘social sustainability’ is a key feature of many organisations’ environmental, social, and governance strategies, as well as underpinning sustainable development goals. The term refers to the implementation of targets such as reduced societal inequalities, the promotion of social well-being, and the practice of positive community relations. Building a meaningful, accountable, and quantifiable evidence-base from which to translate these high-level concepts into tangible and achievable goals is, however, challenging. The complexities of measuring social capital—often described as a building block of social sustainability—have been documented. The challenge lies in measuring the person, group, or collective in interaction with the context under investigation, whether that be a climate goal, an institution, or a national policy. Social identity theory is a social psychological approach that articulates the processes through which an individual internalises the values, norms, and behaviours of their contexts. Levels of social identification—a concept capturing the state of internalisation—have been shown to be predictive of outcomes as diverse as communication and cognition, trust and citizenship, leadership and compliance, and health and well-being. Applying this perspective to the articulation and measurement of social sustainability provides an opportunity to build an empirical approach with which to reliably translate this high-level concept into achievable outcomes. Full article
(This article belongs to the Section Social Policy and Welfare)
Show Figures

Figure 1

18 pages, 330 KiB  
Essay
Music and Arts in Early Childhood Education: Paths for Professional Development Towards Social and Human Development
by Helena Rodrigues, Ana Isabel Pereira, Paulo Maria Rodrigues, Paulo Ferreira Rodrigues and Angelita Broock
Educ. Sci. 2025, 15(8), 991; https://doi.org/10.3390/educsci15080991 - 4 Aug 2025
Viewed by 209
Abstract
This article examines training itineraries for early childhood education professionals in Portugal, focusing on promoting social and human development through music and the arts for infants. The training models discussed are categorized as short-term and long-term, encompassing both theory and practice through a [...] Read more.
This article examines training itineraries for early childhood education professionals in Portugal, focusing on promoting social and human development through music and the arts for infants. The training models discussed are categorized as short-term and long-term, encompassing both theory and practice through a transdisciplinary approach. Based on initiatives promoted by the Companhia de Música Teatral (CMT) and the Education and Human Development Group of the Centre for the Study of Sociology and Musical Aesthetics (CESEM) at NOVA University Lisbon, the article highlights projects such as: (i) Opus Tutti and GermInArte, developed between 2011 and 2018; (ii) the Postgraduate Course Music in Childhood: Intervention and Research, offered at the University since 2020/21, which integrates art, health, and education, promoting collaborative work between professionals; and (iii) Mil Pássaros (Thousand Birds), developed since 2020, which exemplifies the integration of environmental education and artistic practices. The theoretical basis of these training programs combines neuroscientific and educational evidence, emphasizing the importance of the first years of life for integral development. Studies, such as those by Heckman, reinforce the impact of early investment in children’s development. Edwin Gordon’s Music Learning Theory and Malloch and Trevarthen’s concept of ‘communicative musicality’ structure the design of these courses, recognizing music as a catalyst for cognitive, emotional, and social skills. The transformative role of music and the arts in educational and social contexts is emphasized, in line with the Sustainable Development Goals of the 2030 Agenda, by proposing approaches that articulate creation, intervention, and research to promote human development from childhood onwards. Full article
10 pages, 236 KiB  
Review
The Concept of “Platinum Sensitivity” in Endometrial Cancer
by Shoji Nagao, Atsushi Fujikawa, Ryoko Imatani, Yoshinori Tani, Hirofumi Matsuoka, Naoyuki Ida, Junko Haraga, Chikako Ogawa, Keiichiro Nakamura and Hisashi Masuyama
Cancers 2025, 17(15), 2557; https://doi.org/10.3390/cancers17152557 - 2 Aug 2025
Viewed by 222
Abstract
The concept of “platinum sensitivity” has long guided prognostic assessment and treatment selection in recurrent ovarian cancer. However, the emergence of targeted agents, such as bevacizumab and poly (ADP-ribose) polymerase inhibitors, has complicated its clinical utility. In contrast, emerging evidence suggests that platinum [...] Read more.
The concept of “platinum sensitivity” has long guided prognostic assessment and treatment selection in recurrent ovarian cancer. However, the emergence of targeted agents, such as bevacizumab and poly (ADP-ribose) polymerase inhibitors, has complicated its clinical utility. In contrast, emerging evidence suggests that platinum sensitivity may also be applicable to recurrent endometrial cancer. As in ovarian cancer, a prolonged platinum-free interval (PFI) in recurrent endometrial cancer is associated with an improved efficacy of subsequent platinum-based chemotherapy. The PFI is linearly correlated with the response rate to platinum re-administration, progression-free survival, and overall survival. Patients are typically classified as having platinum-resistant or platinum-sensitive disease based on a PFI cutoff of 6 or 12 months. However, unlike in ovarian cancer—where the duration of response to second-line platinum-based chemotherapy rarely exceeds the prior PFI (~3%)—approximately 30% of patients with recurrent endometrial cancer exhibit a sustained response to platinum rechallenge that extends beyond their preceding PFI. Despite the incorporation of immune checkpoint inhibitors into the treatment landscape of endometrial cancer, the role of platinum sensitivity in clinical decision-making—particularly regarding treatment sequencing and drug selection—remains a critical and unresolved issue. Further research is warranted to elucidate the mechanisms underlying platinum resistance and to guide optimal therapeutic strategies. Full article
(This article belongs to the Special Issue Endometrial Cancer—from Diagnosis to Management)
Back to TopTop