Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (61,600)

Search Parameters:
Keywords = support effectiveness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 2365 KiB  
Article
Federated Unlearning Framework for Digital Twin–Based Aviation Health Monitoring Under Sensor Drift and Data Corruption
by Igor Kabashkin
Electronics 2025, 14(15), 2968; https://doi.org/10.3390/electronics14152968 (registering DOI) - 24 Jul 2025
Abstract
Ensuring data integrity and adaptability in aircraft health monitoring (AHM) is vital for safety-critical aviation systems. Traditional digital twin (DT) and federated learning (FL) frameworks, while effective in enabling distributed, privacy-preserving fault detection, lack mechanisms to remove the influence of corrupted or adversarial [...] Read more.
Ensuring data integrity and adaptability in aircraft health monitoring (AHM) is vital for safety-critical aviation systems. Traditional digital twin (DT) and federated learning (FL) frameworks, while effective in enabling distributed, privacy-preserving fault detection, lack mechanisms to remove the influence of corrupted or adversarial data once these have been integrated into global models. This paper proposes a novel FL–DT–FU framework that combines digital twin-based subsystem modeling, federated learning for collaborative training, and federated unlearning (FU) to support the post hoc correction of compromised model contributions. The architecture enables real-time monitoring through local DTs, secure model aggregation via FL, and targeted rollback using gradient subtraction, re-aggregation, or constrained retraining. A comprehensive simulation environment is developed to assess the impact of sensor drift, label noise, and adversarial updates across a federated fleet of aircraft. The experimental results demonstrate that FU methods restore up to 95% of model accuracy degraded by data corruption, significantly reducing false negative rates in early fault detection. The proposed system further supports auditability through cryptographic logging, aligning with aviation regulatory standards. This study establishes federated unlearning as a critical enabler for resilient, correctable, and trustworthy AI in next-generation AHM systems. Full article
(This article belongs to the Special Issue Artificial Intelligence-Driven Emerging Applications)
18 pages, 1430 KiB  
Article
A Pilot EEG Study on the Acute Neurophysiological Effects of Single-Dose Astragaloside IV in Healthy Young Adults
by Aynur Müdüroğlu Kırmızıbekmez, Mustafa Yasir Özdemir, Alparslan Önder, Ceren Çatı and İhsan Kara
Nutrients 2025, 17(15), 2425; https://doi.org/10.3390/nu17152425 (registering DOI) - 24 Jul 2025
Abstract
Objective: This study aimed to explore the acute neurophysiological effects of a single oral dose of Astragaloside IV (AS-IV) on EEG-measured brain oscillations and cognitive-relevant spectral markers in healthy young adults. Methods: Twenty healthy adults (8 females, 12 males; mean age: [...] Read more.
Objective: This study aimed to explore the acute neurophysiological effects of a single oral dose of Astragaloside IV (AS-IV) on EEG-measured brain oscillations and cognitive-relevant spectral markers in healthy young adults. Methods: Twenty healthy adults (8 females, 12 males; mean age: 23.4±2.1) underwent eyes-closed resting-state EEG recordings before and approximately 90 min after oral intake of 150 mg AS-IV. EEG data were collected using a 21-channel 10–20 system and cleaned via Artifact Subspace Reconstruction and Independent Component Analysis. Data quality was confirmed using a signal-to-noise ratio and 1/f spectral slope. Absolute and relative power values, band ratios, and frontal alpha asymmetry were computed. Statistical comparisons were made using paired t-tests or Wilcoxon signed-rank tests. Results: Absolute power decreased in delta, theta, beta, and gamma bands (p < 0.05) but remained stable for alpha. Relative alpha power increased significantly (p = 0.002), with rises in relative beta, theta, and delta and a drop in relative gamma (p = 0.003). Alpha/beta and theta/beta ratios increased, while delta/alpha decreased. Frontal alpha asymmetry was unchanged. Sex differences were examined in all measures that showed significant changes; however, no sex-dependent effects were found. Conclusions: A single AS-IV dose may acutely modulate brain oscillations, supporting its potential neuroactive properties. Larger placebo-controlled trials, including concurrent psychometric assessments, are needed to verify and contextualize these findings. A single AS-IV dose may acutely modulate brain oscillations, supporting its potential neuroactive properties. Full article
(This article belongs to the Special Issue Dietary Factors and Interventions for Cognitive Neuroscience)
19 pages, 2577 KiB  
Article
Real-Time Geo-Localization for Land Vehicles Using LIV-SLAM and Referenced Satellite Imagery
by Yating Yao, Jing Dong, Songlai Han, Haiqiao Liu, Quanfu Hu and Zhikang Chen
Appl. Sci. 2025, 15(15), 8257; https://doi.org/10.3390/app15158257 - 24 Jul 2025
Abstract
Existing Simultaneous Localization and Mapping (SLAM) algorithms provide precise local pose estimation and real-time scene reconstruction, widely applied in autonomous navigation for land vehicles. However, the odometry of SLAM algorithms exhibits localization drift and error divergence over long-distance operations due to the lack [...] Read more.
Existing Simultaneous Localization and Mapping (SLAM) algorithms provide precise local pose estimation and real-time scene reconstruction, widely applied in autonomous navigation for land vehicles. However, the odometry of SLAM algorithms exhibits localization drift and error divergence over long-distance operations due to the lack of inherent global constraints. In this paper, we propose a real-time geo-localization method for land vehicles, which only relies on a LiDAR-inertial-visual SLAM (LIV-SLAM) and a referenced image. The proposed method enables long-distance navigation without requiring GPS or loop closure, while eliminating accumulated localization errors. To achieve this, the local map constructed by SLAM is real-timely projected onto a downward-view image, and a highly efficient cross modal matching algorithm is proposed to estimate the global position by aligning the projected local image to a geo-referenced satellite image. The cross-modal algorithm leverages dense texture orientation features, ensuring robustness against cross-modal distortion and local scene changes, and supports efficient correlation in the frequency domain for real-time performance. We also propose a novel adaptive Kalman filter (AKF) to integrate the global position provided by the cross-modal matching and the pose estimated by LIV-SLAM. The proposed AKF is designed to effectively handle observation delays and asynchronous updates while simultaneously rejecting the impact of erroneous matches through an Observation-Aware Gain Scaling (OAGS) mechanism. We verify the proposed algorithm through R3LIVE and NCLT datasets, demonstrating superior computational efficiency, reliability, and accuracy compared to existing methods. Full article
(This article belongs to the Special Issue Navigation and Positioning Based on Multi-Sensor Fusion Technology)
74 pages, 5448 KiB  
Review
Multifunctional Fibers for Wound Dressings: A Review
by Ghazaleh Chizari Fard, Mazeyar Parvinzadeh Gashti, Ram K. Gupta, Seyed Ahmad Dehdast, Mohammad Shabani and Alessandro Francisco Martins
Fibers 2025, 13(8), 100; https://doi.org/10.3390/fib13080100 - 24 Jul 2025
Abstract
Wound dressings prevent complications such as infections and potentially severe outcomes, including death, if wounds are left untreated. Wound dressings have evolved from rudimentary coverings made from natural materials to sophisticated, functionalized dressings designed to enhance wound healing and support tissue repair more [...] Read more.
Wound dressings prevent complications such as infections and potentially severe outcomes, including death, if wounds are left untreated. Wound dressings have evolved from rudimentary coverings made from natural materials to sophisticated, functionalized dressings designed to enhance wound healing and support tissue repair more effectively. These materials are often referred to as scaffolds in the literature, with wound dressing scaffolds intended to interact with native skin tissue and support tissue regeneration, whereas conventional wound dressings are designed primarily to protect the wound without directly interacting with the underlying tissue. However, there is a functional overlap between these categories, and the boundary is often blurred due to the increasing multifunctionality of modern wound dressings. This review will focus on developing wound dressings (scaffolds or not) based on fibers, their properties, and applications. Advances in nanomedicine have highlighted significant improvements in wound care by applying electrospun nanofibers that mimic the natural extracellular matrix. Therefore, this review explores recent advances in wound healing physiology, highlights nanofiber-based wound dressing materials developed through electrospinning, and distinguishes conventional dressings from multifunctional wound dressing scaffolds. Full article
(This article belongs to the Special Issue Electrospinning Nanofibers)
13 pages, 538 KiB  
Article
Male Coal Miners’ Shared Work Crew Identity and Their Safety Behavior: A Multilevel Mediation Analysis
by Zhen Hu, Siyi Li, Yuzhong Shen, Changquan He, Carol K. H. Hon and Zhizhou Xu
Sustainability 2025, 17(15), 6762; https://doi.org/10.3390/su17156762 - 24 Jul 2025
Abstract
Coal miners’ unsafe behavior is the primary reason for accidents. This research aims to examine the effect of male coal miners’ shared work crew identity on their safety behavior. A 2-2-1 multilevel mediation model is established based on social identity theory and safety [...] Read more.
Coal miners’ unsafe behavior is the primary reason for accidents. This research aims to examine the effect of male coal miners’ shared work crew identity on their safety behavior. A 2-2-1 multilevel mediation model is established based on social identity theory and safety climate theory. To validate the model, a paper-and-pencil survey with male coal miners was carried out in Henan Province, China. A total of 212 valid responses from male coal miners nested in 53 work crews were secured, and Mplus was used to analyze the data. Results show that work crew safety climate fully mediates the effect of male coal miners’ shared work crew identity on their safety behavior. In theory, the findings support that social identity brings a safety climate. In practice, the findings highlight that making safety part of work crew norms improves male coal miners’ safety behavior. Limitations and future research are also discussed. Full article
(This article belongs to the Special Issue Human Behavior, Psychology and Sustainable Well-Being: 2nd Edition)
32 pages, 3837 KiB  
Article
Physiological and Phytochemical Responses of Calendula officinalis L. to End-of-Day Red/Far-Red and Green Light
by Luisa F. Lozano-Castellanos, Giuseppina Pennisi, Luis Manuel Navas-Gracia, Francesco Orsini, Eva Sánchez-Hernández, Pablo Martín-Ramos and Adriana Correa-Guimaraes
Biology 2025, 14(8), 935; https://doi.org/10.3390/biology14080935 - 24 Jul 2025
Abstract
Calendula officinalis L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile [...] Read more.
Calendula officinalis L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile of hydroponically grown C. officinalis under a constant red/blue light background, compared with a red/blue control without EOD treatment. Morphological, physiological (gas exchange, chlorophyll fluorescence), biochemical (chlorophyll, anthocyanin), and chemical composition (attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and Gas Chromatography-Mass Spectrometry (GC-MS)) were evaluated. EOD G 2h enhanced photosynthetic pigments, anthocyanins, and biomass, while control plants showed higher phenolic content. EOD R:FR induced stem elongation but reduced pigment and metabolite accumulation. GC-MS revealed organ-specific metabolic specialization, with flowers displaying greater chemical diversity than leaves. EOD G favored sesquiterpene diversity in flowers, while EOD R:FR increased nitrogen-containing compounds and unsaturated fatty acids. Vibrational data supported these shifts, with spectral signatures of esters, phenolics, and lipid-related structures. Bioactive compounds, including α-cadinol and carboxylic acids, were identified across treatments. These findings demonstrate that EOD light modulates physiological and metabolic traits in C. officinalis, highlighting EOD G as an enhancer of biomass and phytochemical richness for pharmaceutical applications under controlled conditions. Full article
21 pages, 1797 KiB  
Article
Surface Functionalization of Cellulose-Based Packaging with a New Antimicrobial Decapeptide: A Sustainable Solution to Improve the Quality of Meat Products
by Bruna Agrillo, Rosa Luisa Ambrosio, Valeria Vuoso, Emanuela Galatola, Marta Gogliettino, Monica Ambrosio, Rosarita Tatè, Aniello Anastasio and Gianna Palmieri
Foods 2025, 14(15), 2607; https://doi.org/10.3390/foods14152607 - 24 Jul 2025
Abstract
The need for renewable and eco-friendly materials is driving the increasing demand for biobased polymers for food applications, with cellulose emerging as a promising option due to its degradability and environmental sustainability. Therefore, in the present study, a strategy to obtain cellulose-based materials [...] Read more.
The need for renewable and eco-friendly materials is driving the increasing demand for biobased polymers for food applications, with cellulose emerging as a promising option due to its degradability and environmental sustainability. Therefore, in the present study, a strategy to obtain cellulose-based materials with antimicrobial properties was explored by using a selected antimicrobial peptide named RKT1, which was stably and efficiently tethered to cellulose films via physical adsorption, harnessing the high number of functional groups on the polymeric surface. Firstly, the peptide, identified among the previous or new projected compounds, was structurally and functionally characterized, evidencing high conformational stability under a wide range of environmental conditions and efficient antibacterial activity against the foodborne pathogens Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes and the spoilage bacteria Enterococcus and Pseudomonas koreensis, all isolated from meat products. Moreover, in an extended application, the RKT1-activated cellulose films were tested in vivo on beef carpaccio. The results supported their effectiveness in increasing the shelf life of carpaccio by least two days without affecting its organoleptic properties. Therefore, RKT1, physically adsorbed on cellulose, still retains its activity, and the newly generated biopolymers show potential for use as a green food packaging material. Full article
Show Figures

Figure 1

14 pages, 1765 KiB  
Article
Microfluidic System Based on Flexible Structures for Point-of-Care Device Diagnostics with Electrochemical Detection
by Kasper Marchlewicz, Robert Ziółkowski, Kamil Żukowski, Jakub Krzemiński and Elżbieta Malinowska
Biosensors 2025, 15(8), 483; https://doi.org/10.3390/bios15080483 - 24 Jul 2025
Abstract
Infectious diseases poses a growing public health challenge. The COVID-19 pandemic has further emphasized the urgent need for rapid, accessible diagnostics. This study presents the development of an integrated, flexible point-of-care (POC) diagnostic system for the rapid detection of Corynebacterium diphtheriae, the [...] Read more.
Infectious diseases poses a growing public health challenge. The COVID-19 pandemic has further emphasized the urgent need for rapid, accessible diagnostics. This study presents the development of an integrated, flexible point-of-care (POC) diagnostic system for the rapid detection of Corynebacterium diphtheriae, the pathogen responsible for diphtheria. The system comprises a microfluidic polymerase chain reaction (micro-PCR) device and an electrochemical DNA biosensor, both fabricated on flexible substrates. The micro-PCR platform offers rapid DNA amplification overcoming the time limitations of conventional thermocyclers. The biosensor utilizes specific molecular recognition and an electrochemical transducer to detect the amplified DNA fragment, providing a clear and direct indication of the pathogen’s presence. The combined system demonstrates the effective amplification and detection of a gene fragment from a toxic strain of C. diphtheriae, chosen due to its increasing incidence. The design leverages lab-on-a-chip (LOC) and microfluidic technologies to minimize reagent use, reduce cost, and support portability. Key challenges in microsystem design—such as flow control, material selection, and reagent compatibility—were addressed through optimized fabrication techniques and system integration. This work highlights the feasibility of using flexible, integrated microfluidic and biosensor platforms for the rapid, on-site detection of infectious agents. The modular and scalable nature of the system suggests potential for adaptation to a wide range of pathogens, supporting broader applications in global health diagnostics. The approach provides a promising foundation for next-generation POC diagnostic tools. Full article
(This article belongs to the Special Issue Microfluidics for Sample Pretreatment)
Show Figures

Figure 1

19 pages, 1921 KiB  
Article
Exploration of Phosphoproteins in Acinetobacter baumannii
by Lisa Brémard, Sébastien Massier, Emmanuelle Dé, Nicolas Nalpas and Julie Hardouin
Pathogens 2025, 14(8), 732; https://doi.org/10.3390/pathogens14080732 - 24 Jul 2025
Abstract
Acinetobacter baumannii is a multidrug-resistant bacterium that has gained significant attention in recent years due to its involvement in a growing number of hospital-acquired infections. The World Health Organization has classified it as a critical priority pathogen, underscoring the urgent need for new [...] Read more.
Acinetobacter baumannii is a multidrug-resistant bacterium that has gained significant attention in recent years due to its involvement in a growing number of hospital-acquired infections. The World Health Organization has classified it as a critical priority pathogen, underscoring the urgent need for new therapeutic strategies. Post-translational modifications (PTMs), such as phosphorylation, play essential roles in various bacterial processes, including antibiotic resistance, virulence or biofilm formation. Although proteomics has increasingly enabled their characterization, the identification of phosphorylated peptides remains challenging, primarily due to the enrichment procedures. In this study, we focused on characterizing serine, threonine, and tyrosine phosphorylation in the A. baumannii ATCC 17978 strain. We optimized three parameters for phosphopeptide enrichment using titanium dioxide (TiO2) beads (number of enrichment fractions between the phosphopeptides and TiO2 beads, the quantity peptides and type of loading buffer) to determine the most effective conditions for maximizing phosphopeptide identification. Using this optimized protocol, we identified 384 unique phosphorylation sites across 241 proteins, including 260 novel phosphosites previously unreported in A. baumannii. Several of these phosphorylated proteins are involved in critical bacterial processes such as antimicrobial resistance, biofilm formation or pathogenicity. We discuss these proteins, focusing on the potential functional implications of their phosphorylation. Notably, we identified 34 phosphoproteins with phosphosites localized at functional sites, such as active sites, multimer interfaces, or domains important for structural integrity. Our findings significantly expand the current phosphoproteomic landscape of A. baumannii and support the hypothesis that PTMs, particularly phosphorylation, play a central regulatory role in its physiology and pathogenic potential. Full article
(This article belongs to the Section Bacterial Pathogens)
17 pages, 2978 KiB  
Article
Soluble Oncoimmunome Signatures Predict Muscle Mass Response to Enriched Immunonutrition in Cancer Patients: Subanalysis of a Multicenter Randomized Clinical Trial
by Sara Cuesta-Sancho, Juan José López Gomez, Pedro Pablo García-Luna, David Primo, Antonio J. Martínez-Ortega, Olatz Izaola, Tamara Casañas, Alicia Calleja, David Bernardo and Daniel de Luis
Nutrients 2025, 17(15), 2421; https://doi.org/10.3390/nu17152421 - 24 Jul 2025
Abstract
Background/Objectives: Enriched oral nutritional supplementation (ONS) has been shown to increase muscle mass in cancer patients. This study aims to identify the immunomodulatory effects and predictive biomarkers associated with this intervention. Methods: The soluble levels of 92 immune- and oncology-related mediators were determined [...] Read more.
Background/Objectives: Enriched oral nutritional supplementation (ONS) has been shown to increase muscle mass in cancer patients. This study aims to identify the immunomodulatory effects and predictive biomarkers associated with this intervention. Methods: The soluble levels of 92 immune- and oncology-related mediators were determined before and after an intervention (8 weeks) in 28 patients with cancer receiving either a standard (n = 14) or an enriched ONS (n = 14) using the Olink proteomics analysis pipeline (Olink® Target 96 Immuno-Oncology panel (Uppsala, Sweden)) Results: Patients receiving enriched ONS experienced an average weight gain of 1.4 kg and a muscle mass increase of 2.2 kg after 8 weeks, both statistically significant (p < 0.05), while no such improvements were observed in the standard ONS group. Inflammatory markers TRAIL and LAMP3 were significantly reduced, along with an increase in Gal-1, suggesting lower inflammation and enhanced myogenic differentiation. However, patients who failed to gain muscle mass with the enriched formula showed a more aggressive inflammatory profile, characterized by higher serum levels of soluble MUC16, ARG, and IL12RB1. Interestingly, muscle mass gain could be predicted before the intervention, as responders had lower baseline levels of PGF, CD28, and IL12RB1. These differences were specific to recipients of the enriched ONS, confirming its immunomodulatory effects. Conclusions: Our findings support the use of enriched oral nutritional supplementation (ONS) as an effective strategy not only to enhance caloric and protein intake but also to promote anabolism and preserve muscle mass in cancer patients. The identification of immune profiles suggests that specific biomarkers could be used to predict which patients will benefit most from this type of intervention. This may allow for the implementation of personalized immunonutrition strategies that optimize resource allocation and improve clinical outcomes, particularly in vulnerable populations at risk of cachexia. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

11 pages, 718 KiB  
Article
In Vitro Evaluation of Electrochemotherapy Combined with Sotorasib in Pancreatic Carcinoma Cell Lines Harboring Distinct KRAS Mutations
by Tanja Jesenko, Masa Omerzel, Tina Zivic, Gregor Sersa and Maja Cemazar
Int. J. Mol. Sci. 2025, 26(15), 7165; https://doi.org/10.3390/ijms26157165 - 24 Jul 2025
Abstract
Pancreatic cancer is among the deadliest malignancies, with limited treatment options and poor prognosis. Novel strategies are therefore urgently needed. Sotorasib, a KRAS G12C-specific inhibitor, offers targeted treatment for a small subset of patients with this mutation. Electrochemotherapy (ECT), which enhances the cytotoxicity [...] Read more.
Pancreatic cancer is among the deadliest malignancies, with limited treatment options and poor prognosis. Novel strategies are therefore urgently needed. Sotorasib, a KRAS G12C-specific inhibitor, offers targeted treatment for a small subset of patients with this mutation. Electrochemotherapy (ECT), which enhances the cytotoxicity of chemotherapeutic agents through electroporation-induced membrane permeabilization, has shown promise in various tumor types, including deep-seated malignancies such as pancreatic cancer. Combining ECT with sotorasib may potentiate antitumor effects in KRAS G12C-mutated pancreatic cancer; however, preclinical data on such combinations are lacking. This proof-of-concept study evaluated the cytotoxic effects of ECT using bleomycin (BLM) or cisplatin (CDDP) in combination with sotorasib in KRAS G12C-mutated MIA PaCa-2 and KRAS G12D-mutated PANC-1 pancreatic cancer cell lines. ECT alone significantly reduced cell viability, particularly in MIA PaCa-2 cells, where electric pulses induced approximately 75% cell death. Combining ECT with sotorasib resulted in an additive effect on KRAS G12C-mutated MIA PaCa-2 cells, though no synergy was observed, likely due to the high intrinsic sensitivity to electric pulses. These results support the potential of combining physical and molecular therapies in a subset of pancreatic cancer patients and lay the groundwork for further in vivo studies to optimize treatment parameters and explore clinical translatability. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
22 pages, 4836 KiB  
Article
Time-Variant Instantaneous Unit Hydrograph Based on Machine Learning Pretraining and Rainfall Spatiotemporal Patterns
by Wenyuan Dong, Guoli Wang, Guohua Liang and Bin He
Water 2025, 17(15), 2216; https://doi.org/10.3390/w17152216 - 24 Jul 2025
Abstract
The hydrological response of a watershed is strongly influenced by the spatiotemporal dynamics of rainfall. Rainfall events of similar magnitude can produce markedly different flood processes due to variations in the spatiotemporal patterns of rainfall, posing significant challenges for flood forecasting under complex [...] Read more.
The hydrological response of a watershed is strongly influenced by the spatiotemporal dynamics of rainfall. Rainfall events of similar magnitude can produce markedly different flood processes due to variations in the spatiotemporal patterns of rainfall, posing significant challenges for flood forecasting under complex rainfall scenarios. Traditional methods typically rely on high-resolution or synthetic rainfall data to characterize the scale, direction and velocity of rainstorms, in order to analyze their impact on the flood process. These studies have shown that storms traveling along the main river channel tend to exert the greatest impact on flood processes. Therefore, tracking the movement of the rainfall center along the flow direction, especially when only rain gauge data are available, can reduce model complexity while maintaining forecast accuracy and improving model applicability. This study proposes a machine learning-based time-variable instantaneous unit hydrograph that integrates rainfall spatiotemporal dynamics using quantitative spatial indicators. To overcome limitations of traditional variable unit hydrograph methods, a pre-training and fine-tuning strategy is employed to link the unit hydrograph S-curve with rainfall spatial distribution. First, synthetic pre-training data were used to enable the machine learning model to learn the shape of the S-curve and its general pattern of variation with rainfall spatial distribution. Then, real flood data were employed to learn the actual runoff routing characteristics of the study area. The improved model allows the unit hydrograph to adapt dynamically to rainfall evolution during the flood event, effectively capturing hydrological responses under varying spatiotemporal patterns. The case study shows that the improved model exhibits superior performance across all runoff routing metrics under spatiotemporal rainfall variability. The improved model increased the simulation qualified rate for historical flood events, with significant rainfall center movement during the event from 63% to 90%. This study deepens the understanding of how rainfall dynamics influence watershed response and enhances hourly-scale flood forecasting, providing support for disaster early warning with strong theoretical and practical significance. Full article
Show Figures

Figure 1

26 pages, 564 KiB  
Article
Impact of Virtual Reality Immersion in Biology Classes on Habits of Mind of East Jerusalem Municipality High School Students: Examining Mediating Roles of Self-Regulation, Flow Experience, and Motivation
by Nader Neiroukh and Abedalkarim Ayyoub
Educ. Sci. 2025, 15(8), 955; https://doi.org/10.3390/educsci15080955 - 24 Jul 2025
Abstract
This quantitative study investigates the effects of virtual reality immersion on enhancing scientific habits of mind (critical and creative thinking) through the mediation of flow experience, motivation, and self-regulation in high school biology classes in East Jerusalem. The random multi-stage cluster sample consisted [...] Read more.
This quantitative study investigates the effects of virtual reality immersion on enhancing scientific habits of mind (critical and creative thinking) through the mediation of flow experience, motivation, and self-regulation in high school biology classes in East Jerusalem. The random multi-stage cluster sample consisted of 347 high school students from three schools who learned biology concepts constructively during the first semester using VR-based instruction, complying with the principles of the Cognitive Affective Model of Immersive Learning (CAMIL). The results of PLS-SEM revealed that VRI significantly affected critical and creative thinking directly and indirectly. Cases of partial and complete mediation intervened, showing the effects of mediators on enhancing habits of mind through a sequence of mediation flowing from flow experience through motivation to self-regulation, which functioned as a key intermediary factor in the relationship between virtual reality immersion and habits of mind. Based on the results of the study, the complex structure warrants further investigation. The results of the study suggest that VRI’s impact on critical and creative thinking was intensified through mediation effects. In addition, the findings confirm that flow experience and motivation played essential roles in fostering a conducive learning environment that supports cognitive skill development. The results highlight that the enhancement of self-regulation was a necessary step for the enhancement of critical and creative thinking. The study recommends integrating VRI into teaching biology to enhance students’ higher-order thinking skills. Further studies on self-regulation should explore adaptive interventions that strengthen self-regulatory strategies to maximize the cognitive benefits of virtual reality immersion. Full article
20 pages, 1587 KiB  
Article
Sustainability Synergies Between Water Governance and Agrotourism Development in the Semi-Arid Climate: A Case Study of Esmeraldas Province, Ecuador
by Eliana Ivanova Cuero Espinoza, Qudus Adeyi, Mirza Junaid Ahmad, Hwa-Seok Hwang and Kyung-Sook Choi
Water 2025, 17(15), 2215; https://doi.org/10.3390/w17152215 - 24 Jul 2025
Abstract
Effective water governance is essential for sustainable development amidst water scarcity challenges in semi-arid regions like Esmeraldas Province, which has substantial agrotourism potential. Yet, fragmented governance and chronic water shortages threaten its viability. Using a mixed-method approach, this study analyzed how sustainable water [...] Read more.
Effective water governance is essential for sustainable development amidst water scarcity challenges in semi-arid regions like Esmeraldas Province, which has substantial agrotourism potential. Yet, fragmented governance and chronic water shortages threaten its viability. Using a mixed-method approach, this study analyzed how sustainable water governance can support agrotourism development in Esmeraldas Province, Ecuador. This study combined policy gaps analysis, stakeholder surveys (policymakers, farmers, community leaders, and tourism operators), and water availability using the Standardized Precipitation Evapotranspiration Index (SPEI) from 1980 to 2022. The results revealed a lack of policy regulation and water infrastructure as the major governance gaps that need more intervention. The survey respondents indicated that water is mainly used for domestic and economic activities and the conservation of natural ecosystems. The SPEI revealed a significant drought trend falling below −3, with severe drought years coinciding with many crop losses and a fall in tourism. This study highlights the interconnection between water governance and agrotourism in Esmeraldas, Ecuador, proposing a strategic framework that incorporates adaptive governance principles and inclusive participation mechanisms, emphasizing targeted capacity building to strengthen water management practices and enhance the Sustainable Development Goals for agrotourism resilience. Full article
(This article belongs to the Special Issue Water: Economic, Social and Environmental Analysis)
27 pages, 3560 KiB  
Review
Antimicrobial Potential of Nanomaterials Synthesized with Extracts from Annona Plants: A Review
by Yared Gutiérrez-Pinzón, Alma Hortensia Martínez-Preciado, José Miguel Velázquez-López, Cristina Pech-Jiménez, Víctor Manuel Zúñiga-Mayo, Santiago José Guevara-Martínez and Gilberto Velázquez-Juárez
Antibiotics 2025, 14(8), 748; https://doi.org/10.3390/antibiotics14080748 - 24 Jul 2025
Abstract
Plants of the Annona genus have garnered increasing scientific interest due to their rich phytochemical profile and broad spectrum of biological activities, which include antimicrobial, antiproliferative, and cytotoxic effects. Among the most studied compounds are acetogenins and Annonacins, which exhibit potent bioactivity [...] Read more.
Plants of the Annona genus have garnered increasing scientific interest due to their rich phytochemical profile and broad spectrum of biological activities, which include antimicrobial, antiproliferative, and cytotoxic effects. Among the most studied compounds are acetogenins and Annonacins, which exhibit potent bioactivity and have been identified as key agents in the green synthesis and stabilization of nanomaterials. In recent years, the integration of Annona plant extracts—particularly from leaves—into nanotechnology platforms has opened new avenues in the development of eco-friendly and biocompatible nanostructures for biomedical applications. This review provides a comprehensive overview of the current knowledge regarding the antimicrobial properties of nanomaterials synthesized using extracts from Annona species. This review encompasses 74 indexed articles published between 2012 and 2023, focusing on the synthesis of nanomaterials using extracts from this genus that exhibit antimicrobial and biomedical properties. The search was conducted in databases such as Google Scholar, Web of Science, and Scopus. Emphasis is placed on their antibacterial, antifungal, and anthelmintic effects, as well as additional therapeutic potentials, such as antidiabetic, antihypertensive, antiproliferative, and cytotoxic activities. The analysis of the recent literature highlights how Annona-derived phytochemicals contribute significantly to the functionalization and enhanced biological performance of these nanomaterials. This work aims to support future research focused on the rational design of Annona-based nanostructures as promising candidates in antimicrobial and therapeutic strategies. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Secondary Metabolites Produced in Nature)
Show Figures

Graphical abstract

Back to TopTop