Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = supercritical impregnation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2599 KiB  
Article
Enhancement of Dimensional Stability, Hydrophobicity, and Mechanical Strength of North American Red Alder Wood Through Silane Impregnation Combined with DES Pretreatment
by Yang Zheng, Ting Zhou, Chenyang Cai and Honghai Liu
Forests 2025, 16(7), 1152; https://doi.org/10.3390/f16071152 - 12 Jul 2025
Viewed by 240
Abstract
Wood is a green and renewable bio-based building material, but its hygroscopicity affects its dimensional stability, limiting its use in construction. Chemical modification can improve its properties, yet its effectiveness depends on wood permeability and traditional modifiers. This study first used a deep [...] Read more.
Wood is a green and renewable bio-based building material, but its hygroscopicity affects its dimensional stability, limiting its use in construction. Chemical modification can improve its properties, yet its effectiveness depends on wood permeability and traditional modifiers. This study first used a deep eutectic solvent (DES) to boost the permeability of North American alder wood. Then, methyl trimethoxysilane was impregnated under supercritical carbon dioxide (SCI), pressure (PI), vacuum (VI), and atmospheric pressure (AI) conditions. DES treatment damaged the cell structure, increasing wood permeability. Silane was deposited and polymerized in the cell lumen, chemically bonding with cell-wall components, filling walls and pits, and thickening walls. The VI group had the highest absolute density (0.59 g/cm3, +36.6%) and the lowest moisture absorption (4.4%, −33.3%). The AI group had the highest ASE (25%). The PI group showed the highest surface hardness (RL, 2592 N) and a water contact angle of 131.9°, much higher than natural wood. Overall, the VI group had the best performance. Silane reacts with cellulose, hemicellulose, and lignin in wood via hydrolysis and hydroxyl bonding, forming stable bonds that enhance the treated wood’s hydrophobicity, dimensional stability, and surface hardness. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

25 pages, 5468 KiB  
Article
Supercritical Impregnation of Olive Leaf Extract in Poly(L-lactic acid-co-caprolactone) Filaments: An Environmentally Friendly Approach to Obtaining Active Biomedical Materials
by Juan Ramón Montes-Lobato, Noelia D. Machado, Cristina Cejudo-Bastante, Casimiro Mantell-Serrano and Lourdes Casas-Cardoso
Polymers 2025, 17(11), 1464; https://doi.org/10.3390/polym17111464 - 25 May 2025
Viewed by 630
Abstract
The valorization of by-products in the olive sector has increasingly become the focus of business and research in the context of biorefineries. This work evaluates the recovery of bioactive compounds from olive leaves and their subsequent incorporation into poly(L-lactic- acid-co-caprolactone) (PLCL) filaments through [...] Read more.
The valorization of by-products in the olive sector has increasingly become the focus of business and research in the context of biorefineries. This work evaluates the recovery of bioactive compounds from olive leaves and their subsequent incorporation into poly(L-lactic- acid-co-caprolactone) (PLCL) filaments through supercritical impregnation. Obtaining an olive leaf extract (OLE) using enhanced solvent extraction at a high pressure (ESE with CO2/ethanol 1:1 v/v) resulted in higher yields and concentrations of bioactives with high antioxidant and anti-inflammatory activity. No significant differences were found between the extracts obtained with different water regimes (irrigated and dry land). The supercritical impregnation of PLCL filaments showed that a low depressurization rate is essential to avoid material deformation, while the impregnation pressure and temperature influenced the OLE loading and antioxidant activity of the filaments. In vitro release studies showed the prolonged release of active compounds over 90 days, and the kinetics best fit the Korsmeyer–Peppas model, suggesting a diffusion mechanism. These results validate supercritical impregnation as a promising strategy for the development of OLE-active PLCL filaments with potential for biomedical applications requiring sustained therapeutic release. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

24 pages, 6184 KiB  
Article
Integration of Complexed Caffeic Acid into Poly(Lactic Acid)-Based Biopolymer Blends by Supercritical CO2-Assisted Impregnation and Foaming: Processing, Structural and Thermal Characterization
by Patricia Rivera, Alejandra Torres, Miguel Pacheco, Julio Romero, Marina P. Arrieta, Francisco Rodríguez-Mercado and Julio Bruna
Polymers 2025, 17(6), 803; https://doi.org/10.3390/polym17060803 - 18 Mar 2025
Cited by 1 | Viewed by 752
Abstract
Conventional techniques for incorporating active ingredients into polymeric matrices are accompanied by certain disadvantages, primarily attributable to the inherent characteristics of the active ingredient itself, including its sensitivity to temperature. A potential solution to these challenges lies in the utilization of supercritical carbon [...] Read more.
Conventional techniques for incorporating active ingredients into polymeric matrices are accompanied by certain disadvantages, primarily attributable to the inherent characteristics of the active ingredient itself, including its sensitivity to temperature. A potential solution to these challenges lies in the utilization of supercritical carbon dioxide (scCO2) for the formation of polymeric foam and the incorporation of active ingredients, in conjunction with the encapsulation of inclusion complexes (ICs), to ensure physical stability and augmented bioactivity. The objective of this study was to assess the impact of IC impregnation and subsequent foam formation on PLA films and PLA/PBAT blends that had been previously impregnated. The study’s methodology encompassed the formation and characterization of ICs with caffeic acid (CA) and β-cyclodextrin (β-CD), along with the thermal, structural, and morphological properties of the resulting materials. Higher incorporation of impregnated IC into the PLA(42)/PBAT(58) blend was observed at 12 MPa pressure and a depressurization rate of 1 MPa/min. The presence of IC, in addition to a lower rate of expansion, contributed to the formation of homogeneous cells with a size range of 4–44 um. On the other hand, the incorporation of IC caused a decrease in the crystallinity of the PLA fraction due to the interaction of the complex with the polymer. This study makes a significant contribution to the advancement of knowledge on the incorporation of compounds encapsulated in β-CD by scCO2, as well as to the development of active materials with potential applications in food packaging. Full article
Show Figures

Figure 1

16 pages, 1777 KiB  
Article
Cloud Point Behavior of Poly(trifluoroethyl methacrylate) in Supercritical CO2–Toluene Mixtures
by James R. Zelaya and Gary C. Tepper
Molecules 2025, 30(6), 1199; https://doi.org/10.3390/molecules30061199 - 7 Mar 2025
Viewed by 801
Abstract
Supercritical CO2 (scCO2) is a versatile solvent for polymer processing; however, many partially fluorinated polymers exhibit limited solubility in neat scCO2. Organic cosolvents such as toluene can enhance polymer–solvent interactions, thereby improving solubility. The cloud point behavior of [...] Read more.
Supercritical CO2 (scCO2) is a versatile solvent for polymer processing; however, many partially fluorinated polymers exhibit limited solubility in neat scCO2. Organic cosolvents such as toluene can enhance polymer–solvent interactions, thereby improving solubility. The cloud point behavior of poly(2,2,2-trifluoroethyl methacrylate) (poly(TFEMA)) at 3 wt% concentration in scCO2–toluene binary mixtures was investigated over a temperature range of 31.5–50 °C and toluene contents of 0–20 wt%. Solvent mixture densities were estimated using the Altuin–Gadetskii–Haar–Gallagher–Kell (AG–HGK) equation of state for CO2 and the Tait equation for toluene. For all compositions, the cloud point pressure was observed to increase linearly with temperature. The cloud point pressure decreased monotonically with increasing toluene concentration and at the highest concentration of 20 wt% was reduced by approximately 40% in comparison to neat scCO2. The addition of toluene lowered the solvent density, but the increase in solvent–solute molecular interactions resulted in the observed decrease in cloud point pressure. Toluene is shown to be an effective cosolvent for dissolving poly(TFEMA) in scCO2, offering a promising approach to lowering operating pressures in fluoropolymer processing. Our results provide valuable phase behavior data for designing scCO2-based extraction, impregnation, and particle formation processes involving poly(TFEMA). Full article
Show Figures

Figure 1

22 pages, 1648 KiB  
Article
Hake Fish Preservation Using Plant-Based Impregnated Polylactic Acid Food Films as Active Packaging
by Fini Sánchez-García, Noelia D. Machado, María Tirado-Fernández, Cristina Cejudo-Bastante, Ana M. Roldán, Casimiro Mantell-Serrano and Lourdes Casas-Cardoso
Appl. Sci. 2025, 15(2), 643; https://doi.org/10.3390/app15020643 - 10 Jan 2025
Cited by 1 | Viewed by 1471
Abstract
Global fish consumption has steadily increased; however, fishery products are difficult to preserve. Active packaging has emerged as an alternative to improve its conservation. In this work, fresh hake fillets were packaged in commercial polylactic acid films impregnated with olive leaf extract using [...] Read more.
Global fish consumption has steadily increased; however, fishery products are difficult to preserve. Active packaging has emerged as an alternative to improve its conservation. In this work, fresh hake fillets were packaged in commercial polylactic acid films impregnated with olive leaf extract using supercritical CO2. The impregnation was performed at 35 °C and 400 bar for 1 h. The ABTS assay was used to determine the antioxidant activity, and migration tests were performed using food simulants A and D2 for 10 days at 5 °C. The fresh fillets were packaged in impregnated and control films and stored for 12 days at 4 °C. The microbiological, physical (drip loss, aw, pH, and color) and chemical parameters (total volatile base and trimethylamine) were analyzed. The impregnated films presented a 706 μg extract mg−1 polymer, showing a 2-fold extract release using food simulant D2 than simulant A. After hake storage using impregnated films, reduced microbial count, and drip loss, maintaining the pH stability was obtained. The color turned yellowish and no detectable olfactory presence of the extract was noted. The chemical parameters were similar in both types of films. The proposed biodegradable packaging with olive by-products preserves moisture and controls microbial growth, representing an eco-friendly alternative. Full article
(This article belongs to the Special Issue Applications of Analytical Chemistry in Food Science)
Show Figures

Figure 1

13 pages, 6743 KiB  
Systematic Review
Advances in Loading Techniques and Quality by Design for Fused Deposition Modeling in Pharmaceutical Production: A Systematic Review
by Yusra Ahmed, Azza A. K. Mahmoud, Krisztina Ludasi and Tamás Sovány
Pharmaceuticals 2024, 17(11), 1496; https://doi.org/10.3390/ph17111496 - 7 Nov 2024
Cited by 3 | Viewed by 1467
Abstract
Background/Objectives: Three-dimensional printing technology has emerging interest in pharmaceutical manufacturing, offering new opportunities for personalized medicine and customized drug delivery systems. Fused deposition modeling (FDM) is highly regarded in the pharmaceutical industry because of its cost effectiveness, easy operation, and versatility in creating [...] Read more.
Background/Objectives: Three-dimensional printing technology has emerging interest in pharmaceutical manufacturing, offering new opportunities for personalized medicine and customized drug delivery systems. Fused deposition modeling (FDM) is highly regarded in the pharmaceutical industry because of its cost effectiveness, easy operation, and versatility in creating pharmaceutical dosage forms. This review investigates different methods of incorporating active pharmaceutical ingredients (APIs) into filament matrices for use in fused deposition modeling (FDM) 3D printing. Methods: Two electronic databases, the Web of Science and PubMed, were utilized to survey the literature. The selected keywords for this review were as follows: fused filament fabrication OR fused deposition modeling OR FDM OR FFF AND 3D printing AND loading techniques OR impregnation techniques AND solid dosage form. Results: This paper evaluates various loading techniques such as soaking, supercritical impregnation, microwave impregnation, and hot-melt extrusion, focusing on their effectiveness and capacity for drug incorporation. Additionally, this review includes a thorough risk assessment of the extrusion process using Ishikawa and SWOT analyses. Conclusions: Overall, this review provides comprehensive insights into the latest advancements in 3D printing for pharmaceutical applications and identifies key areas for future research and development. Full article
(This article belongs to the Special Issue Application of 3D Printing Technologies for Drug Delivery)
Show Figures

Figure 1

20 pages, 4834 KiB  
Article
High-Temperature Behavior of Pd/MgO Catalysts Prepared via Various Sol–Gel Approaches
by Grigory B. Veselov, Danil M. Shivtsov, Ekaterina V. Ilyina, Vladimir O. Stoyanovskii, Andrey V. Bukhtiyarov and Aleksey A. Vedyagin
Gels 2024, 10(11), 698; https://doi.org/10.3390/gels10110698 - 27 Oct 2024
Cited by 1 | Viewed by 1209
Abstract
A series of Pd/MgO catalysts based on nanocrystalline MgO were prepared via different sol–gel approaches. In the first two cases, palladium was introduced during the gel preparation, followed by drying it in supercritical or ambient conditions. In the third case, aerogel-prepared MgO was [...] Read more.
A series of Pd/MgO catalysts based on nanocrystalline MgO were prepared via different sol–gel approaches. In the first two cases, palladium was introduced during the gel preparation, followed by drying it in supercritical or ambient conditions. In the third case, aerogel-prepared MgO was impregnated with an ethanol solution of Pd(NO3)2. The prepared catalysts differ in particle size and oxidation state of palladium. The catalytic performance and thermal stability of the samples were examined in a model reaction of CO oxidation at prompt thermal aging conditions. The as-prepared and aged materials were characterized by low-temperature nitrogen adsorption, UV-vis spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and ethane hydrogenolysis testing reaction. The highest initial activity (T50 = 103 °C) was demonstrated by the impregnated sample, containing Pd0 particles of 3 nm in size. The lowest T50 value (215 °C) after aging at 1000 °C was demonstrated by the impregnated Pd/MgO-WI sample. The high-temperature behavior of the catalysts was found to be affected by the initial oxidation state and dispersion of Pd. Two deactivation mechanisms, such as the agglomeration of Pd particles and migration of small Pd species into the bulk of the MgO support with the formation of Pd-MgO solid solutions, were discussed. Full article
Show Figures

Figure 1

15 pages, 6823 KiB  
Article
Catalytic Biomass Transformation to Hydrocarbons under Supercritical Conditions over Nickel Supported on Schungite
by Elena O. Schipanskaya, Antonina A. Stepacheva, Mariia E. Markova, Alexey V. Bykov, Alexander I. Sidorov, Valentina G. Matveeva, Mikhail G. Sulman and Lioubov Kiwi-Minsker
Processes 2024, 12(7), 1503; https://doi.org/10.3390/pr12071503 - 17 Jul 2024
Cited by 1 | Viewed by 909
Abstract
Liquid fuel production from biomass-derived molecules has received great attention due to the diminished fossil fuel reserves, growing energy demand, and the necessity of CO2 emission reduction. The deoxygenation of oils and fatty acids is a promising process to obtain “green” diesel. [...] Read more.
Liquid fuel production from biomass-derived molecules has received great attention due to the diminished fossil fuel reserves, growing energy demand, and the necessity of CO2 emission reduction. The deoxygenation of oils and fatty acids is a promising process to obtain “green” diesel. Herein, we report the results of the study of the deoxygenation of stearic acid to alkanes as a model reaction. Series of Ni-supported on schungite were obtained by precipitation in subcritical water (hydrothermal deposition) and for comparison via wetness impregnation followed, in both cases, by calcination at 500 °C and a reduction in H2 at 300 °C. The catalyst obtained via hydrothermal synthesis showed a three-fold higher specific surface area with a four-fold higher active phase dispersion compared to the catalysts synthesized via conventional impregnation. The catalysts were tested in stearic acid deoxygenation in supercritical n-hexane as the solvent. Under optimized process conditions (temperature of 280 °C, hydrogen partial pressure of 1.5 MPa, and 13.2 mol of stearic acid per mol of Ni), a close to 100% yield of C10–C18 alkanes, containing over 70 wt.% of targeted n-heptadecane, was obtained after 60 min of reaction. Full article
Show Figures

Figure 1

22 pages, 6589 KiB  
Article
Supercritical Impregnation of PETG with Olea europaea Leaf Extract: Influence of Operational Parameters on Expansion Degree, Antioxidant and Mechanical Properties
by Noelia D. Machado, José E. Mosquera, Cristina Cejudo-Bastante, María L. Goñi, Raquel E. Martini, Nicolás A. Gañán, Casimiro Mantell-Serrano and Lourdes Casas-Cardoso
Polymers 2024, 16(11), 1567; https://doi.org/10.3390/polym16111567 - 1 Jun 2024
Cited by 7 | Viewed by 1557
Abstract
PETG (poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate)) is an amorphous copolymer, biocompatible, recyclable, and versatile. Nowadays, it is being actively researched for biomedical applications. However, proposals of PETG as a platform for the loading of bioactive compounds from natural extract are scarce, as well as the [...] Read more.
PETG (poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate)) is an amorphous copolymer, biocompatible, recyclable, and versatile. Nowadays, it is being actively researched for biomedical applications. However, proposals of PETG as a platform for the loading of bioactive compounds from natural extract are scarce, as well as the effect of the supercritical impregnation on this polymer. In this work, the supercritical impregnation of PETG filaments with Olea europaea leaf extract was investigated, evaluating the effect of pressure (100–400 bar), temperature (35–55 °C), and depressurization rate (5–50 bar min−1) on the expansion degree, antioxidant activity, and mechanical properties of the resulting filaments. PETG expansion degree ranged from ~3 to 120%, with antioxidant loading ranging from 2.28 to 17.96 g per 100 g of polymer, corresponding to oxidation inhibition values of 7.65 and 66.55%, respectively. The temperature and the binary interaction between pressure and depressurization rate most affected these properties. The mechanical properties of PETG filaments depended greatly on process variables. Tensile strength values were similar or lower than the untreated filaments. Young’s modulus and elongation at break values decreased below ~1000 MPa and ~10%, respectively, after the scCO2 treatment and impregnation. The extent of this decrease depended on the supercritical operational parameters. Therefore, filaments with higher antioxidant activity and different expansion degrees and mechanical properties were obtained by adjusting the supercritical processing conditions. Full article
(This article belongs to the Special Issue Additive Manufacturing of (Bio) Polymeric Materials)
Show Figures

Figure 1

17 pages, 7364 KiB  
Article
Assessing the Use of Supercritical Carbon Dioxide as a Carrier for Alkoxysilanes to Consolidate Degraded PUR Ester Foams: An Alternative to Traditional Methods
by Inês Soares, Carolina Viana, Angelica Bartoletti, Susana França de Sá, Anita Quye, Yvonne Shashoua, Teresa Casimiro and Joana Lia Ferreira
Sustainability 2024, 16(11), 4375; https://doi.org/10.3390/su16114375 - 22 May 2024
Viewed by 1516
Abstract
Degradation of ester-based polyurethane (PUR) foams results in extensive fragmentation, stickiness, and brittleness both at surfaces and in the bulk. Current methods to conserve museum objects comprising PUR foams include consolidation with solvent-based polymeric solutions. Besides the limitations of spray and brush application [...] Read more.
Degradation of ester-based polyurethane (PUR) foams results in extensive fragmentation, stickiness, and brittleness both at surfaces and in the bulk. Current methods to conserve museum objects comprising PUR foams include consolidation with solvent-based polymeric solutions. Besides the limitations of spray and brush application for deep consolidant penetration and the impracticality of immersing large-scale objects in solutions, these methods often require large amounts of toxic solvents that are harmful for both the user and environment. Carbon dioxide can be employed as a green solvent as it can be recovered, recycled, and reused without contributing to the greenhouse effect. Supercritical carbon dioxide (scCO2)-assisted consolidation premises are that it may carry the consolidant deeper and deposit it consistently throughout the foam, whilst ensuring minimal interaction with the surface and avoiding material losses in severely degraded objects and the use of toxic solvents. The suitability of scCO2 as a carrier is studied, and the results compared with spray application, a commonly used traditional method. Previous studies have shown that a mixture of alkoxysilanes has great potential for reinforcing the foam’s structure and hydrophobicity when applied by immersion and other impregnation techniques. In this study, scCO2-assisted consolidation has proven to be an effective and green alternative to consolidation by spray, reducing hazardous solvent emissions. After treatment, no visual changes were detected, the samples became less sticky, and the foam flexibility improved significantly. Analytical techniques confirmed the presence of the consolidant in all tested samples, both on the top surface and in-depth layers, in contrast to foams treated by spray. Full article
Show Figures

Graphical abstract

19 pages, 64307 KiB  
Article
Morphological 3D Analysis of PLGA/Chitosan Blend Polymer Scaffolds and Their Impregnation with Olive Pruning Residues via Supercritical CO2
by Ignacio García-Casas, Diego Valor, Hafsa Elayoubi, Antonio Montes and Clara Pereyra
Polymers 2024, 16(11), 1451; https://doi.org/10.3390/polym16111451 - 21 May 2024
Cited by 1 | Viewed by 1339
Abstract
Natural extracts, such as those from the residues of the Olea europaea industry, offer an opportunity for use due to their richness in antioxidant compounds. These compounds can be incorporated into porous polymeric devices with huge potential for tissue engineering such as bone, [...] Read more.
Natural extracts, such as those from the residues of the Olea europaea industry, offer an opportunity for use due to their richness in antioxidant compounds. These compounds can be incorporated into porous polymeric devices with huge potential for tissue engineering such as bone, cardiovascular, osteogenesis, or neural applications using supercritical CO2. For this purpose, polymeric scaffolds of biodegradable poly(lactic-co-glycolic acid) (PLGA) and chitosan, generated in situ by foaming, were employed for the supercritical impregnation of ethanolic olive leaf extract (OLE). The influence of the presence of chitosan on porosity and interconnectivity in the scaffolds, both with and without impregnated extract, was studied. The scaffolds have been characterized by X-ray computed microtomography, scanning electron microscope, measurements of impregnated load, and antioxidant capacity. The expansion factor decreased as the chitosan content rose, which also occurred when OLE was used. Pore diameters varied, reducing from 0.19 mm in pure PLGA to 0.11 mm in the two experiments with the highest chitosan levels. The connectivity was analyzed, showing that in most instances, adding chitosan doubled the average number of connections, increasing it by a factor of 2.5. An experiment was also conducted to investigate the influence of key factors in the impregnation of the extract, such as pressure (10–30 MPa), temperature (308–328 K), and polymer ratio (1:1–9:1 PLGA/chitosan). Increased pressure facilitated increased OLE loading. The scaffolds were evaluated for antioxidant activity and demonstrated substantial oxidation inhibition (up to 82.5% under optimal conditions) and remarkable potential to combat oxidative stress-induced pathologies. Full article
(This article belongs to the Special Issue Polymer Scaffolds for Tissue Engineering II)
Show Figures

Figure 1

12 pages, 5673 KiB  
Article
Deposition of Pd, Pt, and PdPt Nanoparticles on TiO2 Powder Using Supercritical Fluid Reactive Deposition: Application in the Direct Synthesis of H2O2
by Marlene Crone, Laura L. Trinkies, Roland Dittmeyer and Michael Türk
Molecules 2024, 29(9), 2142; https://doi.org/10.3390/molecules29092142 - 5 May 2024
Cited by 1 | Viewed by 1611
Abstract
In this study, we investigated the catalytic properties of mono- and bimetallic palladium (Pd) and platinum (Pt) nanoparticles deposited via supercritical fluid reactive deposition (SFRD) on titanium dioxide (TiO2) powder. Transmission electron microscopy analyses verified that SFRD experiments performed at 353 [...] Read more.
In this study, we investigated the catalytic properties of mono- and bimetallic palladium (Pd) and platinum (Pt) nanoparticles deposited via supercritical fluid reactive deposition (SFRD) on titanium dioxide (TiO2) powder. Transmission electron microscopy analyses verified that SFRD experiments performed at 353 K and 15.6 MPa enabled the deposition of uniform mono- and bimetallic nanoparticles smaller than 3 nm on TiO2. Electron-dispersive X-ray spectroscopy demonstrated the formation of alloy-type structures for the bimetallic PdPt nanoparticles. H2O2 is an excellent oxidizing reagent for the production of fine and bulk chemicals. However, until today, the design and preparation of catalysts with high H2O2 selectivity and productivity remain a great challenge. The focus of this study was on answering the questions of (a) whether the catalysts produced are suitable for the direct synthesis of hydrogen peroxide (H2O2) in the liquid phase and (b) how the metal type affects the catalytic properties. It was found that the metal type (Pd or Pt) influenced the catalytic performance strongly; the mean productivity of the mono- and bimetallic catalysts decreased in the following order: Pd > PdPt > Pt. Furthermore, all catalysts prepared by SFRD showed a significantly higher mean productivity compared to the catalyst prepared by incipient wetness impregnation. Full article
(This article belongs to the Special Issue Processing of Materials by Supercritical Fluids—Part II)
Show Figures

Graphical abstract

23 pages, 3679 KiB  
Article
Effect of Operational Variables on Supercritical Foaming of Caffeic Acid-Loaded Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends for the Development of Sustainable Materials
by Patricia Rivera, Alejandra Torres, Julio Romero, Álvaro Alarcón, Sara Martínez, Marina P. Arrieta, Francisco Rodríguez-Mercado and María José Galotto
Polymers 2024, 16(7), 948; https://doi.org/10.3390/polym16070948 - 30 Mar 2024
Cited by 3 | Viewed by 2054
Abstract
Expanded polystyrene will account for 5.3% of total global plastic production in 2021 and is widely used for food packaging due to its excellent moisture resistance and thermal insulation. However, some of these packages are often used only once before being discarded, generating [...] Read more.
Expanded polystyrene will account for 5.3% of total global plastic production in 2021 and is widely used for food packaging due to its excellent moisture resistance and thermal insulation. However, some of these packages are often used only once before being discarded, generating large amounts of environmentally harmful plastic waste. A very attractive alternative to the conventional methods used for polymer processing is the use of supercritical carbon dioxide (scCO2) since it has mass-transfer properties adapted to the foam morphology, generating different path lengths for the diffusion of active compounds within its structure and can dissolve a wide range of organic molecules under supercritical conditions. The objective of this research was to evaluate the effect of operational variables on the process of caffeic acid (CA) impregnation and subsequent foaming of polylactic acid (PLA) as well as two PLA/poly(butylene-co-terephthalate-adipate) (PBAT) blends using scCO2. The results showed an increase in the degree of crystallinity of the CA-impregnated samples due to the nucleation effect of the active compound. On the other hand, SEM micrographs of both films and foams showed significant differences due to the presence of PBAT and its low miscibility with PLA. Finally, the results obtained in this work contribute to the knowledge of the important parameters to consider for the implementation of the impregnation and foaming process of PLA and PLA/PBAT blends with potential use in food packaging. Full article
(This article belongs to the Special Issue Polymer Foam and Its Engineering Application)
Show Figures

Figure 1

26 pages, 8687 KiB  
Article
Catalytic Supercritical Water Gasification of Canola Straw with Promoted and Supported Nickel-Based Catalysts
by Kapil Khandelwal and Ajay K. Dalai
Molecules 2024, 29(4), 911; https://doi.org/10.3390/molecules29040911 - 19 Feb 2024
Cited by 7 | Viewed by 2205
Abstract
Lignocellulosic biomass such as canola straw is produced as low-value residue from the canola processing industry. Its high cellulose and hemicellulose content makes it a suitable candidate for the production of hydrogen via supercritical water gasification. However, supercritical water gasification of lignocellulosic biomass [...] Read more.
Lignocellulosic biomass such as canola straw is produced as low-value residue from the canola processing industry. Its high cellulose and hemicellulose content makes it a suitable candidate for the production of hydrogen via supercritical water gasification. However, supercritical water gasification of lignocellulosic biomass such as canola straw suffers from low hydrogen yield, hydrogen selectivity, and conversion efficiencies. Cost-effective and sustainable catalysts with high catalytic activity for supercritical water gasification are increasingly becoming a focal point of interest. In this research study, novel wet-impregnated nickel-based catalysts supported on carbon-negative hydrochar obtained from hydrothermal liquefaction (HTL-HC) and hydrothermal carbonization (HTC-HC) of canola straw, along with other nickel-supported catalysts such as Ni/Al2O3, Ni/ZrO2, Ni/CNT, and Ni/AC, were synthesized for gasification of canola straw on previously optimized reaction conditions of 500 °C, 60 min, 10 wt%, and 23–25 MPa. The order of hydrogen yield for the six supports was (10.5 mmol/g) Ni/ZrO2 > (9.9 mmol/g) Ni/Al2O3 > (9.1 mmol/g) Ni/HTL-HC > (8.8 mmol/g) Ni/HTC-HC > (7.7 mmol/g) Ni/AC > (6.8 mmol/g) Ni/CNT, compared to 8.1 mmol/g for the non-catalytic run. The most suitable Ni/ZrO2 catalyst was further modified using promotors such as K, Zn, and Ce, and the performance of the promoted Ni/ZrO2 catalysts was evaluated. Ni-Ce/ZrO2 showed the highest hydrogen yield of 12.9 mmol/g, followed by 12.0 mmol/g for Ni-Zn/ZrO2 and 11.6 mmol/g for Ni-K/ZrO2. The most suitable Ni-Ce/ZrO2 catalysts also demonstrated high stability over their repeated use. The superior performance of the Ni-Ce/ZrO2 was due to its high nickel dispersion, resilience to sintering, high thermal stability, and oxygen storage capabilities to minimize coke deposition. Full article
(This article belongs to the Special Issue Advances in Thermochemical Conversion of Solid Wastes)
Show Figures

Figure 1

14 pages, 15483 KiB  
Article
Continuous Supercritical Water Impregnation Method for the Preparation of Metal Oxide on Activated Carbon Composite Materials
by Florentina Maxim, Elena-Ecaterina Toma, Giuseppe-Stefan Stoian, Cristian Contescu, Irina Atkinson, Christian Ludwig and Speranta Tanasescu
Energies 2024, 17(4), 913; https://doi.org/10.3390/en17040913 - 16 Feb 2024
Cited by 1 | Viewed by 1415
Abstract
Metal oxide (MexOy) nanomaterials are used as catalysts and/or sorbents in processes taking place in supercritical water (scH2O), which is the “green” solvent needed to obtain energy-relevant products. Their properties are significantly influenced by the synthesis method [...] Read more.
Metal oxide (MexOy) nanomaterials are used as catalysts and/or sorbents in processes taking place in supercritical water (scH2O), which is the “green” solvent needed to obtain energy-relevant products. Their properties are significantly influenced by the synthesis method used to prepare active MexOy. In addition, the use of supported MexOy nanoparticles is more practical and cost-effective in terms of their performance maintenance. Within this context, the present study reports on the preparation of carbon-supported ZnO and CuO composites using an innovative scH2O impregnation method. Metal oxides were impregnated on a carbon (C) support using a continuous-flow tubular reactor. The results show that impregnation in scH2O is a promising approach for the preparation of ZnO/C and CuO/C composite materials. This one-step synthesis method, in a continuous flow, uses neither a seed layer nor a mineralizer, and it needs substantially lower preparation times than conventional impregnation methods. Full article
(This article belongs to the Special Issue Emerging Topics in Future Energy Materials)
Show Figures

Figure 1

Back to TopTop