Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = subglacial bedrock

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 112289 KiB  
Article
Deep Electrical Resistivity Tomography for Detecting Gravitational Morpho-Structures in the Becca France Area (Aosta Valley, NW Italy)
by Maria Gabriella Forno, Marco Gattiglio, Franco Gianotti, Cesare Comina, Andrea Vergnano and Stefano Dolce
GeoHazards 2024, 5(3), 886-916; https://doi.org/10.3390/geohazards5030045 - 9 Sep 2024
Cited by 1 | Viewed by 1749
Abstract
Deep-seated gravitational slope deformations (DSGSDs) consist of gravity-induced, large-scale, gradual rock mass movements. In the Aosta Valley region (Valle d’Aosta NW Italy), DSGDs affect wide valley slopes and produce several interconnected morpho-structures that involve bedrock and Quaternary cover. Some DSGSD effects are not [...] Read more.
Deep-seated gravitational slope deformations (DSGSDs) consist of gravity-induced, large-scale, gradual rock mass movements. In the Aosta Valley region (Valle d’Aosta NW Italy), DSGDs affect wide valley slopes and produce several interconnected morpho-structures that involve bedrock and Quaternary cover. Some DSGSD effects are not visible at the surface because of subglacial abrasion or burial by sediments and, therefore, are difficult to map with standard geomorphological surveys. This is the case for the Pointe Leysser DSGSD in the Aosta Valley, which is heavily influenced by the historical movements of the Verrogne-Clusellaz Glacier and its tributaries. We conducted a new geological investigation, integrated with deep electrical resistivity tomography geophysical surveys (ERTs). The ERT results were initially compared with geological/geomorphological evidence at the surface to define the correlation between the values and spatial distributions of electrical resistivity and the sediments, rocks, or morpho-structures. The resistivity values at various depths were subsequently analysed, interpreted, and discussed in conjunction with geological hypotheses. The geological and geophysical survey revealed three wide buried glacial valleys filled with glacial sediments and mapped the locations of gravitational morpho-structures at depth. These new data allowed us to draw a relationship between glacialism and gravitational evolution, distinguishing between pre-singlacial movements and postglacial movements. Full article
(This article belongs to the Special Issue Landslide Research: State of the Art and Innovations)
Show Figures

Figure 1

13 pages, 7679 KiB  
Technical Note
Crustal Imaging across the Princess Elizabeth Land, East Antarctica from 2D Gravity and Magnetic Inversions
by Lin Li, Enzhao Xiao, Xiaolong Wei, Ning Qiu, Khalid Latif, Jingxue Guo and Bo Sun
Remote Sens. 2023, 15(23), 5523; https://doi.org/10.3390/rs15235523 - 27 Nov 2023
Cited by 2 | Viewed by 1778
Abstract
The Princess Elizabeth Land landscape in East Antarctica was shaped by a complex process, involving the supercontinent’s breakup and convergence cycle. However, the lack of geological knowledge about the subglacial bedrock has made it challenging to understand this process. Our study aimed to [...] Read more.
The Princess Elizabeth Land landscape in East Antarctica was shaped by a complex process, involving the supercontinent’s breakup and convergence cycle. However, the lack of geological knowledge about the subglacial bedrock has made it challenging to understand this process. Our study aimed to investigate the structural characteristics of the subglacial bedrock in the Mount Brown region, utilizing airborne geophysical data collected from the China Antarctic Scientific Expedition in 2015–2017. We reconstructed bedrock density contrast and magnetic susceptibility models by leveraging Tikhonov regularized gravity and magnetic inversions. The deep bedrock in the inland direction exhibited different physical properties, indicating the presence of distinct basement sources. The east–west discontinuity of bedrock changed in the inland areas, suggesting the possibility of large fault structures or amalgamation belts. We also identified several normal faults in the western sedimentary basin, intersected by the southwest section of these survey lines. Furthermore, lithologic separators and sinistral strike-slip faults may exist in the northeast section, demarcating the boundary between Princess Elizabeth Land and Knox Valley. Our study provides new insights into the subglacial geological structure in this region, highlighting the violent impact of the I-A-A-S (Indo-Australo-Antarctic Suture) on the subglacial basement composition. Additionally, by identifying and describing different bedrock types, our study redefines the potential contribution of this region to the paleocontinent splicing process and East Antarctic basement remodeling. Full article
(This article belongs to the Special Issue Geographic Data Analysis and Modeling in Remote Sensing)
Show Figures

Figure 1

11 pages, 9535 KiB  
Article
Cirques of the Southeastern Tibetan Plateau and Their Links to Climatic and Non-Climatic Factors
by Shengxian Li, Qian Zhang and Jiahan Wang
Int. J. Environ. Res. Public Health 2022, 19(20), 13104; https://doi.org/10.3390/ijerph192013104 - 12 Oct 2022
Cited by 6 | Viewed by 2311
Abstract
Cirque morphology is used to reflect the patterns of paleoclimate, paleoglaciation, and landscape evolution. Cirque study has been conducted in the Gangdise Mountains of the southern Tibetan Plateau (TP) and the central TP (dominated by a weak Indian summer monsoon (ISM) or a [...] Read more.
Cirque morphology is used to reflect the patterns of paleoclimate, paleoglaciation, and landscape evolution. Cirque study has been conducted in the Gangdise Mountains of the southern Tibetan Plateau (TP) and the central TP (dominated by a weak Indian summer monsoon (ISM) or a continental climate). This study focused on the cirques in the southeastern TP, which is dominated by a strong ISM, to analyse the controlling factors on cirque morphology. A total of 361 cirques were mapped in the Taniantaweng Range of the southeastern TP, and their metrics were calculated. The results showed that the cirque sizes increased with temperature and decreased with precipitation, which may be due to the development of valley-type glaciers and the effect of non-climatic factors. The cirques tended to face NE, implying that they prefer leeward slopes, and they were under the ‘morning–afternoon’ effect. With altitude, the tendency of the cirque aspect shifted from N to SE, and the cirque size decreased. The former may indicate the ability of the high altitude to support cirque development on climatically unfavourable slopes; the latter may be due to the development of valley-type glaciers or insufficient space for cirque development. The cirque size and shape did not show statistical differences between aspects. The cirques on soft bedrocks had larger heights than those on hard bedrocks, indicating that soft bedrocks promote subglacial erosion. A comparison with the results of the western, central, and eastern sectors of the Gangdise Mountains and the central TP reveals that the strength of the ISM did not necessarily increase the cirque density but limited the cirque size on a regional scale. The CFA did not show a reverse relationship with precipitation, but it showed a positive correlation with the cirque Zmean, which implies that the CFA was greatly affected by altitude, and its distribution does not always reflect paleoclimatic patterns. Full article
(This article belongs to the Special Issue Interactions between Glacier and Climate Change)
Show Figures

Figure 1

14 pages, 6100 KiB  
Communication
Quantifying Basal Roughness and Internal Layer Continuity Index of Ice Sheets by an Integrated Means with Radar Data and Deep Learning
by Xueyuan Tang, Kun Luo, Sheng Dong, Zidong Zhang and Bo Sun
Remote Sens. 2022, 14(18), 4507; https://doi.org/10.3390/rs14184507 - 9 Sep 2022
Cited by 3 | Viewed by 2429
Abstract
Understanding englacial and subglacial structures is a fundamental method of inferring ice sheets’ historical evolution and surface mass balance. The internal layer continuity index and the basal roughness are key parameters and indicators for the speculation of the relationship between the ice sheet’s [...] Read more.
Understanding englacial and subglacial structures is a fundamental method of inferring ice sheets’ historical evolution and surface mass balance. The internal layer continuity index and the basal roughness are key parameters and indicators for the speculation of the relationship between the ice sheet’s internal structure or bottom and ice flow. Several methods have been proposed in the past two decades to quantitatively calculate the continuity index of ice layer geometry and the roughness of the ice–bedrock interface based on radar echo signals. These methods are mainly based on the average of the absolute value of the vertical gradient of the echo signal amplitude and the standard deviation of the horizontal fluctuation of the bedrock interface. However, these methods are limited by the amount and quality of unprocessed radar datasets and have not been widely used, which also hinders further research, such as the analysis of the englacial reflectivity, the subglacial conditions, and the history of the ice sheets. In this paper, based on geophysical processing methods for radar image denoising and deep learning for ice layer and bedrock interface extraction, we propose a new method for calculating the layer continuity index and basal roughness. Using this method, we demonstrate the ice-penetrating radar data processing and compare the imaging and calculation of the radar profiles from Dome A to Zhongshan Station, East Antarctica. We removed the noise from the processed radar data, extracted ice layer continuity features, and used other techniques to verify the calculation. The potential application of this method in the future is illustrated by several examples. We believe that this method can become an effective approach for future Antarctic geophysical and glaciological research and for obtaining more information about the history and dynamics of ice sheets from their radar-extracted internal structure. Full article
(This article belongs to the Special Issue Remote Sensing in Glaciology and Cryosphere Research)
Show Figures

Graphical abstract

14 pages, 15962 KiB  
Article
Ice Cover, Subglacial Landscape, and Estimation of Bottom Melting of Mac. Robertson, Princess Elizabeth, Wilhelm II, and Western Queen Mary Lands, East Antarctica
by Sergey Popov
Remote Sens. 2022, 14(1), 241; https://doi.org/10.3390/rs14010241 - 5 Jan 2022
Cited by 6 | Viewed by 4076
Abstract
This study demonstrates the results of Russian airborne radio-echo sounding (RES) investigations and also seismic reflection soundings carried out in 1971–2020 over a vast area of coastal part of East Antarctica. It is the first comprehensive summary mapping of these data. Field research, [...] Read more.
This study demonstrates the results of Russian airborne radio-echo sounding (RES) investigations and also seismic reflection soundings carried out in 1971–2020 over a vast area of coastal part of East Antarctica. It is the first comprehensive summary mapping of these data. Field research, equipment, errors of initial RES data, and methods of gridding are discussed. Ice thickness, ice base elevation, and bedrock topography are presented. The ice thickness across the research area varies from a few meters to 3620 m, and is greatest in the local subglacial depressions. The average thickness is about 1220 m. The total volume of the ice is about 710,500 km3. The bedrock heights vary from 2860 m below sea level in the ocean bathyal zone to 2040 m above sea level in the Grove Mountains area (4900 m relief). The main directions of the bedrock orographic forms are concentrated mostly in three intervals: 345–30, 45–70, and 70–100. The bottom melting rate was estimated on the basis of the simple Zotikov model. Total annual melting under the study area is about 0.633 cubic meters. The total annual melting in the study area is approximately 1.5 mm/yr. Full article
(This article belongs to the Special Issue The Cryosphere Observations Based on Using Remote Sensing Techniques)
Show Figures

Figure 1

10 pages, 4230 KiB  
Technical Note
Inversion of Geothermal Heat Flux under the Ice Sheet of Princess Elizabeth Land, East Antarctica
by Lin Li, Xueyuan Tang, Jingxue Guo, Xiangbin Cui, Enzhao Xiao, Khalid Latif, Bo Sun, Qiao Zhang and Xiaosong Shi
Remote Sens. 2021, 13(14), 2760; https://doi.org/10.3390/rs13142760 - 14 Jul 2021
Cited by 8 | Viewed by 5162
Abstract
Antarctic geothermal heat flux is a basic input variable for ice sheet dynamics simulation. It greatly affects the temperature and mechanical properties at the bottom of the ice sheet, influencing sliding, melting, and internal deformation. Due to the fact that the Antarctica is [...] Read more.
Antarctic geothermal heat flux is a basic input variable for ice sheet dynamics simulation. It greatly affects the temperature and mechanical properties at the bottom of the ice sheet, influencing sliding, melting, and internal deformation. Due to the fact that the Antarctica is covered by a thick ice sheet, direct measurements of heat flux are very limited. This study was carried out to estimate the regional heat flux in the Antarctic continent through geophysical inversion. Princess Elizabeth Land, East Antarctica is one of the areas in which we have a weak understanding of geothermal heat flux. Through the latest airborne geomagnetic data, we inverted the Curie depth, obtaining the heat flux of bedrock based on the one-dimensional steady-state heat conduction equation. The results indicated that the Curie depth of the Princess Elizabeth Land is shallower than previously estimated, and the heat flux is consequently higher. Thus, the contribution of subglacial heat flux to the melting at the bottom of the ice sheet is likely greater than previously expected in this region. It further provides research clues for the formation of the developed subglacial water system in Princess Elizabeth Land. Full article
Show Figures

Graphical abstract

20 pages, 4925 KiB  
Article
Assessment of Sulfate Sources under Cold Conditions as a Geochemical Proxy for the Origin of Sulfates in the Circumpolar Dunes on Mars
by Anna Szynkiewicz and Janice L. Bishop
Minerals 2021, 11(5), 507; https://doi.org/10.3390/min11050507 - 11 May 2021
Cited by 9 | Viewed by 3407
Abstract
Determining aqueous sulfate sources in terrestrial cold environments can provide an insight into the surface hydrological conditions and sulfur cycle on Mars. In this study, we analyzed sulfur and oxygen isotope compositions of secondary sulfate salts (e.g., gypsum, thenardite) in the surficial sediments [...] Read more.
Determining aqueous sulfate sources in terrestrial cold environments can provide an insight into the surface hydrological conditions and sulfur cycle on Mars. In this study, we analyzed sulfur and oxygen isotope compositions of secondary sulfate salts (e.g., gypsum, thenardite) in the surficial sediments and soils of the McMurdo Dry Valleys (MDV), Antarctica to determine contributions of sulfate from bedrock chemical weathering and atmospheric deposition under persistent dry polar conditions. The sulfate showed wider variation of δ34S (+15.8‰ to +32.5‰) compared to smaller ranges of δ18O (−8.9‰ to −4.1‰). In contrast, the δ34S of bedrock sulfide showed significantly lower and consistent values across the studied area (−0.6‰ to +3.3‰). Based on the δ34S trends, sulfide weathering may contribute up to 20–50% of secondary sulfate salts in the MDV. While the remaining 50–80% of sulfate inputs may originate from atmospheric deposition (e.g., sea aerosols, dimethulsulfide oxidation), the subglacial brines derived by relicts of seawater and/or lake/pond water influenced by microbial sulfate reduction could also be important sulfate endmembers particularly in the Antarctic lowland thaw zones. Additional field observations of frost, ponding water, and thin gypsum crusts on the terrestrial gypsum dunes at White Sands supports reactivity of gypsum on the surface of these dunes during cold winter conditions. Combined with our improved geochemical model of the sulfur cycle for cold Antarctic settings, we propose that transient liquid water or frost was available in near-surface environments at the time of gypsum formation in the north polar region on Mars. Ice and/or water interaction with basaltic sand of the basal unit (paleo-erg) would have enhanced leaching of sulfate from both sulfide oxidation and atmospheric deposition and resulted in formation of secondary gypsum salts. Full article
Show Figures

Figure 1

18 pages, 3591 KiB  
Article
Radar-Derived Internal Structure and Basal Roughness Characterization along a Traverse from Zhongshan Station to Dome A, East Antarctica
by Kun Luo, Sixin Liu, Jingxue Guo, Tiantian Wang, Lin Li, Xiangbin Cui, Bo Sun and Xueyuan Tang
Remote Sens. 2020, 12(7), 1079; https://doi.org/10.3390/rs12071079 - 27 Mar 2020
Cited by 10 | Viewed by 3570
Abstract
The internal layers of ice sheets from ice-penetrating radar (IPR) investigation preserve critical information about the ice-flow field and englacial conditions. This paper presents a new detailed analysis of spatial distribution characteristics of internal layers and subglacial topography of the East Antarctic ice [...] Read more.
The internal layers of ice sheets from ice-penetrating radar (IPR) investigation preserve critical information about the ice-flow field and englacial conditions. This paper presents a new detailed analysis of spatial distribution characteristics of internal layers and subglacial topography of the East Antarctic ice sheet (EAIS) from Zhongshan Station to Dome A. The radar data of 1244 km along a traverse between Zhongshan Station and Dome A of EAIS were collected during the 29th Chinese National Antarctic Research Expedition (CHINARE 29, 2012/2013). In this study, the Internal Layering Continuity Index (ILCI) and basal roughness were taken as indicators to provide an opportunity to evaluate the past internal environment and dynamics of the ice sheet. Except for the upstream of Lambert Glacier, the fold patterns of internal layers are basically similar to that of the bed topography. The relatively flat basal topography and the decrease of ILCI with increasing depth provide evidence for identifying previous rapid ice flow areas that are unavailable to satellites, especially in the upstream of Lambert Glacier. Continuous internal layers of Dome A, recording the spatial change of past ice accumulation and ice-flow history over 160 ka, almost extend to the bed, with high ILCI and high basal roughness of the corresponding bed topography. There are three kinds of basal roughness patterns along the traverse, that is, “low ξt low η”, “low ξt high η”, and “high ξt high η”, where ξt represents the amplitude of the undulations, and quantifies the vertical variation of the bedrock, and η measures the frequency variation of fluctuations and the horizontal irregularity of the profile. The characteristics of internal layers and basal topography of the traverse between Zhongshan Station and Dome A provide new information for understanding the ancient ice-flow activity and the historical evolution of EAIS. Full article
Show Figures

Graphical abstract

18 pages, 8994 KiB  
Article
Design and Experiment of Clamper Used in Antarctic Subglacial Bedrock Drilling
by Pavel Talalay, Xingchen Li, Da Gong, Xiaopeng Fan, Nan Zhang, Yang Yang, Yongwen Liu, Yunchen Liu, Ting Wang and Xiao Li
J. Mar. Sci. Eng. 2019, 7(5), 153; https://doi.org/10.3390/jmse7050153 - 17 May 2019
Cited by 5 | Viewed by 4313
Abstract
As a result of the severe natural environment with oxygen deficit in the Antarctic, using conventional manual work to screw and unscrew the drill pipe increases the labor intensity tremendously and causes an efficiency reduction. Therefore, it would be useful to design a [...] Read more.
As a result of the severe natural environment with oxygen deficit in the Antarctic, using conventional manual work to screw and unscrew the drill pipe increases the labor intensity tremendously and causes an efficiency reduction. Therefore, it would be useful to design a clamper inside the drilling shelter, which could help to assemble and disassemble the ice core barrel with screw connection. This paper describes the design of and experiments with the clamper inside the movable drilling shelter. A related testing stand was also designed and built to experiment on relationships between the clamper motor current versus clamping torque and force. Through experimental data collation and calculation analysis, the following conclusions could be drawn: (1) according to the rotary ability of the Ice and Bedrock Electromechanical Drill (IBED) to calculate and determine the torque of clamper, the clamping torque required to provide by the clamper is 100 N·m; (2) finite element simulation and analysis of the non-standard transmission chain showed that the mechanical reliability of the subparts; (3) the experimental results showed the range of the clamping force and clamping torque of the clamper. The clamping force and clamping torque increased with the increase of clamper DC motor current, presenting proportional linear relationships. The clamper can meet the clamping requirements of IBED for screwing, unscrewing, and clamping, which will be greatly helpful when it is tested in the field. Full article
Show Figures

Figure 1

19 pages, 12339 KiB  
Article
Ice Thickness Estimation from Geophysical Investigations on the Terminal Lobes of Belvedere Glacier (NW Italian Alps)
by Chiara Colombero, Cesare Comina, Emanuele De Toma, Diego Franco and Alberto Godio
Remote Sens. 2019, 11(7), 805; https://doi.org/10.3390/rs11070805 - 3 Apr 2019
Cited by 18 | Viewed by 4898
Abstract
Alpine glaciers are key components of local and regional hydrogeological cycles and real-time indicators of climate change. Volume variations are primary targets of investigation for the understanding of ongoing modifications and the forecast of possible future scenarios. These fluctuations can be traced from [...] Read more.
Alpine glaciers are key components of local and regional hydrogeological cycles and real-time indicators of climate change. Volume variations are primary targets of investigation for the understanding of ongoing modifications and the forecast of possible future scenarios. These fluctuations can be traced from time-lapse monitoring of the glacier topography. A detailed reconstruction of the ice bottom morphology is however needed to provide total volume and reliable mass balance estimations. Non-destructive geophysical techniques can support these investigations. With the aim of characterizing ice bottom depth, ground-penetrating radar (GPR) profiles and single-station passive seismic measurements were acquired on the terminal lobes of Belvedere Glacier (NW Italian Alps). The glacier is covered by blocks and debris and its rough topography is rapidly evolving in last years, with opening and relocation of crevasses and diffuse instabilities in the frontal sectors. Despite the challenging working environment, ground-based GPR surveys were performed in the period 2016–2018, using 70-MHz and 40-MHz antennas. The 3D ice bottom morphology was reconstructed for both frontal lobes and a detailed ice thickness map was obtained. GPR results also suggested some information on ice bottom properties. The glacier was found to probably lay on a thick sequence (more than 40 m) of subglacial deposits, rather than on stiff bedrock. Week deeper reflectors were identified only in the frontal portion of the northern lobe. These interfaces may indicate the bedrock presence at a depth of around 80 m from the topographic surface, rapidly deepening upstream. Single-station passive seismic measurements, processed with the horizontal-to-vertical spectral ratio (HVSR) method, pointed out the absence of sharp vertical contrast in acoustic impedance between ice and bottom materials, globally confirming the hypotheses made on GPR results. The obtained results have been compared with previous independent geophysical investigations, performed in 1961 and 1985, with the same aim of ice thickness estimation. The comparison allowed us to validate the results obtained in the different surveys, supply a reference base map for the glacier bottom morphology and potentially study ice thickness variations over time. Full article
(This article belongs to the Special Issue Remote Sensing in Applied Geophysics)
Show Figures

Graphical abstract

Back to TopTop