Ice Cover, Subglacial Landscape, and Estimation of Bottom Melting of Mac. Robertson, Princess Elizabeth, Wilhelm II, and Western Queen Mary Lands, East Antarctica
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Field Studies
3.2. RES Data Processing
3.3. Compilation of the Ice Thickness Data
3.4. Compilation of the Ice Base and Bedrock Topography
4. Results
4.1. Ice Thickness
4.2. Subglacial Landscape
4.3. Bottom Melting
5. Discussion
6. Conclusions and Outlook
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golynsky, D.; Golynsky, A. East Antarctic Rift Systems—Key to understanding of Gondwana break-up. Reg. Geol. Metallog. 2012, 52, 58–72. [Google Scholar]
- Kotlyakov, V.M.; Glazovsky, A.F.; Moskalevsky, M.Y. Dynamics of the ice mass in Antarctica in the time of warming. Ice Snow 2017, 57, 149–169. [Google Scholar] [CrossRef] [Green Version]
- Meunier, T.; Williams, R.; Ferrigno, J. US Geological Survey Scientific Activities in the Exploration of Antarctica: Introduction to Antarctica (Including USGS Field Personnel, 1946–59); Technical Report; US Geological Survey: Reston, VA, USA, 2007.
- Mather, K.; Goodspeed, M. Australian Antarctic ice thickness measurements and sastrugi observations, Mac-Robertson Land. Polar Rec. 1959, 9, 436–445. [Google Scholar] [CrossRef]
- Fowler, K.F. Ice Thickness Measurements in Mac. Robertson Land, 1957–1959; ANARE Scientific Report; Bureau of Mineral Resources, Geology and Geophysics: Melbourne, Australia, 1971. [Google Scholar]
- Crohn, P.W. A Contribution to the Geology and Glaciology of the Western Part of Australian Antarctic Territory; Number 52; Antarctic Division, Department of External Affairs: Melbourne, Australia, 1959; p. 103. [Google Scholar]
- Morgan, V.I.; Budd, W.F. Radio-echo sounding of the Lambert Glacier basin. J. Glaciol. 1975, 15, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Allison, I.; Frew, R.; Knight, I. Bedrock and ice surface topography of the coastal regions of Antarctica between 48°E and 64°E. Polar Rec. 1982, 21, 241–252. [Google Scholar] [CrossRef]
- Higham, M.; Reynolds, M.; Brocklesby, A.; Allison, I. Ice radar digital recording, data processing and results from the Lambert Glacier basin traverses. Terra Antart. 1995, 2, 23–32. [Google Scholar]
- Damm, V. A subglacial topographic model of the southern drainage area of the Lambert Glacier/Amery Ice Shelf system—Results of an airborne ice thickness survey south of the Prince Charles Mountains. Terra Antart. 2007, 14, 85–94. [Google Scholar]
- Cui, X.; Greenbaum, J.S.; Beem, L.H.; Guo, J.; Ng, G.; Li, L.; Blankenship, D.; Sun, B. The first fixed-wing aircraft for Chinese Antarctic Expeditions: Airframe, modifications, scientific snstrumentation and applications. J. Environ. Eng. Geophys. 2018, 23, 1–13. [Google Scholar] [CrossRef]
- Popov, S.; Kiselev, A. Russian airborne geophysical investigations of Mac. Robertson, Princess Elizabeth and Wilhelm II Lands, East Antarctica. Earths Cryosphere 2018, XXII, 3–12. [Google Scholar] [CrossRef]
- Cui, X.; Jeofry, H.; Greenbaum, J.S.; Guo, J.; Li, L.; Lindzey, L.E.; Habbal, F.A.; Wei, W.; Young, D.A.; Ross, N.; et al. Bed topography of Princess Elizabeth Land in East Antarctica. Earth Syst. Sci. Data 2020, 12, 2765–2774. [Google Scholar] [CrossRef]
- Popov, S. Fifty-five years of Russian radio-echo sounding investigations in Antarctica. Ann. Glaciol. 2020, 61, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Bo, S.; Siegert, M.J.; Mudd, S.M.; Sugden, D.; Fujita, S.; Cui, X.; Jiang, Y.; Tang, X.; Li, Y. The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet. Nature 2009, 459, 690–693. [Google Scholar] [CrossRef]
- Popov, S.V. Recent Russian remote sensing investigations in Antarctica within the framework of scientific traverses. Adv. Polar Sci. 2015, 26, 113–121. [Google Scholar] [CrossRef]
- Cui, X.; Wang, T.; Sun, B.; Tang, X.; Guo, J. Chinese radioglaciological studies on the Antarctic ice sheet: Progress and prospects. Adv. Polar Sci. 2017, 28, 161–170. [Google Scholar]
- Lythe, M.B.; Vaughan, D.G.; The, B.C. BEDMAP: A new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res. 2001, 106, 11335–11351. [Google Scholar] [CrossRef] [Green Version]
- Fretwell, P.; Pritchard, H.D.; Vaughan, D.G.; Bamber, J.L.; Barrand, N.E.; Bell, R.; Bianchi, C.; Bingham, R.G.; Blankenship, D.D.; Casassa, G.; et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 2013, 7, 375–393. [Google Scholar] [CrossRef] [Green Version]
- ADD. Antarctic Digital Database, Version 7.0; Scientific Committee on Antarctic Research, British Antarctic Survey: Cambridge, UK, 2016. [Google Scholar]
- Bogorodskiy, V.V.; Bentley, C.R.; Gudmandsen, P.E. Radioglaciology; Reidel Publishing Company: Dordrecht, The Netherlands, 1985; p. 254. [Google Scholar]
- Popov, S.V.; Sheremet’yev, A.N.; Masolov, V.N.; Lukin, V.V.; Mironov, A.V.; Luchininov, V.S. Velocity of radio-wave propagation in ice at Vostok station, Antarctica. J. Glaciol. 2003, 49, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Rees, W.G.; Donovan, R.E. Refraction correction for radio-echo sounding of large ice masses. J. Glaciol. 1992, 38, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Bamber, J.L.; Griggs, J.A. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data—Part 1: Data and methods. Cryosphere 2009, 3, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Robin, G. Ice movement and temperature distribution in glaciers and ice sheets. J. Glaciol. 1955, 2, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Greve, R.; Blatter, H. Dynamics of Ice Sheets and Glaciers; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; p. 300. [Google Scholar]
- Paterson, W. The Physics of Glaciers; Rutterworth Hinemann: Oxford, UK, 1994; p. 496. [Google Scholar]
- Huybrechts, P. The Antarctic Ice Sheet and Environmental Change: A Three-Dimensional Modelling Study. Ber. Polarforsch. 1992, 99, 241. [Google Scholar]
- Greve, R. A continuum–mechanical formulation for shallow polythermal ice sheets. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 1997, 355, 921–974. [Google Scholar] [CrossRef] [Green Version]
- Pattyn, F. A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res. 2003, 108, 2382. [Google Scholar] [CrossRef]
- Leitchenkov, G.; Belyatsky, B.; Popkov, A.; Popov, S. Geological nature of subglacial Lake Vostok. Data Glaciol. Stud. 2005, 98, 81–91. [Google Scholar]
- Siegert, M.J. Reviewing the origin of subglacial Lake Vostok and its sensitivity to ice sheet changes. Prog. Phys. Geogr. Earth Environ. 2005, 29, 156–170. [Google Scholar] [CrossRef]
- Zotikov, I. The Antarctic Subglacial Lake Vostok; Springer Praxis Books; Springer: Berlin/Heidelberg, Germany, 2006; p. 139. [Google Scholar] [CrossRef]
- Fürst, J.J.; Rybak, O.; Goelzer, H.; De Smedt, B.; de Groen, P.; Huybrechts, P. Improved convergence and stability properties in a three-dimensional higher-order ice sheet model. Geosci. Model Dev. 2011, 4, 1133–1149. [Google Scholar] [CrossRef] [Green Version]
- Maris, M.N.A.; de Boer, B.; Ligtenberg, S.R.M.; Crucifix, M.; van de Berg, W.J.; Oerlemans, J. Modelling the evolution of the Antarctic ice sheet since the last interglacial. Cryosphere 2014, 8, 1347–1360. [Google Scholar] [CrossRef] [Green Version]
- Lösing, M.; Ebbing, J.; Szwillus, W. Geothermal heat flux in Antarctica: Assessing models and observations by Bayesian inversion. Front. Earth Sci. 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Zotikov, I. Bottom melting in the central zone of the ice shield on the Antarctic continent and its influence upon the present balance of the ice mass. Hydrol. Sci. J. 1963, 8, 36–44. [Google Scholar] [CrossRef]
- van Wessem, J.M.; van de Berg, W.J.; Noël, B.P.Y.; van Meijgaard, E.; Amory, C.; Birnbaum, G.; Jakobs, C.L.; Krüger, K.; Lenaerts, J.T.M.; Lhermitte, S.; et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2— Part 2: Antarctica (1979–2016). Cryosphere 2018, 12, 1479–1498. [Google Scholar] [CrossRef] [Green Version]
- Kuroedov, V. Atlas of the Oceans, Antarctica; Glavnoe Upravlenie Navigatsii i Okeanografii Min. Oborony RF: St. Petersburg, Russia, 2005; p. 280. [Google Scholar]
- Martos, Y.M.; Catalán, M.; Jordan, T.A.; Golynsky, A.; Golynsky, D.; Eagles, G.; Vaughan, D.G. Heat flux distribution of Antarctica unveiled. Geophys. Res. Lett. 2017, 44, 11417–11426. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popov, S. Ice Cover, Subglacial Landscape, and Estimation of Bottom Melting of Mac. Robertson, Princess Elizabeth, Wilhelm II, and Western Queen Mary Lands, East Antarctica. Remote Sens. 2022, 14, 241. https://doi.org/10.3390/rs14010241
Popov S. Ice Cover, Subglacial Landscape, and Estimation of Bottom Melting of Mac. Robertson, Princess Elizabeth, Wilhelm II, and Western Queen Mary Lands, East Antarctica. Remote Sensing. 2022; 14(1):241. https://doi.org/10.3390/rs14010241
Chicago/Turabian StylePopov, Sergey. 2022. "Ice Cover, Subglacial Landscape, and Estimation of Bottom Melting of Mac. Robertson, Princess Elizabeth, Wilhelm II, and Western Queen Mary Lands, East Antarctica" Remote Sensing 14, no. 1: 241. https://doi.org/10.3390/rs14010241
APA StylePopov, S. (2022). Ice Cover, Subglacial Landscape, and Estimation of Bottom Melting of Mac. Robertson, Princess Elizabeth, Wilhelm II, and Western Queen Mary Lands, East Antarctica. Remote Sensing, 14(1), 241. https://doi.org/10.3390/rs14010241