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Abstract: Antarctic geothermal heat flux is a basic input variable for ice sheet dynamics simulation.
It greatly affects the temperature and mechanical properties at the bottom of the ice sheet, influencing
sliding, melting, and internal deformation. Due to the fact that the Antarctica is covered by a thick ice
sheet, direct measurements of heat flux are very limited. This study was carried out to estimate the
regional heat flux in the Antarctic continent through geophysical inversion. Princess Elizabeth Land,
East Antarctica is one of the areas in which we have a weak understanding of geothermal heat flux.
Through the latest airborne geomagnetic data, we inverted the Curie depth, obtaining the heat flux of
bedrock based on the one-dimensional steady-state heat conduction equation. The results indicated
that the Curie depth of the Princess Elizabeth Land is shallower than previously estimated, and the
heat flux is consequently higher. Thus, the contribution of subglacial heat flux to the melting at the
bottom of the ice sheet is likely greater than previously expected in this region. It further provides
research clues for the formation of the developed subglacial water system in Princess Elizabeth Land.

Keywords: heat flux; Curie depth; aeromagnetic; subglacial geothermal; East Antarctica

1. Introduction

The Antarctic continent is covered by an ice sheet, which is a potential main driver of
global sea-level changes. Heat flux of the bedrock significantly affects the melting of the ice
sheet bottom, which may influence the ice sheet mass balance. Geothermal heat flux (GHF)
is an important boundary condition of ice sheet dynamical models. For the areas below
freezing point, a higher heat flux causes the ice bottom to heat up, reducing its viscosity
and increasing its lubrication, and significantly accelerating the ice sheet flow [1]. Heat
flux can also simulate past basic melting rates and help to explore the climate record of
old ice cores [2]. Studies showed that East Antarctica has a smaller heat flux than the West
Antarctica. This may be one of the reasons why the West Antarctic ice sheet is changing
more rapidly [3]. However, some drilling results showed that the observed heat flux in
some areas far exceeded the generally estimated heat flux by the GHF model [4–6]. The
local subglacial thermal conditions have a greater impact on local ice sheet movement,
which cannot be concealed by the low-resolution estimation results [7]. Recent studies
showed that the surface mass loss of the ice sheet in Princess Elizabeth Land (PEL) is not
as obvious as it is at the bottom [8]. The main contributing factor of the ice sheet material
loss in this area may be obtained via ice sheet bottom analysis. Therefore, in order to more
accurately model ice velocities and their evolution, and to learn more about the geology in
PEL, it is necessary to obtain a more detailed understanding of the distribution of heat flux
under the ice.
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At present, there are three main methods for obtaining Antarctica heat flux informa-
tion: (1) direct measurement of the geothermal gradient through ice boreholes or sediments
on the coast [6,9,10]; (2) inversion by multiple geophysical methods, such as seismology,
geomagnetism, and glacier dynamics [11–15]; and (3) using ice radar and the tempera-
ture gradient of the ice sheet or the ice bottom pressure melting point to calculate the
distributions of heat flux [16,17]. Due to the rapid flow, ice sheet evolution is much faster
than that of bedrock. However, it is difficult to calculate the thermal conditions of the
ice bottom based on the temperature gradient of the ice sheet [17,18]. In addition, the ice
sheet is very thick, and direct measurement of geothermal heat flux is very challenging [6].
Seismological methods estimate the subglacial thermal structure based on the thermal
sensitivity of seismic properties. The disadvantage of this method is that the uneven
distribution of seismic stations leads to the low resolution of seismic models, and many
seismic parameters have significant uncertainties [15]. It is, therefore, a relatively common
and efficient method to invert the heat flux through aerial geomagnetic observation.

Uncertainty surrounding the results obtained by the geomagnetic field mainly orig-
inate from the coverage of the data set and the reliability of the inversion method [1].
Available internationally in the public domain, the Antarctic magnetic data, known as the
ADMAP2 data set, was released in 2018 and covers most of the Antarctica [19,20]. However,
some areas still have large data gaps, especially in PEL, which was inverted by satellite
magnetic data with a lower resolution. In the Martos Curie depth model [1], the maximum
uncertainty value (~8 km) in this region is about 23% of the total Antarctic mean value
(~34 km), which is higher than other regions.

2. Materials and Methods
2.1. Aeromagnetic Data

Through the operation of China’s first Antarctic fixed-wing aircraft observation plat-
form, we obtained large-scale aeromagnetic data from PEL. The single flight distance of
the geophysical and glacier survey, carried out by the Snow Eagle 601 fixed-wing aircraft,
was approximately 1700 km (6.5 h of endurance), and the total distance of the survey lines
used in this study were about 47,000 km (Figure 1). During the aerial survey, flight altitude
was maintained at 600 m above the ice surface.
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The CS-3 magnetometer was used to measure the magnetic field. It was installed on
the tail of the aircraft to avoid magnetic interference from the metal fuselage. The CS-3
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magnetometer has high sensitivity and low noise interference, and its measurement range
can be used for detection in most areas of the world. The magnetometer system consists of a
Scintrex CS-3 scalar magnetometer, an RMS AARC510 adaptive aviation magnetic real-time
compensator, and a Billingsley TFM100-G2 carrier magnetometer. During a survey, the
CS-3 magnetometer measures the total magnetic field (with a sampling interval of 1 s, flight
speed of 300 km/h, and sampling interval distance of ~83 m along the flight line), and the
AARC510, with a three-axis fluxgate vector magnetometer, provides compensation for the
influence of the flight direction and altitude.

The geomagnetic diurnal station (used for diurnal correction of the aeromagnetic
survey) uses an EREV-1 proton magnetometer, located at the airport near the Zhongshan
Station, with an absolute accuracy of less than 0.3 nT and a sampling interval of 1 s.
In addition, a perennial geomagnetic observatory (with a sampling interval of 1 s) at
the Zhongshan Station, 10 km away from the airport, provides backup data for diurnal
observations.

We used the GRIDSTCH module of Oasis Montaj software for observational data
fusion with ADMAP2. This method provides smooth blending without over-smoothing
high-frequency variations that may occur along the suture path (Figure 2).
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Figure 2. Comparison of aeromagnetic data from Snow Eagle 601 observation platform with
ADMAP2 magnetic data. The (a) ADMAP2 data set (note that there is no data in the blank area), and
the (b) data set after fusion of the aeromagnetic data obtained by Snow Eagle 601 fixed-wing aircraft.

2.2. Inversion Method
2.2.1. Using Modified Centroid Method to Invert the Curie Depth

The geomagnetic field is mainly produced in the ferromagnetic strata that exist in
the Earth’s crust. After reaching a certain temperature, the ferromagnetic material will
favor paramagnetism, which will significantly lower its magnetic field. At this temperature
(580 ◦C for ferromagnetic ore [21]), the corresponding lithospheric interface is called the
Curie isothermal interface, which is generally considered to be the bottom of the magnetic
strata. Magnetic data can invert the large magnetic change interface and, thus, we can
determine the Curie depth [22].
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We used the centroid method to calculate the Curie depth. This method is based on
the existence of a linear relationship between the spectral power density and specific wave
number ranges. Compared with the defractal spectral method adopted by the Martos
model, this method has very similar results under the same parameters [23]. In this method,
it is assumed that the low wavenumber area of the power spectrum is caused by the deep
field source, and the high wavenumber area is caused by the shallow field source. The
Curie depth is considered to be the bottom interface of the deep field source, and, thus, it
can be obtained through power spectrum analysis [24]:

ln(A(k)) = E− |k|Zt −
β− 1

2
ln|k|+ ln

[
1− e−|k|(Zb−Zt)

]
, (1)

where A(k) is the radially averaged amplitude spectrum, and E is the constant related to
the magnetization direction and geomagnetic field direction. First, we calculated the top
surface depth of the deep field source. Then, we determined a fitting straight line from
the high wavenumber region of the power spectrum, and calculated the depth of the deep
field source top interface, Zt, through the relationship with the slope of the straight line.
Assuming F is the constant, then Equation (1) is approximated to:

ln(A(k)) ≈ F− |k|Zt −
β− 1

2
ln|k|, (2)

Second, we calculated the depth of the centroid of the deep field source. We deter-
mined a fitting straight line from the low wavenumber region of the power spectrum, and
calculated the centroid depth of the deep field source, Z0, through the relationship with
the slope of the straight line. Assuming G is the constant:

ln(A(k)/k) ≈ G− |k|Z0 −
β− 1

2
ln|k|, (3)

Finally, the depth of the bottom interface of the deep field source was calculated by
the following simple positional relationship, calculating the Curie depth Zb:

Zb = 2Z0 − Zt, (4)

The uncertainty associated with this method is calculated by [25]:

∆Zb =

√
2× ∆Z0

2 + ∆Zt
2, (5)

∆Zt, ∆Z0 and ∆Zb are the uncertainty of the top, the centroid, and the base of the
magnetic source, respectively. The values of ∆Z0 and ∆Zt were computed using the
standard deviation (σr) derived from the calculated power spectrum, and the linear fit in
the wavenumber range was used to derive the slope (k2 − k1) [26]. This uncertainty (ε) is:

ε =
σr

k2 − k1
, (6)

For the division of the deep and the shallow field sources in the wavenumber range,
manual intervention must be processed using digital methods, instead of automatic di-
vision, to reduce the error. Since the fractal parameters β are unknown, in the case of
wavenumber range participating in the matching has been determined, the observed
power spectrum and the random magnetization model power spectrum can be optimally
matched by continuously adjusting β (with an adjustment interval of 0.1). Only then will
the β reflect the geological structure more truly.

The goodness of fit is evaluated using the following equation [23]:

R =

√
1
n

n

∑
i=1

(
A f (k)− Asyn(k)

)2
, (7)

where A f (k) is the observed power spectrum and Asyn(k) is the model power spectrum.
The smaller the R value, the better the fit. Manual adjustment is required in the process of
adjusting the wavenumber range and β, which can reduce the uncertainty related to β.



Remote Sens. 2021, 13, 2760 5 of 10

2.2.2. Calculating the Geothermal Heat Flux Based on Curie Depth

The relationship between the Curie depth and geothermal gradient can be approxi-
mated by the one-dimensional steady-state heat conduction equation, which can calculate
the approximate geothermal heat flux of the Antarctic subglacial bedrock.

Assuming that there is no lateral heat production and conduction in the bedrock
under the ice sheet, and that the longitudinal thermal conductivity is constant, if q is heat
flux, z is depth, λ is thermal conductivity, and T is temperature, then the one-dimensional
steady-state heat conduction equation will be:

q(z) = λ
∂T(z)

∂z
, (8)

Assuming that Zb is Curie depth, Tc. is Curie temperature, T0. is surface temperature,
H0 is the surface heat production, hr is the depth for heat production, and qs is the surface
geothermal heat flux, the heat conduction equation will be [27–29]:

qs =
λ(Tc − T0)

Zb
+ H0hr −

H0h2
r

Zb

(
1− e(−Zb/hr)

)
, (9)

3. Results

According to the previous approximate distribution of the Curie depth inversion
results for magnetic data in the Antarctica [1], we divided the observation area into 16 win-
dows and calculated the Curie depth separately in each window. The size of each window
was set to 400 × 400 km, which meant a 50% overlap between adjacent windows, as
shown in Figure 3. The calculation result of each window corresponded to the center point.
After data fusion, each piece of data was processed according to the larger spacing grid of
ADMAP2 (1.5 km spacing) to ensure data accuracy.
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In Figure 4, using window 3 as an example, the process of artificially dividing the
wavenumber ranges, the fitting state of the observed power spectrum, and the simulated
power spectrum are shown.
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According to the radial power spectrum of PEL, the high wavenumber range is gener-
ally concentrated between 0.05 and 0.15, and the low wavenumber range is concentrated
between 0.01 and 0.03. The difference between the observed power spectrum and the
simulated power spectrum R was between 0.05 and 0.15.

In the process of calculating the heat flux from the Curie depth, the selection of
geothermal parameters refers to the previous inference results [1]. It is generally believed
that the surface temperature, T0, is ~0 ◦C, the surface heat production, H0, is ~2.5 mW/m3,
the thermal conductivity, λ, is ~2.8 W/mK, and the depth for heat production, hr, is
~8 km [30]. The Curie temperature, Tc, refers to a constant value of 580 ◦C. According to the
Curie depth results, 16 areas were combined with the one-dimensional steady-state heat
conduction equation to calculate the geothermal gradient and heat flux. Using window 3
as an example, the calculation results of regional geothermal gradient and heat flux are
shown in Figure 5.
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The combined calculation results of the Curie depth and the heat flux with the previous
calculation results of the all-Antarctica magnetic field [1] are compared in Figures 6 and 7.
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The Curie depth range of East Antarctica in the Martos model was from 22 to 63 km.
From our inversion results, the Curie depth of PEL was observed to be shallower than
previously estimated depths, most of which varied in the range of 23–48 km, with an
average depth of about 34 km, and a calculation error of ±4 km. The heat flux map
showed that Queen Mary Land (Label A in Figure 7b) had the same magnitude of high
geothermal heat flux as the region closer to the western ice shelf, which is consistent with
the previous seismic model inversion results [31,32]. Overall, the heat flux was larger than
previously estimated in the eastern area of PEL. Figure 7 indicates values ranging from 51
to 84 mW/m2, with an average of 66 mW/m2 and an error of±7 mW/m2, which is close to
the global continental average of 65 mW/m2 [7]. By comparison, the model of Martos et al.
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had a heat flow value of 45–85 mW/m2 in East Antarctica [1], which is slightly lower than
our calculation result.

4. Discussion

Previous satellite altimetry studies showed that there is an undiscovered, large sub-
glacial drainage network hidden under the ice sheet of PEL. A series of long, deep canyons
from Gamburtsev Mountain extend to the coast of the West Ice Shelf (Label B in Figure 7b).
These canyons contain large amounts of subglacial water and lakes [33]. The aerial ice radar
detection results of Snow Eagle 601 also confirmed this conclusion [34,35]. The North-South
rift zones were formed during the Cenozoic crustal uplift and through volcanism in the
area [7,36,37]. The rift system is believed to be an area where the geothermal heat flux
is significantly increased [38]. In our calculation results, there is a high-low-high change
trend in this area. In the process of rift formation, the influence of complex tectonism on the
surrounding strata, such as the formation of metamorphic rocks caused by ductile shear
zone and nappe structure, can be used to explain the origin of high and low heat flux in this
area [39,40]. The high heat flux region described by this study (Figure 7b) may represent
the product of orogeny and rift extension, as well as possible “thermal events” [41] during
the evolution of the Antarctic continent [42,43].

Furthermore, there is a clear correlation between the subglacial water system and the
heat flux [44,45]. Temperature profile analysis in ice boreholes showed that the bedrocks are
warm at sites where subglacial water exists [18]. Geothermal heat flux of 120 ± 20 mW/m2

can cause basal melting of up to 6 ± 1 mm/a [46]. Jamieson believed that the canyons
reduced the likelihood of rapid ice flow due to the fact that rather than concentrating
the water at one point and enhancing the sliding of the ice bottom, they capturing the
water body so it cannot lubricate the ice-bed interface over a wide area [33]. The detailed
distribution of water bodies under ice need to be analyzed by calculation of ice radar
reflectivity. The heat flux distribution in this study may encourage further explanation of
the distribution and cause of the subglacial water system in this area.

In general, the geomagnetic method is an efficient method for estimating heat flux. The
inversion of the Curie depth, however, induces error due to the assumption of structural
division, and it becomes difficult to divide the low wavenumber range, which represents
the deep magnetic field source. The calculation of heat flux may also contain some errors
due to the uneven heat production. The survey line spacing in the southeastern part of
the study area close to Vostok is relatively large. It is greater than 100 km at the widest
point, which may cause an error of more than 10 km in the estimation of the Curie depth.
In order to improve the calculation results, it is necessary to carry out further survey lines
of airborne geophysical observation and deeper borehole measurements. An integrated
study of the regional geological structure of PEL in combination with geophysical inversion
would provide more accurate information about the subglacial thermal environment in
this region.

5. Conclusions

Based on the aeromagnetic data of PEL obtained by China’s fixed-wing aircraft ob-
servation platform, and by using the modified centroid method and the one-dimensional
steady-state heat conduction equation, we obtained geothermal heat flux data on PEL’s
ice sheet bottom. The Curie depth result was shallower than previously estimated and the
heat flux was higher, showing that the contribution of subglacial heat flux to the melting of
the ice sheet in this area is greater than previously calculated, which may be an important
reason for the development of the subglacial water system in PEL.

Our calculation results showed that the high geothermal heat flux is better correlated
with the melting of the bottom ice and the distribution of water in this area. GHF inference
provided relatively accurate boundary conditions for simulating the dynamics and evo-
lution of the ice sheet, which may help in estimating the bottom melting rate of the East
Antarctic ice sheet and its impact on sea-level rise.
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