Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = subdivision schemes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5407 KiB  
Article
Low-Power Constant Current Driver for Stepper Motors in Aerospace Applications
by Leijie Jiang, Lixun Zhu and Chuande Liu
Energies 2025, 18(12), 3173; https://doi.org/10.3390/en18123173 - 17 Jun 2025
Viewed by 311
Abstract
Stepper motors are used in satellites for various drive operations that are achieved by custom designs. This paper presents a stepper motor driver for satellite systems. It takes rotor position and phase current as inputs and employs a current subdivision method with back-propagation [...] Read more.
Stepper motors are used in satellites for various drive operations that are achieved by custom designs. This paper presents a stepper motor driver for satellite systems. It takes rotor position and phase current as inputs and employs a current subdivision method with back-propagation neural network (BPNN) to achieve constant current control of the motor. The driver can ensure the smooth operation and the positioning accuracy of the motor with a filter wheel that is 0.1944 kg·m2 in the moment of inertia and satisfy self-adaption of the load without system parameter identification. Compared to the previous scheme, the proposed scheme can reduce the power consumption by about 21.15% when the motor runs at 2 r/s, which is beneficial to the reduction in the size and the mass of some power supply modules. The performances of the developed driver are implemented on a field programmable gate array (FPGA) circuit board. The experimental results are conducted to verify the claims presented. The proposed scheme can be extended to other stepper motor systems with large moment of inertia loads within spacecraft. Full article
Show Figures

Figure 1

16 pages, 31769 KiB  
Article
Orbital-Scale Modulation of the Middle Miocene Third-Order Eustatic Sequences from the Northern South China Sea
by Haichun Xu, Nan Wu, Xinyan Xu, Bo Yu and Ke Xu
J. Mar. Sci. Eng. 2025, 13(5), 921; https://doi.org/10.3390/jmse13050921 - 7 May 2025
Viewed by 418
Abstract
The Miocene Hanjiang Formation (HJF) is a remarkable exploration target in the Pearl River Mouth Basin (PRMB). However, challenges such as bias in current sequence stratigraphic schemes, limitations in high-resolution stratigraphic schemes, and incomplete understanding of genetic mechanisms may present obstacles for refining [...] Read more.
The Miocene Hanjiang Formation (HJF) is a remarkable exploration target in the Pearl River Mouth Basin (PRMB). However, challenges such as bias in current sequence stratigraphic schemes, limitations in high-resolution stratigraphic schemes, and incomplete understanding of genetic mechanisms may present obstacles for refining hydrocarbon exploration strategies. This study integrates gamma ray (GR) logging data, lithological variations, sequence stratigraphy, and cyclostratigraphy to delineate connections between sequence stratigraphy and astronomical forcing. The analysis utilizes gamma-ray logging data from boreholes LFA (1250–1960 m) and LFB (1070–1955 m) in the HJF. We constructed an absolute astronomical time scale anchored at the HJF’s top boundary (10.221 ± 0.4 Ma), identifying 6 third-order sequences through detailed analysis. Notably, 18 long-eccentricity cycles (405 kyr) and distinctive 1.2-Myr obliquity modulation signals were detected in the stratigraphic record. Our study demonstrates distinct connection between third-order sequence boundaries and the 1.2-Myr obliquity cycles, congruent with both global eustatic sea-level fluctuations and regional sea-level changes in the PRMB. The integration of cyclostratigraphic methods with sequence stratigraphic analysis proves particularly valuable for objective stratigraphic subdivision and understanding third-order sequence evolution in the divergent continental margin settings of the South China Sea. This approach enhances temporal resolution on a regional scale while revealing astronomical forcing mechanisms governing sedimentary cyclicity. Full article
Show Figures

Figure 1

15 pages, 2645 KiB  
Article
A New Earth System Spatial Grid Extending the Great Circle Arc QTM: The Spherical Geodesic Degenerate Octree Grid
by Yilin Ren, Mengyun Zhou and Aijun Zhong
ISPRS Int. J. Geo-Inf. 2025, 14(4), 152; https://doi.org/10.3390/ijgi14040152 - 1 Apr 2025
Viewed by 631
Abstract
An Earth system spatial grid (ESSG) is an extension of a discrete global grid system (DGGS) in the radial direction. It is an important tool for organizing, representing, simulating, analyzing, sharing, and visualizing spatial data. The existing ESSGs suffer from complex spatial relationships [...] Read more.
An Earth system spatial grid (ESSG) is an extension of a discrete global grid system (DGGS) in the radial direction. It is an important tool for organizing, representing, simulating, analyzing, sharing, and visualizing spatial data. The existing ESSGs suffer from complex spatial relationships and significant geometric distortion. To mitigate these problems, a spherical geodesic degenerate octree grid (SGDOG) and its encoding and decoding schemes are proposed in this paper. The SGDOG extends the great circle arc QTM in the radial direction and adopts different levels of the great circle arc QTM at different radial depths. The subdivision of SGDOG is simple and clear, and has multi-level characteristics. The experimental results demonstrate that the SGDOG has advantages of simple spatial relationships, convergent volume distortion, and real-time encoding and decoding. The SGDOG has the potential to organize and manage global spatial data and perform large-scale visual analysis of the Earth system. Full article
Show Figures

Figure 1

35 pages, 63312 KiB  
Article
Real-Time Multiresolution Management of Spatiotemporal Earth Observation Data Using DGGS
by Amir Mirzai Golpayegani, Mahmudul Hasan and Faramarz F. Samavati
Remote Sens. 2025, 17(4), 570; https://doi.org/10.3390/rs17040570 - 7 Feb 2025
Viewed by 867
Abstract
The effective management of spatiotemporal Earth observation data is a significant challenge due to their growing size and scale, geometric distortion, temporal gaps, and restricted access. In this article, we introduce a novel methodology utilizing a Discrete Global Grid System (DGGS) to address [...] Read more.
The effective management of spatiotemporal Earth observation data is a significant challenge due to their growing size and scale, geometric distortion, temporal gaps, and restricted access. In this article, we introduce a novel methodology utilizing a Discrete Global Grid System (DGGS) to address a set of challenges related to spatiotemporal data storage with a live updating mechanism, the multiresolution processing of an arbitrary region of interest (ROI) in real time, and the approximation of missing data in a smooth, continuous manner. We use reverse Chaikin subdivision and B-spline curve fitting to handle temporal data gaps, allowing for real-time updates. Additionally, our work presents a triangular wavelet scheme to incorporate a flexible, tensor-based multiresolution storage scheme for spatiotemporal raster data. The case study we present uses data from the RADARSAT Constellation Mission (RCM) of the Canadian Space Agency (CSA). Our system enables the dynamic retrieval and visualization of time-varying data for a user-defined ROI. The obtained results demonstrate that our method ensures high data fidelity while making spatiotemporal data more accessible across various practical applications in Earth observation. Full article
Show Figures

Figure 1

14 pages, 4671 KiB  
Article
Triangular Mesh Surface Subdivision Based on Graph Neural Network
by Guojun Chen and Rongji Wang
Appl. Sci. 2024, 14(23), 11378; https://doi.org/10.3390/app142311378 - 6 Dec 2024
Cited by 1 | Viewed by 1575
Abstract
Mesh subdivision is a common mesh-processing algorithm used to improve model accuracy and surface smoothness. Its classical scheme adopts a fixed linear vertex update strategy and is implemented iteratively, which often results in excessive mesh smoothness. In recent years, a nonlinear subdivision method [...] Read more.
Mesh subdivision is a common mesh-processing algorithm used to improve model accuracy and surface smoothness. Its classical scheme adopts a fixed linear vertex update strategy and is implemented iteratively, which often results in excessive mesh smoothness. In recent years, a nonlinear subdivision method that uses neural network methods, called neural subdivision (NS), has been proposed. However, as a new scheme, its application scope and the effect of its algorithm need to be improved. To solve the above problems, a graph neural network method based on neural subdivision was used to realize mesh subdivision. Unlike fixed half-flap structures, the non-fixed mesh patches used in this paper naturally expressed the interior and boundary of a mesh and learned its spatial and topological features. The tensor voting strategy was used to replace the half-flap spatial transformation method of neural subdivision to ensure the translation, rotation, and scaling invariance of the algorithm. Dynamic graph convolution was introduced to learn the global features of the mesh in the way of stacking, so as to improve the subdivision effect of the network on the extreme input mesh. In addition, vertex neighborhood information was added to the training data to improve the robustness of the subdivision network. The experimental results show that the proposed algorithm achieved a good subdivision of both the general input mesh and extreme input mesh. In addition, it effectively subdivided mesh boundaries. In particular, using the general input mesh, the algorithm in this paper was compared to neural subdivision through quantitative experiments. The proposed method reduced the Hausdorff distance and the mean surface distance by 27.53% and 43.01%, respectively. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

19 pages, 3204 KiB  
Article
ADAS Alarm Sound Design for Autonomous Vehicles Based on Local Optimization: A Case Study in Shanghai, China
by Jun Ma, Yuanyang Zuo, Octave Jolimoy, Zaiyan Gong and Wenxia Xu
Appl. Sci. 2024, 14(22), 10733; https://doi.org/10.3390/app142210733 - 20 Nov 2024
Cited by 1 | Viewed by 1414
Abstract
Alarm sounds significantly influence a user’s sensory perception while driving, directly affecting driving judgement and safety. Personal experience and the environment play an important role in information cognition, but they are rarely considered in the current warning design. We propose a methodology enabling [...] Read more.
Alarm sounds significantly influence a user’s sensory perception while driving, directly affecting driving judgement and safety. Personal experience and the environment play an important role in information cognition, but they are rarely considered in the current warning design. We propose a methodology enabling engineers and designers to locally optimize the advanced driver-assistance system (ADAS) functions and applied it to the Shanghainese ecosystem to improve performance. The alarm sound content is studied and sorted out to conduct user research and spatial sound collection evaluation. Local optimization and the subdivision of data are carried out to generate a user perception set on which the experimental tests and evaluation analysis are implemented. The framework increases the overall efficiency of auditory warning systems and minimizes Human–Machine Interface misunderstandings, thus providing the optimal security scheme for users. Full article
Show Figures

Figure 1

18 pages, 8753 KiB  
Article
Aeolian Environment Regionalization in Xinjiang and Suggestions for Sand Prevention in Typical Areas
by Jie Zhou, Hongjing Ren, Beibei Han, Yazhou Zhao and Haifeng Wang
Land 2024, 13(8), 1215; https://doi.org/10.3390/land13081215 - 6 Aug 2024
Cited by 2 | Viewed by 1236
Abstract
The Xinjiang region is prone to frequent and complex wind and sand disasters, which present a significant challenge to the sustainable development of local areas. This research uses multi-source data to analyze the spatial distribution of the aeolian environment in Xinjiang, establishes a [...] Read more.
The Xinjiang region is prone to frequent and complex wind and sand disasters, which present a significant challenge to the sustainable development of local areas. This research uses multi-source data to analyze the spatial distribution of the aeolian environment in Xinjiang, establishes a four-level zoning scheme, and proposes recommendations for ecological management and engineering and control. Results indicate that (1) Xinjiang’s aeolian environment and its types exhibit spatial heterogeneity. The aeolian environment types display a high concentration in the eastern region and a low concentration in the western region. Furthermore, the aeolian environment types are concentrated in the basin region. Moreover, the aeolian environment types exhibit a meridional distribution pattern. (2) A four-level zoning system for aeolian environments in Xinjiang was developed, comprising two first-level zones, seven s-level subzones, 22 third-level wind zones, and 31 fourth-level subdivisions. (3) A structural model for a highway sand control system is proposed for aeolian environment types of subdivisions, including fixing-based, combined blocking and fixing, wind-blocking and sand-transferring, and combined blocking and fixing–transferring. The aeolian environment regionalization program proposed in this study can be a scientific reference for relevant departments in formulating and implementing sand prevention and control planning. Full article
Show Figures

Figure 1

17 pages, 1851 KiB  
Article
On Intersections of B-Spline Curves
by Ying-Ying Yu, Xin Li and Ye Ji
Mathematics 2024, 12(9), 1344; https://doi.org/10.3390/math12091344 - 28 Apr 2024
Viewed by 2142
Abstract
Bézier and B-spline curves are foundational tools for curve representation in computer graphics and computer-aided geometric design, with their intersection computation presenting a fundamental challenge in geometric modeling. This study introduces an innovative algorithm that quickly and effectively resolves intersections between Bézier and [...] Read more.
Bézier and B-spline curves are foundational tools for curve representation in computer graphics and computer-aided geometric design, with their intersection computation presenting a fundamental challenge in geometric modeling. This study introduces an innovative algorithm that quickly and effectively resolves intersections between Bézier and B-spline curves. The number of intersections between the two input curves within a specified region is initially determined by applying the resultant of a polynomial system and Sturm’s theorem. Subsequently, the potential region of the intersection is established through the utilization of the pseudo-curvature-based subdivision scheme and the bounding box detection technique. The projected Gauss-Newton method is ultimately employed to efficiently converge to the intersection. The robustness and efficiency of the proposed algorithm are demonstrated through numerical experiments, demonstrating a speedup of 3 to 150 times over traditional methods. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

13 pages, 405 KiB  
Article
A Symmetric Non-Stationary Loop Subdivision with Applications in Initial Point Interpolation
by Baoxing Zhang, Yunkun Zhang and Hongchan Zheng
Symmetry 2024, 16(3), 379; https://doi.org/10.3390/sym16030379 - 21 Mar 2024
Cited by 1 | Viewed by 1297
Abstract
Loop subdivision is a significant surface scheme with wide applications in fields like computer graphics and wavelet. As a type of stationary scheme, Loop subdivision cannot adjust the limit surface directly. In this paper, we present a new way to solve this problem [...] Read more.
Loop subdivision is a significant surface scheme with wide applications in fields like computer graphics and wavelet. As a type of stationary scheme, Loop subdivision cannot adjust the limit surface directly. In this paper, we present a new way to solve this problem by proposing a symmetric non-stationary Loop subdivision based on a suitable iteration. This new scheme can be used to adjust the limit surfaces freely and thus can generate surfaces with different shapes. For this new scheme, we show that it is C2 convergent in the regular part of mesh and is at least tangent plane continuous at the limit positions of the extraordinary points. Additionally, we present a non-uniform generalization of this new symmetric non-stationary subdivision so as to locally control the shape of the limit surfaces. More interestingly, we present the limit positions of the initial points, both for the symmetric non-stationary Loop subdivision and its non-uniform generalization. Such limit positions can be used to interpolate the initial points with different valences, generalizing the existing result. Several numerical examples are given to illustrate the performance of the new schemes. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

17 pages, 536 KiB  
Article
A Simple Method for Constructing Symmetric Subdivision Schemes with High-Degree Polynomial Reproduction
by Jun Shi, Jieqing Tan and Li Zhang
Symmetry 2023, 15(12), 2202; https://doi.org/10.3390/sym15122202 - 15 Dec 2023
Cited by 1 | Viewed by 1291
Abstract
In this paper, we present an efficient method for constructing symmetric subdivision schemes reproducing high-degree polynomials, without solving a system of linear equations. Original symmetric subdivision and its deduced subdivisions have similar increasing characteristics to the family of pseudo-splines from the polynomial reproduction [...] Read more.
In this paper, we present an efficient method for constructing symmetric subdivision schemes reproducing high-degree polynomials, without solving a system of linear equations. Original symmetric subdivision and its deduced subdivisions have similar increasing characteristics to the family of pseudo-splines from the polynomial reproduction point of view. Several examples are given to illustrate the efficiency of the method. Full article
Show Figures

Figure 1

14 pages, 398 KiB  
Article
EEDC: An Energy Efficient Data Communication Scheme Based on New Routing Approach in Wireless Sensor Networks for Future IoT Applications
by Divya Gupta, Shivani Wadhwa, Shalli Rani, Zahid Khan and Wadii Boulila
Sensors 2023, 23(21), 8839; https://doi.org/10.3390/s23218839 - 30 Oct 2023
Cited by 24 | Viewed by 2504
Abstract
Wireless Sensor Networks (WSNs) and the Internet of Things (IoT) have emerged as transforming technologies, bringing the potential to revolutionize a wide range of industries such as environmental monitoring, agriculture, manufacturing, smart health, home automation, wildlife monitoring, and surveillance. Population expansion, changes in [...] Read more.
Wireless Sensor Networks (WSNs) and the Internet of Things (IoT) have emerged as transforming technologies, bringing the potential to revolutionize a wide range of industries such as environmental monitoring, agriculture, manufacturing, smart health, home automation, wildlife monitoring, and surveillance. Population expansion, changes in the climate, and resource constraints all offer problems to modern IoT applications. To solve these issues, the integration of Wireless Sensor Networks (WSNs) and the Internet of Things (IoT) has come forth as a game-changing solution. For example, in agricultural environment, IoT-based WSN has been utilized to monitor yield conditions and automate agriculture precision through different sensors. These sensors are used in agriculture environments to boost productivity through intelligent agricultural decisions and to collect data on crop health, soil moisture, temperature monitoring, and irrigation. However, sensors have finite and non-rechargeable batteries, and memory capabilities, which might have a negative impact on network performance. When a network is distributed over a vast area, the performance of WSN-assisted IoT suffers. As a result, building a stable and energy-efficient routing infrastructure is quite challenging in order to extend network lifetime. To address energy-related issues in scalable WSN-IoT environments for future IoT applications, this research proposes EEDC: An Energy Efficient Data Communication scheme by utilizing “Region based Hierarchical Clustering for Efficient Routing (RHCER)”—a multi-tier clustering framework for energy-aware routing decisions. The sensors deployed for IoT application data collection acquire important data and select cluster heads based on a multi-criteria decision function. Further, to ensure efficient long-distance communication along with even load distribution across all network nodes, a subdivision technique was employed in each tier of the proposed framework. The proposed routing protocol aims to provide network load balancing and convert communicating over long distances into shortened multi-hop distance communications, hence enhancing network lifetime.The performance of EEDC is compared to that of some existing energy-efficient protocols for various parameters. The simulation results show that the suggested methodology reduces energy usage by almost 31% in sensor nodes and provides almost 38% improved packet drop ratio. Full article
(This article belongs to the Special Issue Future Wireless Communication Networks (Volume II))
Show Figures

Figure 1

28 pages, 1165 KiB  
Article
The Generalized Classes of Linear Symmetric Subdivision Schemes Free from Gibbs Oscillations and Artifacts in the Fitting of Data
by Samsul Ariffin Abdul Karim, Rakib Mustafa, Humaira Mustanira Tariq, Ghulam Mustafa, Rabia Hameed and Sidra Razaq
Symmetry 2023, 15(9), 1620; https://doi.org/10.3390/sym15091620 - 22 Aug 2023
Viewed by 1759
Abstract
This paper presents the advanced classes of linear symmetric subdivision schemes for the fitting of data and the creation of geometric shapes. These schemes are derived from the B-spline and Lagrange’s blending functions. The important characteristics of the derived schemes, including continuity, support, [...] Read more.
This paper presents the advanced classes of linear symmetric subdivision schemes for the fitting of data and the creation of geometric shapes. These schemes are derived from the B-spline and Lagrange’s blending functions. The important characteristics of the derived schemes, including continuity, support, and the impact of parameters on the magnitude of the artifact and Gibbs oscillations are discussed. Schemes additionally generalize various subdivision schemes. Linear symmetric subdivision schemes can produce Gibbs oscillations when the initial data is taken from discontinuous functions. Additionally, these schemes may generate unwanted artifacts in the limit curve that do not exist in the original polygon. One solution is to use non-linear schemes, but this approach increases the computational complexity of the scheme. An alternative approach is proposed that involves modifying the linear symmetric schemes by introducing parameters into the linear rules. The suitable values of these parameters reduce or eliminate Gibbs oscillations and artifacts while still using linear symmetric schemes. Our approach provides a balance between reducing or eliminating Gibbs oscillations and artifacts while maintaining computational efficiency. Full article
Show Figures

Figure 1

19 pages, 10019 KiB  
Article
A New Definition of the Dual Interpolation Curve for CAD Modeling and Geometry Defeaturing
by Baotao Chi, Shengmin Bai, Qianjian Guo, Yaoming Zhang, Wei Yuan and Can Li
Mathematics 2023, 11(16), 3473; https://doi.org/10.3390/math11163473 - 11 Aug 2023
Viewed by 1497
Abstract
The present paper provides a new definition of the dual interpolation curve in a geometric-intuitive way based on adaptive curve refinement techniques. The dual interpolation curve is an implementation of the interpolatory subdivision scheme for curve modeling, which comprises polynomial segments of different [...] Read more.
The present paper provides a new definition of the dual interpolation curve in a geometric-intuitive way based on adaptive curve refinement techniques. The dual interpolation curve is an implementation of the interpolatory subdivision scheme for curve modeling, which comprises polynomial segments of different degrees. Dual interpolation curves maintain various desirable properties of conventional curve modeling methods, such as local adaptive subdivision, high interpolation accuracy and convergence, and continuous and discontinuous boundary representation. In addition, the dual interpolation curve is mainly applied to solve the difficult geometry defeaturing problems for curve modeling in existing computer-aided technology. By adding fictitious and intrinsic nodes inside or at the vertices of interpolation elements, the dual interpolation curve is flexible and convenient for characterizing a set of ordered points or discrete segments. Combined with the Lagrange interpolation polynomial and meshless method, the proposed approach is capable of characterizing the non-smooth boundary for geometry defeaturing. Experimental results are given to verify the validity, robustness, and accuracy of the proposed method. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

27 pages, 33346 KiB  
Article
A Color Image Encryption Method Based on Dynamic Selection Chaotic System and Singular Value Decomposition
by Mengyao Li, Xianwen Fang and Asimeng Ernest
Mathematics 2023, 11(15), 3274; https://doi.org/10.3390/math11153274 - 25 Jul 2023
Cited by 2 | Viewed by 1581
Abstract
As the basis for guiding business process decisions, flowcharts contain sensitive information pertaining to process-related concepts. Therefore, it is necessary to encrypt them to protect the privacy or security of stakeholders. Using the principles of image singular value decomposition, chaotic system randomness, and [...] Read more.
As the basis for guiding business process decisions, flowcharts contain sensitive information pertaining to process-related concepts. Therefore, it is necessary to encrypt them to protect the privacy or security of stakeholders. Using the principles of image singular value decomposition, chaotic system randomness, and neural network camouflage, a business flow chart encryption method based on dynamic selection chaotic system and singular value decomposition is proposed. Specifically, a dynamic selected chaotic system is constructed based on the nonlinear combination of one-dimensional chaotic system Logistics and Sine, and its randomness is verified. Next, using the neural network, the process image is merged into a gray matrix. The double-bit unitary matrix scrambling based on singular value decomposition is then proposed. Subsequently, using the dynamic selected chaotic system, a new sub-division diffusion method is proposed, which combines, diffuses, and performs weighted superposition to generate a matrix after diffusion and compression. Finally, the asymmetric encryption method encrypts the color image and reduces its dimensionality into a single grayscale ciphertext, and the decryption process is not the reverse of the encryption process. Simulation results and performance analysis show that the proposed image encryption scheme has good encryption performance. Full article
Show Figures

Figure 1

24 pages, 604 KiB  
Article
ω-Circulant Matrices: A Selection of Modern Applications from Preconditioning of Approximated PDEs to Subdivision Schemes
by Rafael Díaz Fuentes, Stefano Serra-Capizzano and Rosita Luisa Sormani
Algorithms 2023, 16(7), 328; https://doi.org/10.3390/a16070328 - 8 Jul 2023
Cited by 2 | Viewed by 2451
Abstract
It is well known that ω-circulant matrices with ω0 can be simultaneously diagonalized by a transform matrix, which can be factored as the product of a diagonal matrix, depending on ω, and of the unitary matrix Fn associated [...] Read more.
It is well known that ω-circulant matrices with ω0 can be simultaneously diagonalized by a transform matrix, which can be factored as the product of a diagonal matrix, depending on ω, and of the unitary matrix Fn associated to the Fast Fourier Transform. Hence, all the sets of ω-circulants form algebras whose computational power, in terms of complexity, is the same as the classical circulants with ω=1. However, stability is a delicate issue, since the condition number of the transform is equal to that of the diagonal part, tending to max{|ω|,|ω|1}. For ω=0, the set of related matrices is still an algebra, which is the algebra of lower triangular matrices, but they do not admit a common transform since most of them (all except the multiples of the identity) are non-diagonalizable. In the present work, we review two modern applications, ranging from parallel computing in preconditioning of PDE approximations to algorithms for subdivision schemes, and we emphasize the role of such algebra. For the two problems, few numerical tests are conducted and critically discussed and the related conclusions are drawn. Full article
Show Figures

Figure 1

Back to TopTop