Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (117)

Search Parameters:
Keywords = sub-transmission lines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 11250 KiB  
Article
Novel Dielectric Resonator-Based Microstrip Filters with Adjustable Transmission and Equalization Zeros
by David Espinosa-Adams, Sergio Llorente-Romano, Vicente González-Posadas, José Luis Jiménez-Martín and Daniel Segovia-Vargas
Electronics 2025, 14(13), 2557; https://doi.org/10.3390/electronics14132557 - 24 Jun 2025
Viewed by 495
Abstract
This work presents a comprehensive technological study of dielectric resonator-based microstrip filters (DRMFs), encompassing the design, fabrication, and rigorous characterization of the TE01δ mode. Through systematic coupling analysis, we demonstrate filters featuring novel input–output coupling techniques and innovative implementations of [...] Read more.
This work presents a comprehensive technological study of dielectric resonator-based microstrip filters (DRMFs), encompassing the design, fabrication, and rigorous characterization of the TE01δ mode. Through systematic coupling analysis, we demonstrate filters featuring novel input–output coupling techniques and innovative implementations of both transmission zeros (4-2-0 configuration) and equalization zeros (4-0-2 configuration), specifically designed for demanding space and radar receiver applications, while the loaded quality factor (QL) and insertion loss do not match those of dielectric resonator cavity filters (DRCFs), our solution significantly surpasses conventional microstrip filters (MFs), achieving QL> 3000 compared to typical QL≈ 200 for coupled-line MFs in X-band. The fabricated filters exhibit exceptional performance as follows: input reflection (S11) below −18 dB (4-2-0) and −16.5 dB (4-0-2), flat transmission response (S21), and out-of-band rejection exceeding −30 dB. Mechanical tuning enables precise control of input–output coupling, inter-resonator coupling, cross-coupling, and frequency synthesis, while equalization zeros provide tailored group delay characteristics. This study positions DRMFs as a viable intermediate technology for high-performance RF systems, bridging the gap between conventional solutions. Full article
(This article belongs to the Special Issue Advances in Low Power Circuit and System Design and Applications)
Show Figures

Figure 1

27 pages, 3152 KiB  
Article
Validation of a Low-Cost Open-Ended Coaxial Probe Setup for Broadband Permittivity Measurements up to 6 GHz
by Julia Arias-Rodríguez, Raúl Moreno-Merín, Andrea Martínez-Lozano, Germán Torregrosa-Penalva and Ernesto Ávila-Navarro
Sensors 2025, 25(13), 3935; https://doi.org/10.3390/s25133935 - 24 Jun 2025
Viewed by 356
Abstract
This work presents the validation of a low-cost measurement system based on an open-ended coaxial SMA (SubMiniature version A) probe for the characterization of complex permittivity in the microwave frequency range. The system combines a custom-fabricated probe, a vector network analyzer, and a [...] Read more.
This work presents the validation of a low-cost measurement system based on an open-ended coaxial SMA (SubMiniature version A) probe for the characterization of complex permittivity in the microwave frequency range. The system combines a custom-fabricated probe, a vector network analyzer, and a dedicated software application that implements three analytical models: capacitive, radiation, and virtual transmission line models. A comprehensive experimental campaign was carried out involving pure polar liquids, saline solutions, and biological tissues, with the measurements compared against those obtained using a high-precision commercial probe. The results confirm that the proposed system is capable of delivering accurate and reproducible permittivity values up to at least 6 GHz. Among the implemented models, the radiation model demonstrated the best overall performance, particularly in biological samples. Additionally, reproducibility tests with three independently assembled SMA probes showed normalized deviations below 3%, confirming the robustness of the design. These results demonstrate that the proposed system constitutes a viable alternative for cost-sensitive applications requiring portable or scalable microwave dielectric characterization. Full article
(This article belongs to the Special Issue Advanced Microwave Sensors and Their Applications in Measurement)
Show Figures

Figure 1

14 pages, 4931 KiB  
Article
State-of-the-Art VCO with Eight-Shaped Resonator-Type Transmission Line
by Sheng-Lyang Jang, Zi-Jun Lin and Miin-Horng Juang
Electronics 2025, 14(12), 2322; https://doi.org/10.3390/electronics14122322 - 6 Jun 2025
Cited by 2 | Viewed by 533
Abstract
A closed-loop transmission line (TL) coupled to an LCR resonator is used in this study for a fully-integrated CMOS rotary traveling wave oscillator (RTWO) based on the rotary traveling wave principle. A technique for the suppression of magnetic coupling noise is presented with [...] Read more.
A closed-loop transmission line (TL) coupled to an LCR resonator is used in this study for a fully-integrated CMOS rotary traveling wave oscillator (RTWO) based on the rotary traveling wave principle. A technique for the suppression of magnetic coupling noise is presented with eight-shaped inductors. The design and measurement of an 8.53 GHz oscillator in the TSMC 0.18 μm CMOS technology are discussed. The fully-integrated chip occupies a die area of 1.2 × 1.2 mm2. The oscillator consists of four sub-oscillators and uses four 1:1 symmetric twisted transformers, with the secondary inductors connected to form a twisted closed-loop transmission line for coupling the sub-oscillators. The transformers are configured as eight-shaped structures to minimize the far-field magnetic field radiation from each transformer and the whole transformer. At a supply voltage of 1.7 V, the power consumption is 5.84 mW. The free-running oscillation frequency of the RTWO is tunable from 8.53 GHz to 10.0 GHz. The measured phase noise at a 1 MHz frequency offset is −122.4 dBc/Hz at an oscillation frequency of 8.53 GHz, and the figure of merit (FOM) of the proposed VCO with a specific inductor layout is −193.4 dBc/Hz, surpassing other similar RTWOs. The FOM with a tuning range (FOMT) is −195.96 dBc/Hz. Full article
(This article belongs to the Special Issue Advances in Frontend Electronics for Millimeter-Wave Systems)
Show Figures

Figure 1

18 pages, 4934 KiB  
Article
Prediction of the Probability of IC Failure and Validation of Stochastic EM-Fields Coupling into PCB Traces Using a Bespoke RF IC Detector
by Arunkumar Hunasanahalli Venkateshaiah, John F. Dawson, Martin A. Trefzer, Haiyan Xie, Simon J. Bale, Andrew C. Marvin and Martin P. Robinson
Electronics 2025, 14(11), 2187; https://doi.org/10.3390/electronics14112187 - 28 May 2025
Viewed by 353
Abstract
In this paper, a method of estimating the probability of susceptibility of a component on a circuit board to electromagnetic interference (EMI) is presented. The integrated circuit electromagnetic compatibility (IC EMC) standard IEC 62132-4 enables the assessment of the susceptibility of an IC [...] Read more.
In this paper, a method of estimating the probability of susceptibility of a component on a circuit board to electromagnetic interference (EMI) is presented. The integrated circuit electromagnetic compatibility (IC EMC) standard IEC 62132-4 enables the assessment of the susceptibility of an IC by determining the forward power incident on each pin required to induce a malfunction. Although we focus on IC susceptibility, the method might be applied to other components and sub-circuits where the same information is known. Building upon a previously established numerical model capable of estimating the average coupled forward power at the end of a trace of a lossless PCB trace for a known load in a reverberant environment, this paper updates the model by incorporating PCB losses and utilizes the updated model to estimate the distribution of coupled forward power at the package pin over a number of boundary conditions in a reverberant field. Thus, the probability of failure can be predicted from the known component susceptibility level, the length, transmission line parameters, and the loading of the track to which it is attached. To validate this numerical model, the paper includes measurements obtained with a custom-designed RF IC detector, created for the purpose of measuring RF power coupled into the package pin via test PCB tracks. Full article
(This article belongs to the Special Issue Antennas and Microwave/Millimeter-Wave Applications)
Show Figures

Figure 1

22 pages, 3239 KiB  
Article
Analysis and Suppression Strategies of Sub-Synchronous Oscillations in DFIG Wind Farm Integrated with Synchronous Pumped Storage System
by Yuzhe Chen, Feng Wu, Linjun Shi, Yang Li, Zizhao Wang and Yanbo Ding
Sustainability 2025, 17(10), 4588; https://doi.org/10.3390/su17104588 - 16 May 2025
Viewed by 458
Abstract
The sub-synchronous oscillation (SSO) characteristics and suppression strategies of a hybrid system comprising doubly fed induction generator (DFIG)-based wind turbines and synchronous pumped storage units connected to the power grid via series-compensated transmission lines are analyzed. A modular modeling approach is used to [...] Read more.
The sub-synchronous oscillation (SSO) characteristics and suppression strategies of a hybrid system comprising doubly fed induction generator (DFIG)-based wind turbines and synchronous pumped storage units connected to the power grid via series-compensated transmission lines are analyzed. A modular modeling approach is used to construct a detailed system model, including the wind turbine shaft system, DFIG, converter control system, synchronous machine, excitation system, power system stabilizer (PSS), and series-compensated transmission lines. Eigenvalue calculation-based small-signal stability analysis is conducted to identify the dominant oscillation modes. Suppression measures are also developed using relative participation analysis, and simulations are carried out to validate the accuracy of the model and analysis method. The analysis results indicate that the SSO phenomenon is primarily influenced by the electrical state variables of the DFIG system, while the impact of the state variables of the synchronous machine is relatively minor. When the level of series compensation in the system increases, SSO is significantly exacerbated. To address this issue, a sub-synchronous damping controller (SSDC) is incorporated on the rotor side of the DFIG. The results demonstrate that this method effectively mitigates the SSO and significantly enhances the system’s robustness against disturbances. Furthermore, a simplified modeling approach is proposed based on relative participation analysis. This method neglects the dynamic characteristics of the synchronous machine while considering its impact on the steady-state impedance and initial conditions of the model. These findings provide theoretical guidance and practical insights for addressing and mitigating SSO issues in hybrid renewable energy systems composed of DFIGs and synchronous machines. Full article
Show Figures

Figure 1

22 pages, 626 KiB  
Article
Channel Characterization and Comparison in Industrial Scenario from Sub-6 GHz to Visible Light Bands for 6G
by Yue Yin, Pan Tang, Jianhua Zhang, Zheng Hu, Tao Jiang, Liang Xia and Guangyi Liu
Photonics 2025, 12(3), 257; https://doi.org/10.3390/photonics12030257 - 13 Mar 2025
Viewed by 685
Abstract
The industrial scenario is indispensable for ubiquitous 6G coverage, which demands hyper-reliable and low-latency communication for full automation, control, and operation. To meet these demands, it is widely believed that it is necessary to introduce not only the conventional sub-6 GHz bands but [...] Read more.
The industrial scenario is indispensable for ubiquitous 6G coverage, which demands hyper-reliable and low-latency communication for full automation, control, and operation. To meet these demands, it is widely believed that it is necessary to introduce not only the conventional sub-6 GHz bands but also high-frequency technologies, such as millimeter wave (mmWave), terahertz (THz), and visible light bands. In this paper, we conduct a channel characterization and comparison in the industrial scenario from the sub-6 GHz to visible light bands. The channel characteristics, including the path loss (PL), root mean square (RMS) delay spread (DS), and angle spread (AS), were analyzed with respect to the frequency dependence and the distance dependence. On the one hand, the visible light band exhibited significant differences in channel characteristics compared to the electronic wave band. Due to the line-of-sight transmission of VLC, the visible light band had a higher path loss, and the path loss exponent reached 3.84. Due to the Lambertian radiation pattern, which has a wide range of reflection angles, the AS of the visible light band was much larger than that of the electronic wave band, which were 1.73 and 0.80 for the visible light and THz bands, respectively. On the other hand, the blockage effect of the metal instruments in the industrial scenario will greatly affect the channel characteristics. As the transceiver distance grows large, signals from both sides of the receiver will be blocked by metal instruments, resulting in a decreasing trend in the RMS DS for the electronic wave band. Moreover, the statistical characteristics of the channel properties were modeled and compared with the 3GPP TR 38.901 standard. It was found that the height of the receiver caused the difference between the proposed model and the 3GPP model and needs to be taken into account when modeling. Furthermore, we extended the 3GPP model to the THz and VLC bands and provided the statistical parameters of the channel characteristics for all frequency bands. This study can provide insights for the evaluation and standardization of multi-frequency communication technology in the industrial scenario. Full article
(This article belongs to the Special Issue Advanced Technologies in Optical Wireless Communications)
Show Figures

Figure 1

35 pages, 7555 KiB  
Article
Performance Analysis of a Wireless Power Transfer System Employing the Joint MHN-IRS Technology
by Romans Kusnins, Kristaps Gailis, Janis Eidaks, Deniss Kolosovs, Ruslans Babajans, Darja Cirjulina and Dmitrijs Pikulins
Electronics 2025, 14(3), 636; https://doi.org/10.3390/electronics14030636 - 6 Feb 2025
Viewed by 1039
Abstract
The present study is concerned with the power transfer efficiency enhancement using a combination of the multi-hop node (MHN) and the Intelligent Reflecting Surface (IRS)-based passive beamforming technologies. The primary objective is to ensure a high RF-DC converter power conversion efficiency (PCE) used [...] Read more.
The present study is concerned with the power transfer efficiency enhancement using a combination of the multi-hop node (MHN) and the Intelligent Reflecting Surface (IRS)-based passive beamforming technologies. The primary objective is to ensure a high RF-DC converter power conversion efficiency (PCE) used at the receiving end, which is difficult to achieve due to path loss and multi-path propagation. An electronically tunable reconfigurable reflectarray (RRA) designed to operate at the sub-GHz ISM band (865.5 MHz) is utilized to implement the IRS concept. Both the MHN and RRA were developed and studied in our earlier research. The RRA redirects the reflected power-carrying wave amplified by the MHN toward the intended receiver. It comprises two layers: the RF layer containing tunable phase shifters and the ground plane. Each phase shifter comprises two identical eight-shaped metal patches coupled by a pair of varactor diodes used to achieve the reflection phase tuning. The phase gradient method is used to synthesize the RRA phase profiles, ensuring different desired reflection angles. The RRA prototype, composed of 36 phase shifters, is employed in conjunction with the MHN equipped with two antennas and an amplifier. The RRA parameter optimization is accomplished by randomly varying the varactor diode voltages and measuring the corresponding received power levels until the power reflected in the desired direction is maximized. Two measurement scenarios are examined: power transmission without and with the MHN. In the first scenario, the received power is calculated and measured at several distinct beam steering angles for different distances between the Tx antenna and RRA. The same procedure is applied to different distances between the RRA and MHN in the second scenario. The effect of slight deviations in the operating frequency from the designed one (865.5 MHz) on the RRA performance is also examined. Additionally, the received power levels for both scenarios are estimated via full-wave analysis performed using the full-wave simulation software Ansys HFSS 2023 R1. A Huygens’ surface equivalence principle-based model decomposition method was developed and employed to reduce the CPU time. The calculated results are consistent with the measured ones. However, some discrepancies attributed to the adverse effect of RRA diode biasing lines, manufacturing tolerances, and imperfection of the indoor environment model are observed. Full article
Show Figures

Figure 1

22 pages, 1918 KiB  
Article
Data-Driven Dynamics Learning on Time Simulation of SF6 HVDC-GIS Conical Solid Insulators
by Kenji Urazaki Junior, Francesco Lucchini and Nicolò Marconato
Electronics 2025, 14(3), 616; https://doi.org/10.3390/electronics14030616 - 5 Feb 2025
Viewed by 753
Abstract
An HVDC-GIL system with a conical spacer in a radioactive environment is studied in this work using simulated data on COMSOL® Multiphysics. Electromagnetic simulations on a 2D model were performed with varying ion-pair generation rates and potential applied to the system. This [...] Read more.
An HVDC-GIL system with a conical spacer in a radioactive environment is studied in this work using simulated data on COMSOL® Multiphysics. Electromagnetic simulations on a 2D model were performed with varying ion-pair generation rates and potential applied to the system. This article explores machine learning methods to derive time to steady state, dark current, gas conductivity, and surface charge density expressions. The focus was on constructing symbolic representations, which could be interpretable and less prone to overfitting, using the symbolic regression (SR) and sparse identification of nonlinear dynamics (SINDy) algorithms. The study successfully derived the intended expressions, demonstrating the power of symbolic regression. Predictions of dark currents in the gas–ground electrode interface reported an absolute error and mean absolute percentage error (MAPE) of 1.04 × 104 pA and 0.01%, respectively. The solid–ground electrode interface reported an error of 8.99 × 105 pA and MAPE of 0.04%, showing strong agreement with simulation data. Expressions for time to steady state had a test error of approximately 110 h with MAPE of around 3%. Steady-state gas conductivity expression achieved an absolute error of 0.55 log(S/m) and MAPE of 1%. An interpretable equation was created with SINDy to model the time evolution of surface charge density, achieving a root mean squared error of 1.12 nC/m2/s across time-series data. These results demonstrate the capability of SR and SINDy to provide interpretable and computationally efficient alternatives to time-consuming numerical simulations of HVDC systems under radiation conditions. While the model provides useful insights, performance and practical applications of the expressions can improve with more diverse datasets, which might include experimental data in the future. Full article
Show Figures

Figure 1

17 pages, 3907 KiB  
Article
Empirical Performance Evaluation of 5G Millimeter Wave System for Industrial-Use Cases in Real Production Environment
by Jordi Biosca Caro, Junaid Ansari, Bengt-Erik Olsson, Niklas Beckmann, Niels König, Robert H. Schmitt, Falko Popp and Daniel Scheike-Momberg
Electronics 2025, 14(3), 607; https://doi.org/10.3390/electronics14030607 - 4 Feb 2025
Viewed by 1455
Abstract
Wireless communication plays an important role in the digitization of industries. A 5G cellular communication system enables several industrial automation use cases. Fifth-generation deployments in industrial use cases have mainly been carried out in the sub-7 GHz frequency range. In this work, we [...] Read more.
Wireless communication plays an important role in the digitization of industries. A 5G cellular communication system enables several industrial automation use cases. Fifth-generation deployments in industrial use cases have mainly been carried out in the sub-7 GHz frequency range. In this work, we empirically study 5G system performance in the millimeter wavelength (mmW) range for industrial use cases: additive manufacturing processes and precision manufacturing robotics. We carry out an experimental performance evaluation of a commercially available non-public 5G mmW system to assess its latency, reliability and throughput for uplink and downlink data traffic in a real industrial environment. We also investigate the impact of various 5G configurations on 5G performance characteristics with insights from the baseband log information as well as unidirectional latency measurements. Our empirical results indicate that 5G mmW system can achieve low latency with high reliability in both one-way traffic directions. The throughput is observed to be high for line-of-sight (LOS) scenarios, making the use of the 5G mmW system appealing especially for data rate-intensive and time-critical industrial use cases. We also observe that industrial environments with lots of metal and reflective surfaces provide favorable propagation conditions for non-LOS transmissions. Our results indicate that static industrial use cases with low mobility can leverage the performance benefits of 5G mmW systems. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

13 pages, 738 KiB  
Article
Literature Review on Mitigation Measures for Bird Electrocutions Occurring Due to Streamers on Transmission Power Lines
by Kaajial Durgapersad, Andreas Beutel and Nishal Mahatho
Birds 2025, 6(1), 5; https://doi.org/10.3390/birds6010005 - 8 Jan 2025
Viewed by 1786
Abstract
Bird streamer faults occur when the streamer, i.e., bird excretion, bridges the gap between two energized components or an energized and an earthed component of a tower structure. This results in a short circuit, which may be accompanied by an outage in the [...] Read more.
Bird streamer faults occur when the streamer, i.e., bird excretion, bridges the gap between two energized components or an energized and an earthed component of a tower structure. This results in a short circuit, which may be accompanied by an outage in the electricity supply. Due to the impact of these faults on electrical infrastructure and bird mortality, a detailed literature review to identify effective mitigation measures for sub-transmission lines (44–132 kV) and transmission lines (132–765 kV) was conducted. The findings show that there are several measures used internationally to reduce streamer-related faults, e.g., bird perch deterrents, shields, changing tower design configurations, changing insulator types and properties, and bird runways. Bird perch deterrents are typically most effectively used by many utilities; however, it is imperative that the perch deterrents are placed and installed correctly. Placement should be above potential problematic areas—to prevent the bridging of the gaps—at various points on different tower structures. Moreover, bird guards need to be monitored and maintained to ensure effectiveness over time. The involvement of a range of stakeholders when making environmental management decisions, such as researching and implementing the best mitigation measures, is also critical to ensure continued success. Full article
(This article belongs to the Special Issue Bird Mortality Caused by Power Lines)
Show Figures

Figure 1

25 pages, 1471 KiB  
Article
Optimal Placement and Sizing of Modular Series Static Synchronous Compensators (M-SSSCs) for Enhanced Transmission Line Loadability, Loss Reduction, and Stability Improvement
by Cristian Urrea-Aguirre, Sergio D. Saldarriaga-Zuluaga, Santiago Bustamante-Mesa, Jesús M. López-Lezama and Nicolás Muñoz-Galeano
Processes 2025, 13(1), 34; https://doi.org/10.3390/pr13010034 - 27 Dec 2024
Cited by 3 | Viewed by 1164
Abstract
This paper addresses the optimal placement and sizing of Modular Static Synchronous Series Compensators (M-SSSCs) to enhance power system performance. The proposed methodology optimizes four key objectives: reducing transmission line loadability, minimizing power losses, mitigating voltage deviations, and enhancing voltage stability using the [...] Read more.
This paper addresses the optimal placement and sizing of Modular Static Synchronous Series Compensators (M-SSSCs) to enhance power system performance. The proposed methodology optimizes four key objectives: reducing transmission line loadability, minimizing power losses, mitigating voltage deviations, and enhancing voltage stability using the L-index. The methodology is validated on two systems: the IEEE 14-bus test network and a sub-area of the Colombian power grid, characterized by aging infrastructure and operational challenges. The optimization process employs three metaheuristic algorithms—Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Teaching–Learning-Based Optimization (TLBO)—to identify optimal configurations. System performance is analyzed under both normal operating conditions and contingency scenarios (N − 1). The results demonstrate that M-SSSC deployment significantly reduces congestion, enhances voltage stability, and improves overall system efficiency. Furthermore, this work highlights the practical application of M-SSSC in modernizing real-world grids, aligning with sustainable energy transition goals. This study identifies the optimal M-SSSC configurations and placement alternatives for the analyzed systems. Specifically, for the Colombian sub-area, the most suitable solutions involve installing M-SSSC devices in capacitive mode on the Termocol–Guajira and Santa Marta–Guajira 220 kV transmission lines. Full article
Show Figures

Figure 1

21 pages, 629 KiB  
Article
Quantum PSO-Based Optimization of Secured IRS-Assisted Wireless-Powered IoT Networks
by Abid Afridi, Iqra Hameed and Insoo Koo
Appl. Sci. 2024, 14(24), 11677; https://doi.org/10.3390/app142411677 - 13 Dec 2024
Cited by 1 | Viewed by 1337
Abstract
In this paper, we explore intelligent reflecting surface (IRS)-assisted physical layer security (PLS) in a wireless-powered Internet of Things (IoT) network (WPIN) by combining an IRS, a friendly jammer, and energy harvesting (EH) to maximize sum secrecy throughput in the WPIN. Specifically, we [...] Read more.
In this paper, we explore intelligent reflecting surface (IRS)-assisted physical layer security (PLS) in a wireless-powered Internet of Things (IoT) network (WPIN) by combining an IRS, a friendly jammer, and energy harvesting (EH) to maximize sum secrecy throughput in the WPIN. Specifically, we propose a non-line-of-sight system where a hybrid access point (H-AP) has no direct link with the users, and a secure uplink transmission scheme utilizes the jammer to combat malicious eavesdroppers. The proposed scheme consists of two stages: wireless energy transfer (WET) on the downlink (DL) and wireless information transmission (WIT) on the uplink (UL). In the first phase, the H-AP sends energy to users and the jammer, and they then harvest energy with the help of the IRS. Consequently, during WIT, the user transmits information to the H-AP while the jammer emits signals to confuse the eavesdropper without interfering with the legitimate transmission. The phase-shift matrix of the IRS and the time allocation for DL and UL are jointly optimized to maximize the sum secrecy throughput of the network. To tackle the non-convex problem, an alternating optimization method is employed, and the problem is reformulated into two sub-problems. First, the IRS phase shift is solved using quantum particle swarm optimization (QPSO). Then, the time allocation for DL and UL are optimized using the bisection method. Simulation results demonstrate that the proposed method achieves significant performance improvements as compared to other baseline schemes. Specifically, for IRS elements N = 35, the proposed scheme achieves a throughput of 19.4 bps/Hz, which is 85% higher than the standard PSO approach and 143% higher than the fixed time, random phase (8 bps/Hz) approach. These results validate the proposed approach’s effectiveness in improving network security and overall performance. Full article
(This article belongs to the Special Issue 5G and Beyond: Technologies and Communications)
Show Figures

Figure 1

17 pages, 1723 KiB  
Article
A New Method to Assess the Reliability and Security of Urban Electrical Substations
by Jorge Silva-Ortega, Jesús Ortíz and John E. Candelo-Becerra
Electricity 2024, 5(4), 991-1007; https://doi.org/10.3390/electricity5040050 - 5 Dec 2024
Cited by 1 | Viewed by 1555
Abstract
This paper presents the application of quantitative and qualitative methods to assess reliability and security in urban electrical substations. The method is a visual technique based on a conceptual analysis of the different substation configurations. We also performed a sensitivity analysis considering the [...] Read more.
This paper presents the application of quantitative and qualitative methods to assess reliability and security in urban electrical substations. The method is a visual technique based on a conceptual analysis of the different substation configurations. We also performed a sensitivity analysis considering the effects of connecting and disconnecting various elements of a power system. The procedure considers evaluating the loadability levels of transformers, buses, and lines, as well as the current state of the individual elements and the number of connected elements. A new index was proposed for urban electrical substations, evaluating the non-attended demand risk. The technique was tested in a power system case study with a meshed subtransmission network and distribution circuits to supply power to the loads. The results showed that the proposed method is a useful qualitative method to obtain a quantitative description of the system during operation in critical cases and the non-attended demand risk. In addition, 30% of the electrical substations showed low reliability indicators for critical cases such as failures in transformers that connect different internal configurations. These findings could be of interest for utilities and operators, as this document provides a simplified and graphic method that can integrate components such as configurations, non-attended demand risk, and loadability indicators as key parameters to identify critical points that affect the reliability and security of power systems. The case study showed that the electrical substations with the highest non-attention demand risk, around 50%, were those with single- and double-bar configurations in their respective switchyards. On the other hand, the substations with the lowest risk of unmet demand, equal to or less than 20%, were electrical substations with a double-bar + bypass switch configuration, a double-bar and ring configuration in the 110 kV switchyard, and a single-bar configuration in the 13.8 kV switchyard. This study showed that those substations that had couplings had a higher probability of withstanding contingencies. Full article
Show Figures

Figure 1

11 pages, 2024 KiB  
Article
The Development of an Electron Pulse Dilation Photomultiplier Tube Diagnostic Instrument
by Wenyong Fu, Chenman Hu, Ping Chen, Rongyan Zhou and Ling Li
Sensors 2024, 24(23), 7497; https://doi.org/10.3390/s24237497 - 24 Nov 2024
Cited by 1 | Viewed by 1086
Abstract
A new pulse-dilated photomultiplier tube (PD-PMT) with sub-20 ps temporal resolution and associated drivers have been developed for use detection and signal amplification in the inertial confinement fusion (ICF) community. The PD-PMT is coupled to a transmission line output in order to provide [...] Read more.
A new pulse-dilated photomultiplier tube (PD-PMT) with sub-20 ps temporal resolution and associated drivers have been developed for use detection and signal amplification in the inertial confinement fusion (ICF) community. The PD-PMT is coupled to a transmission line output in order to provide a continuous time history of the input signal. Electron pulse dilation provides high-speed detection capabilities by converting incoming signals into a free-electron cloud and manipulating the electron signal with electric and magnetic fields. This velocity dispersion is translated into temporal separation after the electrons transit into a drift space. The free electrons are then detected by using conventional time-resolved methods and the effective temporal resolution is improved about 12 times. In order to accurately obtain the actual device input signal, we experimentally investigated the relationship between microchannel plate (MCP) gain and electron energy during the first collision. We report the measurements with the PD-PMT, and the error source of the amplitude of the compressed signal is analyzed, which provides a reference for subsequent accurate construction. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 14961 KiB  
Article
A Sub-6 GHz 8 × 8 MIMO Antenna Array for 5G Metal-Frame Mobile Phone Applications
by Yu-Tung Chen and Hsin-Lung Su
Electronics 2024, 13(23), 4590; https://doi.org/10.3390/electronics13234590 - 21 Nov 2024
Cited by 2 | Viewed by 1361
Abstract
This article introduces a broadband sub-6 GHz 8 × 8 MIMO (multi-input multi-output) antenna array for 5G (fifth-generation) metal-frame mobile phone applications. The unique advantage of this compact antenna design is its placement in the corners of the mobile phone, allowing for significant [...] Read more.
This article introduces a broadband sub-6 GHz 8 × 8 MIMO (multi-input multi-output) antenna array for 5G (fifth-generation) metal-frame mobile phone applications. The unique advantage of this compact antenna design is its placement in the corners of the mobile phone, allowing for significant PCB board space reduction. The proposed antenna’s 6 dB impedance bandwidth ranged from 3.3 to 6 GHz, covering the n77/78/79 and WiFi-5GHz bands. The main radiating element was an open-slot antenna coupled by a T-shaped structure connected to a 50-Ω transmission line. The size of the single-antenna element was 12.25 mm × 2.5 mm × 7 mm, and these antennas were symmetrical at four corners of the smartphone. A wide slot and neutral line were incorporated to reduce mutual coupling between adjacent antennas. The MIMO antenna array achieved isolation above 12 dB. The peak realized gain ranged from 2 to 5.28 dBi, and the total efficiency spanned 37% to 71%. The ECC (envelope correlation coefficient) was less than 0.34, and the CC (channel capacity) ranged from 33 and 41 bps/Hz. Full article
(This article belongs to the Special Issue Broadband Antennas and Antenna Arrays)
Show Figures

Figure 1

Back to TopTop