Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (137)

Search Parameters:
Keywords = store-operated calcium entry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 2627 KiB  
Review
Calcium Signaling Dynamics in Vascular Cells and Their Dysregulation in Vascular Disease
by Chang Dai and Raouf A. Khalil
Biomolecules 2025, 15(6), 892; https://doi.org/10.3390/biom15060892 - 18 Jun 2025
Viewed by 1262
Abstract
Calcium (Ca2+) signaling is a fundamental regulatory mechanism controlling essential processes in the endothelium, vascular smooth muscle cells (VSMCs), and the extracellular matrix (ECM), including maintaining the endothelial barrier, modulation of vascular tone, and vascular remodeling. Cytosolic free Ca2+ concentration [...] Read more.
Calcium (Ca2+) signaling is a fundamental regulatory mechanism controlling essential processes in the endothelium, vascular smooth muscle cells (VSMCs), and the extracellular matrix (ECM), including maintaining the endothelial barrier, modulation of vascular tone, and vascular remodeling. Cytosolic free Ca2+ concentration is tightly regulated by a balance between Ca2+ mobilization mechanisms, including Ca2+ release from the intracellular stores in the sarcoplasmic/endoplasmic reticulum and Ca2+ entry via voltage-dependent, transient-receptor potential, and store-operated Ca2+ channels, and Ca2+ elimination pathways including Ca2+ extrusion by the plasma membrane Ca2+-ATPase and Na+/Ca2+ exchanger and Ca2+ re-uptake by the sarco(endo)plasmic reticulum Ca2+-ATPase and the mitochondria. Some cell membranes/organelles are multifunctional and have both Ca2+ mobilization and Ca2+ removal pathways. Also, the individual Ca2+ handling pathways could be integrated to function in a regenerative, capacitative, cooperative, bidirectional, or reciprocal feed-forward or feed-back manner. Disruption of these pathways causes dysregulation of the Ca2+ signaling dynamics and leads to pathological cardiovascular conditions such as hypertension, coronary artery disease, atherosclerosis, and vascular calcification. In the endothelium, dysregulated Ca2+ signaling impairs nitric oxide production, reduces vasodilatory capacity, and increases vascular permeability. In VSMCs, Ca2+-dependent phosphorylation of the myosin light chain and Ca2+ sensitization by protein kinase-C (PKC) and Rho-kinase (ROCK) increase vascular tone and could lead to increased blood pressure and hypertension. Ca2+ activation of matrix metalloproteinases causes collagen/elastin imbalance and promotes vascular remodeling. Ca2+-dependent immune cell activation, leukocyte infiltration, and cholesterol accumulation by macrophages promote foam cell formation and atherosclerotic plaque progression. Chronic increases in VSMCs Ca2+ promote phenotypic switching to mesenchymal cells and osteogenic transformation and thereby accelerate vascular calcification and plaque instability. Emerging therapeutic strategies targeting these Ca2+-dependent mechanisms, including Ca2+ channel blockers and PKC and ROCK inhibitors, hold promise for restoring Ca2+ homeostasis and mitigating vascular disease progression. Full article
(This article belongs to the Special Issue Calcium Signaling in Cell Function and Dysfunction)
Show Figures

Figure 1

18 pages, 741 KiB  
Review
Divergent Functions of Rap1A and Rap1B in Endothelial Biology and Disease
by Ramoji Kosuru and Magdalena Chrzanowska
Int. J. Mol. Sci. 2025, 26(11), 5372; https://doi.org/10.3390/ijms26115372 - 4 Jun 2025
Viewed by 1042
Abstract
Rap1A and Rap1B are closely related small GTPases that regulate endothelial adhesion, vascular integrity, and signaling pathways via effector domain interactions, with downstream effectors controlling integrins and cadherins. Although both isoforms are essential for vascular development, recent studies using endothelial-specific knockout models have [...] Read more.
Rap1A and Rap1B are closely related small GTPases that regulate endothelial adhesion, vascular integrity, and signaling pathways via effector domain interactions, with downstream effectors controlling integrins and cadherins. Although both isoforms are essential for vascular development, recent studies using endothelial-specific knockout models have uncovered distinct, non-redundant functions. Rap1B is a key regulator of VEGFR2 signaling, promoting angiogenesis, nitric oxide production, and immune evasion in tumors while restraining proinflammatory signaling in atherosclerosis. In contrast, Rap1A unexpectedly functions as a modulator of endothelial calcium homeostasis by restricting Orai1-mediated store-operated calcium entry, thereby limiting inflammatory responses and vascular permeability. New insights into Rap1 regulation highlight the roles of context-specific guanine nucleotide exchange factors, such as RasGRP3, and non-degradative ubiquitination in effector selection. Emerging data suggest that isoform-specific interactions between the Rap1 hypervariable regions and plasma membrane lipids govern their localization to distinct nanodomains, potentially influencing downstream signaling specificity. Together, these findings redefine the roles of Rap1A and Rap1B in endothelial biology and highlight their relevance in diseases such as tumor angiogenesis, atherosclerosis, and inflammatory lung injury. We discuss the therapeutic implications of targeting Rap1 isoforms in vascular pathologies and cancer, emphasizing the need for isoform-specific strategies that preserve endothelial homeostasis. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

29 pages, 3549 KiB  
Article
Physiological Muscle Function Is Controlled by the Skeletal Endocannabinoid System in Murine Skeletal Muscles
by Nyamkhuu Ganbat, Zoltán Singlár, Péter Szentesi, Elena Lilliu, Zoltán Márton Kohler, László Juhász, Anikó Keller-Pintér, Xaver Koenig, Fabio Arturo Iannotti, László Csernoch and Mónika Sztretye
Int. J. Mol. Sci. 2025, 26(11), 5291; https://doi.org/10.3390/ijms26115291 - 30 May 2025
Viewed by 579
Abstract
The endocannabinoid system (ECS) is known to regulate crucial bodily functions, including healthy muscle activity. However, its precise roles in normal skeletal muscle function and the development of muscle disorders remain unclear. Previously, we developed a tamoxifen-inducible, skeletal muscle-specific CB1 receptor knockdown [...] Read more.
The endocannabinoid system (ECS) is known to regulate crucial bodily functions, including healthy muscle activity. However, its precise roles in normal skeletal muscle function and the development of muscle disorders remain unclear. Previously, we developed a tamoxifen-inducible, skeletal muscle-specific CB1 receptor knockdown (skmCB1-KD) mouse model using the Cre/LoxP system. In this study, we aimed to clarify the mechanisms behind the observed reduction in muscle force generation in these mice. To investigate this, we analyzed calcium dynamics following electrical stimulation-induced muscle fatigue, assessed store-operated calcium entry (SOCE), and performed functional analysis of mitochondrial respiration. Our findings suggest that the reduced muscle performance observed in vivo likely arises from interconnected alterations in ATP production by mitochondria. Moreover, in skmCB1-KD mice, we detected a significant decrease in a component of the respiratory chain (complex IV) and a slowed dissipation of mitochondrial membrane potential upon the addition of an un-coupler (FCCP). Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Graphical abstract

12 pages, 2091 KiB  
Article
Opposing Calcium-Dependent Effects of GsMTx4 in Acute Lymphoblastic Leukemia: In Vitro Proliferation vs. In Vivo Survival Advantage
by Souleymane Abdoul-Azize, Rachid Zoubairi and Olivier Boyer
Int. J. Mol. Sci. 2025, 26(10), 4822; https://doi.org/10.3390/ijms26104822 - 18 May 2025
Viewed by 454
Abstract
Mechanogated (MG) ion channels play a crucial role in mechano-transduction and immune cell regulation, yet their impact on blood cancers, particularly acute lymphoblastic leukemia (ALL), remains poorly understood. This study investigates the pharmacological effects of GsMTx4, an MG channel inhibitor, in human ALL [...] Read more.
Mechanogated (MG) ion channels play a crucial role in mechano-transduction and immune cell regulation, yet their impact on blood cancers, particularly acute lymphoblastic leukemia (ALL), remains poorly understood. This study investigates the pharmacological effects of GsMTx4, an MG channel inhibitor, in human ALL cells both in vitro and in vivo. Unexpectedly, we found that GsMTx4 remarkably increased basal calcium (Ca2+) levels in ALL cells through constitutive Ca2+ entry and enhanced store-operated Ca2⁺ influx upon thapsigargin stimulation. This increase in basal Ca2+ signaling promoted ALL cell viability and proliferation in vitro. Notably, chelating intracellular Ca2+ with BAPTA-AM reduces GsMTx4-mediated leukemia cell viability and proliferation. However, in vivo, GsMTx4 decreases cytosolic Ca2+ levels in Nalm-6 GFP⁺ cells isolated from mouse blood, effectively countering leukemia progression and significantly extending survival in NSG mice transplanted with leukemia cells (median survival: GsMTx4 vs. control, 37.5 days vs. 29 days, p = 0.0414). Our results highlight the different properties of GsMTx4 activity in in vitro and in vivo models. They also emphasize that Ca2+ signaling is a key vulnerability in leukemia, where its precise modulation dictates disease progression. Thus, targeting Ca2+ channels could offer a novel therapeutic strategy for leukemia by exploiting Ca2+ homeostasis. Full article
Show Figures

Figure 1

23 pages, 2709 KiB  
Review
Ryanodine Receptors in Islet Cell Function: Calcium Signaling, Hormone Secretion, and Diabetes
by Md. Shahidul Islam
Cells 2025, 14(10), 690; https://doi.org/10.3390/cells14100690 - 10 May 2025
Viewed by 2481
Abstract
Ryanodine receptors (RyRs) are large intracellular Ca2+ release channels primarily found in muscle and nerve cells and also present at low levels in pancreatic islet endocrine cells. This review examines the role of RyRs in islet cell function, focusing on calcium signaling [...] Read more.
Ryanodine receptors (RyRs) are large intracellular Ca2+ release channels primarily found in muscle and nerve cells and also present at low levels in pancreatic islet endocrine cells. This review examines the role of RyRs in islet cell function, focusing on calcium signaling and hormone secretion, while addressing the ongoing debate regarding their significance due to their limited expression. We explore conflicting experimental results and their potential causes, synthesizing current knowledge on RyR isoforms in islet cells, particularly in beta and delta cells. The review discusses how RyR-mediated calcium-induced calcium release enhances, rather than drives, glucose-stimulated insulin secretion. We examine the phosphorylation-dependent regulation of beta-cell RyRs, the concept of “leaky ryanodine receptors”, and the roles of RyRs in endoplasmic reticulum stress, apoptosis, store-operated calcium entry, and beta-cell electrical activity. The relationship between RyR dysfunction and the development of impaired insulin secretion in diabetes is assessed, noting their limited role in human diabetes pathogenesis given the disease’s polygenic nature. We highlight the established role of RyR-mediated CICR in the mechanism of action of common type 2 diabetes treatments, such as glucagon-like peptide-1, which enhances insulin secretion. By integrating findings from electrophysiological, molecular, and clinical studies, this review provides a balanced perspective on RyRs in islet cell physiology and pathology, emphasizing their significance in both normal insulin secretion and current diabetes therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Signal Transduction in the Islet Cells)
Show Figures

Graphical abstract

17 pages, 2739 KiB  
Article
TP53 Mutation-Specific Dysregulation of Store-Operated Calcium Entry and Apoptotic Sensitivity in Triple-Negative Breast Cancer
by Kaneez E. Rabab, Paul J. Buchanan, Grace Colley, Anita White, Aisling Murphy, Chloe McCormack and Alex J. Eustace
Cancers 2025, 17(10), 1614; https://doi.org/10.3390/cancers17101614 - 10 May 2025
Cited by 1 | Viewed by 1066
Abstract
Background: Triple-negative breast cancer (TNBC) is an aggressive subtype lacking estrogen, progesterone, and HER2 receptors, and is associated with poor prognosis and limited targeted therapeutic options. TP53 mutations occur in the majority of TNBC cases, disrupting p53’s role in DNA repair and apoptosis. [...] Read more.
Background: Triple-negative breast cancer (TNBC) is an aggressive subtype lacking estrogen, progesterone, and HER2 receptors, and is associated with poor prognosis and limited targeted therapeutic options. TP53 mutations occur in the majority of TNBC cases, disrupting p53’s role in DNA repair and apoptosis. Beyond gene regulation, p53 also influences calcium signalling through store-operated calcium entry (SOCE), a critical pathway for cell survival and death. However, the impact of different TP53 mutation types on calcium signalling remains unclear. Methods: Calcium channel gene expression was analysed using publicly available TNBC datasets. Calcium channel expression and SOCE activity were assessed in TNBC cell lines with different TP53 mutations using quantitative PCR and calcium imaging (Fura-2AM). Cell proliferation was measured using acid phosphatase assays, while apoptosis was evaluated through caspase 3/7 activation using the Incucyte live-cell fluorescent imager. The p53 reactivator COTI-2 was tested for its ability to restore TP53 function and modulate calcium signalling. Results: Analysis revealed significant downregulation of CACNA1D in TP53-mutant TNBCs. TNBC cell lines harbouring frameshift and stop TP53 mutations exhibited reduced SOCE, lower CACNA1D expression, and resistance to thapsigargin-induced apoptosis compared to wild-type cells. In contrast, cells with the TP53 R273H missense mutation demonstrated similar calcium signalling and proliferation to TP53 wild-type cels. COTI-2 treatment restored CACNA1D expression and SOCE in frameshift and stop mutant cells, enhancing apoptotic sensitivity. Combined treatment with COTI-2 and thapsigargin resulted in a synergistic increase in apoptosis. Conclusions: This study identifies a novel link between TP53 mutation type and calcium signalling in TNBC. Reactivating mutant p53 with COTI-2 restores calcium-mediated apoptosis, supporting combination strategies targeting both TP53 dysfunction and calcium signalling. Full article
(This article belongs to the Special Issue Calcium Signaling in Cancer Cell Progression)
Show Figures

Figure 1

13 pages, 1742 KiB  
Article
Progressive Elevation of Store-Operated Calcium Entry-Associated Regulatory Factor (SARAF) and Calcium Pathway Dysregulation in Multiple Sclerosis
by Safa Taha, Muna Aljishi, Ameera Sultan, Moudi E. Al-Nashmi, Moiz Bakhiet, Salvatore Spicuglia and Mohamed Belhocine
Int. J. Mol. Sci. 2025, 26(10), 4520; https://doi.org/10.3390/ijms26104520 - 9 May 2025
Viewed by 537
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune disorder characterized by demyelination and neuronal damage in the central nervous system. Dysregulation of calcium homeostasis, particularly through the Store-Operated Calcium Entry-Associated Regulatory Factor (SARAF), has been implicated in MS pathogenesis. This study investigated SARAF, STIM1, [...] Read more.
Multiple Sclerosis (MS) is a chronic autoimmune disorder characterized by demyelination and neuronal damage in the central nervous system. Dysregulation of calcium homeostasis, particularly through the Store-Operated Calcium Entry-Associated Regulatory Factor (SARAF), has been implicated in MS pathogenesis. This study investigated SARAF, STIM1, and Orai1 expression patterns and their relationship to calcium homeostasis in 45 Bahraini MS patients and 45 matched healthy controls using ELISA and real-time PCR analyses. MS patients showed significantly elevated serum SARAF levels in both early (192.26 ± 47.00 pg/mL) and late MS stages (341.47 ± 96.19 pg/mL) compared to controls (129.82 ± 30.82 pg/mL; p < 0.001. SARAF expressions were markedly increased in MS patients (3.829 ± 0.04422 vs. 1 ± 0; p < 0.0001), while STIM1 (0.4324 ± 0.01471) and ORAI1 (0.2963 ± 0.02156) expressions were significantly reduced compared to the controls (p < 0.0001). Intracellular calcium levels were notably elevated in both early and late MS stages. These findings suggest that the progressive elevation of SARAF, coupled with altered STIM1 and ORAI1 expression, may serve as potential biomarkers for MS progression and represent promising therapeutic targets. Full article
(This article belongs to the Special Issue Molecular Research and Treatment in Multiple Sclerosis)
Show Figures

Figure 1

16 pages, 2847 KiB  
Article
Calcium Homeostasis Disrupted—How Store-Operated Calcium Entry Factor SARAF Silencing Impacts HepG2 Liver Cancer Cells
by Safa Taha, Muna Aljishi, Ameera Sultan and Moiz Bakhiet
Int. J. Mol. Sci. 2025, 26(9), 4426; https://doi.org/10.3390/ijms26094426 - 7 May 2025
Viewed by 786
Abstract
Hepatocellular carcinoma (HCC), a highly aggressive liver malignancy, is often associated with disrupted calcium homeostasis. Store-operated calcium entry (SOCE), involving components such as STIM1, Orai1, and SARAF, plays a critical role in calcium signaling and cancer progression. While STIM1 and Orai1 have been [...] Read more.
Hepatocellular carcinoma (HCC), a highly aggressive liver malignancy, is often associated with disrupted calcium homeostasis. Store-operated calcium entry (SOCE), involving components such as STIM1, Orai1, and SARAF, plays a critical role in calcium signaling and cancer progression. While STIM1 and Orai1 have been extensively studied, SARAF’s role as a negative regulator of SOCE in HCC remains poorly understood. This preliminary study investigated SARAF’s effects on calcium homeostasis, proliferation, and migration in HepG2 liver cancer cells, providing initial evidence of its tumor-suppressive role. SARAF expression was modulated using siRNA knockdown and overexpression plasmids, with validation by qRT-PCR. Functional assays demonstrated that SARAF silencing increased proliferation by 50% and migration by 40% (p < 0.05), while SARAF overexpression reduced proliferation by 50% and migration by 45% (p < 0.01), highlighting its tumor-suppressive role. Intracellular calcium levels, elevated in HepG2 cells, were partially restored by SARAF overexpression, though SARAF silencing did not further disrupt calcium regulation. These findings suggest that SARAF negatively regulates proliferation and migration in HCC, potentially through its role in maintaining calcium homeostasis. SARAF represents a promising therapeutic target in HCC. Future studies should explore the downstream molecular mechanisms governing SARAF’s effects, investigate its role in other cancers, and assess its clinical potential for liver cancer therapy. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: 2nd Edition)
Show Figures

Figure 1

21 pages, 11189 KiB  
Article
Novel Compounds Target Aberrant Calcium Signaling in the Treatment of Relapsed High-Risk Neuroblastoma
by Dana-Lynn T. Koomoa, Nathan Sunada, Italo Espinoza-Fuenzalida, Dustin Tacdol, Madeleine Shackleford, Li Feng, Dianqing Sun and Ingo Lange
Int. J. Mol. Sci. 2025, 26(7), 3180; https://doi.org/10.3390/ijms26073180 - 29 Mar 2025
Viewed by 649
Abstract
High-risk neuroblastoma (HRNB) is an extracranial solid pediatric cancer. Despite the plethora of treatments available for HRNB, up to 65% of patients are refractory or exhibit an initial response to treatment that transitions to therapy-resistant relapse, which is invariably fatal. A key feature [...] Read more.
High-risk neuroblastoma (HRNB) is an extracranial solid pediatric cancer. Despite the plethora of treatments available for HRNB, up to 65% of patients are refractory or exhibit an initial response to treatment that transitions to therapy-resistant relapse, which is invariably fatal. A key feature that promotes HRNB progression is aberrant calcium (Ca2+) signaling. Ca2+ signaling is regulated by several druggable channel proteins, offering tremendous therapeutic potential. Unfortunately, many of the Ca2+ channels in HRNB also perform fundamental functions in normal healthy cells, hence targeting them increases the potential for adverse effects. To overcome this challenge, we sought to identify novel Ca2+ signaling pathways that are observed in HRNB but not normal non-cancerous cells with the hypothesis that these novel pathways may serve as potential therapeutic targets. One Ca2+ signaling pathway that is deregulated in HRNB is store-operated Ca2+ entry (SOCE). SOCE relays the release of Ca2+ from the endoplasmic reticulum (ER) and Ca2+ influx via the plasma membrane and promotes cancer drug resistance by regulating transcriptional programming and the induction of mitochondrial Ca2+ (mtCa2+)-dependent signaling. mtCa2+ signaling is critical for cellular metabolism, reactive oxygen production, cell cycle, and proliferation and has a key role in the regulation of cell death. Therefore, a dynamic interplay between ER, SOCE, and mitochondria tightly regulates cell survival and apoptosis. From a library of synthesized novel molecules, we identified two structurally related compounds that uniquely disrupt the dynamic interplay between SOCE, ER, and mitochondrial signaling pathways and induce cell death in HRNB. Our results revealed that compounds 248 and 249 activate distinct aberrant Ca2+ signals that are unique to relapsed HRNB and could be exploited to induce mtCa+ overload, a novel calcium influx current, and subsequent cell death. These findings establish a potential new pathway of calcium-mediated cell death; targeting this pathway could be critical for the treatment of refractory and relapsed HRNB. Full article
(This article belongs to the Special Issue Natural Products: Potential New Anti-Inflammatory Drugs)
Show Figures

Figure 1

20 pages, 10727 KiB  
Article
α-Latrotoxin Actions in the Absence of Extracellular Ca2+ Require Release of Stored Ca2+
by Jennifer K. Blackburn, Quazi Sufia Islam, Ouafa Benlaouer, Svetlana A. Tonevitskaya, Evelina Petitto and Yuri A. Ushkaryov
Toxins 2025, 17(2), 73; https://doi.org/10.3390/toxins17020073 - 6 Feb 2025
Viewed by 1111
Abstract
α-Latrotoxin (αLTX) causes exhaustive release of neurotransmitters from nerve terminals in the absence of extracellular Ca2+ (Ca2+e). To investigate the mechanisms underlying this effect, we loaded mouse neuromuscular junctions with BAPTA-AM. This membrane-permeable Ca2+-chelator demonstrates that Ca [...] Read more.
α-Latrotoxin (αLTX) causes exhaustive release of neurotransmitters from nerve terminals in the absence of extracellular Ca2+ (Ca2+e). To investigate the mechanisms underlying this effect, we loaded mouse neuromuscular junctions with BAPTA-AM. This membrane-permeable Ca2+-chelator demonstrates that Ca2+e-independent effects of αLTX require an increase in cytosolic Ca2+ (Ca2+cyt). We also show that thapsigargin, which depletes Ca2+ stores, induces neurotransmitter release, but inhibits the effect of αLTX. We then studied αLTX’s effects on Ca2+cyt using neuroblastoma cells expressing signaling-capable or signaling-incapable variants of latrophilin-1, a G protein-coupled receptor of αLTX. Our results demonstrate that αLTX acts as a cation ionophore and a latrophilin agonist. In model cells at 0 Ca2+e, αLTX forms membrane pores and allows the influx of Na+; this reverses the Na+-Ca2+ exchanger, leading to the release of stored Ca2+ and inhibition of its extrusion. Concurrently, αLTX stimulates latrophilin signaling, which depletes a Ca2+ store and induces transient opening of Ca2+ channels in the plasmalemma that are sensitive to inhibitors of store-operated Ca2+ entry. These results indicate that Ca2+ release from intracellular stores and that Ca2+ influx through latrophilin-activated store-operated Ca2+ channels contributes to αLTX actions and may be involved in physiological control of neurotransmitter release at nerve terminals. Full article
(This article belongs to the Special Issue Animal Venoms: Unraveling the Molecular Complexity (2nd Edition))
Show Figures

Figure 1

35 pages, 1391 KiB  
Review
The Alteration of Microglial Calcium Homeostasis in Central Nervous System Disorders: A Comprehensive Review
by Al Riyad Hasan, Faria Tasnim, Md. Aktaruzzaman, Md. Tarikul Islam, Rifat Rayhan, Afrina Brishti, Junguk Hur, James E. Porter and Md. Obayed Raihan
Neuroglia 2024, 5(4), 410-444; https://doi.org/10.3390/neuroglia5040027 - 21 Oct 2024
Cited by 10 | Viewed by 4200
Abstract
Microglia, the unique and motile immune cells of the central nervous system (CNS), function as a security guard in maintaining CNS homeostasis, primarily through calcium signaling. The calcium dynamics in microglia control important functions such as phagocytosis, cytokine release, and migration. Calcium dysregulation [...] Read more.
Microglia, the unique and motile immune cells of the central nervous system (CNS), function as a security guard in maintaining CNS homeostasis, primarily through calcium signaling. The calcium dynamics in microglia control important functions such as phagocytosis, cytokine release, and migration. Calcium dysregulation in microglia has been linked to several CNS disorders, like Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), and ischemic stroke (IS). Calcium entering through channels such as voltage-gated calcium channels (VGCCs), store-operated calcium entry (SOCE), and transient receptor potential (TRP) channels is essential for microglial activation and pro-inflammatory responses. Under pathological conditions, like the formation of amyloid-β plaques in AD, aggregation of α-synuclein in PD, and oxidative stress in MS, calcium dysregulation exacerbates neuroinflammation, mitochondrial dysfunction, and neurodegeneration. Therapeutic strategies targeting calcium signaling pathways, using calcium channel blockers and antioxidant interventions, show promise for alleviating microglial activation and slowing down disease progression. This review summarizes the underlying mechanisms of microglial calcium dysregulation and potential therapeutic benefits for restoring microglial calcium balance in CNS disorders. Full article
Show Figures

Figure 1

19 pages, 1779 KiB  
Review
A Deep Dive into the N-Terminus of STIM Proteins: Structure–Function Analysis and Evolutionary Significance of the Functional Domains
by Sasirekha Narayanasamy, Hwei Ling Ong and Indu S. Ambudkar
Biomolecules 2024, 14(10), 1200; https://doi.org/10.3390/biom14101200 - 24 Sep 2024
Cited by 3 | Viewed by 1931
Abstract
Calcium is an important second messenger that is involved in almost all cellular processes. Disruptions in the regulation of intracellular Ca2+ levels ([Ca2+]i) adversely impact normal physiological function and can contribute to various diseased conditions. STIM and Orai [...] Read more.
Calcium is an important second messenger that is involved in almost all cellular processes. Disruptions in the regulation of intracellular Ca2+ levels ([Ca2+]i) adversely impact normal physiological function and can contribute to various diseased conditions. STIM and Orai proteins play important roles in maintaining [Ca2+]i through store-operated Ca2+ entry (SOCE), with STIM being the primary regulatory protein that governs the function of Orai channels. STIM1 and STIM2 are single-pass ER-transmembrane proteins with their N- and C-termini located in the ER lumen and cytoplasm, respectively. The N-terminal EF-SAM domain of STIMs senses [Ca2+]ER changes, while the C-terminus mediates clustering in ER-PM junctions and gating of Orai1. ER-Ca2+ store depletion triggers activation of the STIM proteins, which involves their multimerization and clustering in ER-PM junctions, where they recruit and activate Orai1 channels. In this review, we will discuss the structure, organization, and function of EF-hand motifs and the SAM domain of STIM proteins in relation to those of other eukaryotic proteins. Full article
(This article belongs to the Special Issue Role of STIM and Orai in Calcium Signaling)
Show Figures

Figure 1

14 pages, 5594 KiB  
Article
Extended Synaptotagmins 1 and 2 Are Required for Store-Operated Calcium Entry, Cell Migration and Viability in Breast Cancer Cells
by Pedro C. Redondo, Jose J. Lopez, Sandra Alvarado, Isaac Jardin, Joel Nieto-Felipe, Alvaro Macias-Diaz, Vanesa Jimenez-Velarde, Gines M. Salido and Juan A. Rosado
Cancers 2024, 16(14), 2518; https://doi.org/10.3390/cancers16142518 - 11 Jul 2024
Viewed by 1498
Abstract
Extended synaptotagmins (E-Syts) are endoplasmic reticulum (ER)-associated proteins that facilitate the tethering of the ER to the plasma membrane (PM), participating in lipid transfer between the membranes and supporting the Orai1–STIM1 interaction at ER–PM junctions. Orai1 and STIM1 are the core proteins of [...] Read more.
Extended synaptotagmins (E-Syts) are endoplasmic reticulum (ER)-associated proteins that facilitate the tethering of the ER to the plasma membrane (PM), participating in lipid transfer between the membranes and supporting the Orai1–STIM1 interaction at ER–PM junctions. Orai1 and STIM1 are the core proteins of store-operated Ca2+ entry (SOCE), a major mechanism for Ca2+ influx that regulates a variety of cellular functions. Aberrant modulation of SOCE in cells from different types of cancer has been reported to underlie the development of several tumoral features. Here we show that estrogen receptor-positive (ER+) breast cancer MCF7 and T47D cells and triple-negative breast cancer (TNBC) MDA-MB-231 cells overexpress E-Syt1 and E-Syt2 at the protein level; the latter is also overexpressed in the TNBC BT20 cell line. E-Syt1 and E-Syt2 knockdown was without effect on SOCE in non-tumoral MCF10A breast epithelial cells and ER+ T47D breast cancer cells; however, SOCE was significantly attenuated in ER+ MCF7 cells and TNBC MDA-MB-231 and BT20 cells upon transfection with siRNA E-Syt1 or E-Syt2. Consistent with this, E-Syt1 and E-Syt2 knockdown significantly reduced cell migration and viability in ER+ MCF7 cells and the TNBC cells investigated. To summarize, E-Syt1 and E-Syt2 play a relevant functional role in breast cancer cells. Full article
(This article belongs to the Special Issue The Emerging Role of Ion Channels in Cancer Treatment)
Show Figures

Figure 1

15 pages, 16272 KiB  
Article
Redox Enzymes P4HB and PDIA3 Interact with STIM1 to Fine-Tune Its Calcium Sensitivity and Activation
by Yangchun Du, Feifan Wang, Panpan Liu, Sisi Zheng, Jia Li, Rui Huang, Wanjie Li, Xiaoyan Zhang and Youjun Wang
Int. J. Mol. Sci. 2024, 25(14), 7578; https://doi.org/10.3390/ijms25147578 - 10 Jul 2024
Cited by 1 | Viewed by 1505
Abstract
Sensing the lowering of endoplasmic reticulum (ER) calcium (Ca2+), STIM1 mediates a ubiquitous Ca2+ influx process called the store-operated Ca2+ entry (SOCE). Dysregulated STIM1 function or abnormal SOCE is strongly associated with autoimmune disorders, atherosclerosis, and various forms of [...] Read more.
Sensing the lowering of endoplasmic reticulum (ER) calcium (Ca2+), STIM1 mediates a ubiquitous Ca2+ influx process called the store-operated Ca2+ entry (SOCE). Dysregulated STIM1 function or abnormal SOCE is strongly associated with autoimmune disorders, atherosclerosis, and various forms of cancers. Therefore, uncovering the molecular intricacies of post-translational modifications, such as oxidation, on STIM1 function is of paramount importance. In a recent proteomic screening, we identified three protein disulfide isomerases (PDIs)—Prolyl 4-hydroxylase subunit beta (P4HB), protein disulfide-isomerase A3 (PDIA3), and thioredoxin domain-containing protein 5 (TXNDC5)—as the ER-luminal interactors of STIM1. Here, we demonstrated that these PDIs dynamically associate with STIM1 and STIM2. The mutation of the two conserved cysteine residues of STIM1 (STIM1-2CA) decreased its Ca2+ affinity both in cellulo and in situ. Knockdown of PDIA3 or P4HB increased the Ca2+ affinity of wild-type STIM1 while showing no impact on the STIM1-2CA mutant, indicating that PDIA3 and P4HB regulate STIM1’s Ca2+ affinity by acting on ER-luminal cysteine residues. This modulation of STIM1’s Ca2+ sensitivity was further confirmed by Ca2+ imaging experiments, which showed that knockdown of these two PDIs does not affect STIM1-mediated SOCE upon full store depletion but leads to enhanced SOCE amplitudes upon partial store depletion. Thus, P4HB and PDIA3 dynamically modulate STIM1 activation by fine-tuning its Ca2+ binding affinity, adjusting the level of activated STIM1 in response to physiological cues. The coordination between STIM1-mediated Ca2+ signaling and redox responses reported herein may have implications for cell physiology and pathology. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 3938 KiB  
Article
The Rise in Tubular pH during Hypercalciuria Exacerbates Calcium Stone Formation
by Farai C. Gombedza, Samuel Shin, Jaclyn Sadiua, George B. Stackhouse and Bidhan C. Bandyopadhyay
Int. J. Mol. Sci. 2024, 25(9), 4787; https://doi.org/10.3390/ijms25094787 - 27 Apr 2024
Cited by 2 | Viewed by 1598
Abstract
In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. [...] Read more.
In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. High urinary supersaturation of CaP due to hypercalciuria and an elevated urine pH have been described as the two main factors in the nucleation of CaP crystals. Our previous in vivo findings (in mice) show that transient receptor potential canonical type 3 (TRPC3)-mediated Ca2+ entry triggers a transepithelial Ca2+ flux to regulate proximal tubular (PT) luminal [Ca2+], and TRPC3-knockout (KO; -/-) mice exhibited moderate hypercalciuria and microcrystal formation at the loop of Henle (LOH). Therefore, we utilized TRPC3 KO mice and exposed them to both hypercalciuric [2% calcium gluconate (CaG) treatment] and alkalineuric conditions [0.08% acetazolamide (ACZ) treatment] to generate a CaNL phenotype. Our results revealed a significant CaP and mixed crystal formation in those treated KO mice (KOT) compared to their WT counterparts (WTT). Importantly, prolonged exposure to CaG and ACZ resulted in a further increase in crystal size for both treated groups (WTT and KOT), but the KOT mice crystal sizes were markedly larger. Moreover, kidney tissue sections of the KOT mice displayed a greater CaP and mixed microcrystal formation than the kidney sections of the WTT group, specifically in the outer and inner medullary and calyceal region; thus, a higher degree of calcifications and mixed calcium lithiasis in the kidneys of the KOT group was displayed. In our effort to find the Ca2+ signaling pathophysiology of PT cells, we found that PT cells from both treated groups (WTT and KOT) elicited a larger Ca2+ entry compared to the WT counterparts because of significant inhibition by the store-operated Ca2+ entry (SOCE) inhibitor, Pyr6. In the presence of both SOCE (Pyr6) and ROCE (receptor-operated Ca2+ entry) inhibitors (Pyr10), Ca2+ entry by WTT cells was moderately inhibited, suggesting that the Ca2+ and pH levels exerted sensitivity changes in response to ROCE and SOCE. An assessment of the gene expression profiles in the PT cells of WTT and KOT mice revealed a safeguarding effect of TRPC3 against detrimental processes (calcification, fibrosis, inflammation, and apoptosis) in the presence of higher pH and hypercalciuric conditions in mice. Together, these findings show that compromise in both the ROCE and SOCE mechanisms in the absence of TRPC3 under hypercalciuric plus higher tubular pH conditions results in higher CaP and mixed crystal formation and that TRPC3 is protective against those adverse effects. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: 2nd Edition)
Show Figures

Figure 1

Back to TopTop