α-Latrotoxin Actions in the Absence of Extracellular Ca2+ Require Release of Stored Ca2+
Abstract
:1. Introduction
2. Results
2.1. α. LTX-Induced Release of Neurotransmitter Requires Intracellular Ca2+
2.2. α. LTX Induces Release of Ca2+ from Intracellular Stores
2.3. ADGRL1 Expression in NB2a Cells
2.4. α. LTX Mobilizes Intracellular Ca2+ Stores via Both Signaling and Non-Signaling Mechanisms
2.5. α. LTX Releases Ca2+ from Non-ER Stores in Model Cells
2.6. α. LTX-Mediated Ca2+ Release and Sustained Elevated [Ca2+]cyt Depends on Na+e
2.7. α. LTX-Mediated [Ca2+]cyt Regulation Is Sensitive to SKF-96365
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Materials
5.2. Neurotransmitter Release
5.3. Cell Culture
5.4. ADGRL1 Construct Expression Assay
5.5. α. LTX Binding Assay
5.6. Western Blotting
5.7. Ca2+cyt Recordings
5.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, J.-P.; Suckling, J.; Ushkaryov, Y. Penelope’s Web: Using α-Latrotoxin to Untangle the Mysteries of Exocytosis. J. Neurochem. 2009, 111, 275–290. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Wang, X. Recent Advances in Research on Widow Spider Venoms and Toxins. Toxins 2015, 7, 5055–5067. [Google Scholar] [CrossRef] [PubMed]
- Longenecker, H.E., Jr.; Hurlbut, W.P.; Mauro, A.; Clark, A.W. Effects of Black Widow Spider Venom on the Frog Neuromuscular Junction. Nature 1970, 225, 701–703. [Google Scholar] [CrossRef]
- Finkelstein, A.; Rubin, L.L.; Tzeng, M.C. Black Widow Spider Venom: Effect of Purified Toxin on Lipid Bilayer Membranes. Science 1976, 193, 1009–1011. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, L.; Meldolesi, J. α-Latrotoxin and Related Toxins. Pharmacol. Ther. 1989, 42, 115–134. [Google Scholar] [CrossRef]
- Clark, A.W.; Mauro, A.; Longenecker, H.E.; Hurlbut, W.P. Effects of Black Widow Spider Venom on the Frog Neuromuscular Junction. Effects on the Fine Structure of the Frog Neuromuscular Junction. Nature 1970, 225, 703–705. [Google Scholar] [CrossRef]
- Ushkaryov, Y.A.; Petrenko, A.G.; Geppert, M.; Sudhof, T.C. Neurexins: Synaptic Cell Surface Proteins Related to the α-Latrotoxin Receptor and Laminin. Science 1992, 257, 50–56. [Google Scholar] [CrossRef]
- Davletov, B.A.; Shamotienko, O.G.; Lelianova, V.G.; Grishin, E.V.; Ushkaryov, Y.A. Isolation and Biochemical Characterization of a Ca2+-Independent α-Latrotoxin-Binding Protein. J. Biol. Chem. 1996, 271, 23239–23245. [Google Scholar] [CrossRef]
- Krasnoperov, V.G.; Bittner, M.A.; Beavis, R.; Kuang, Y.; Salnikow, K.V.; Chepurny, O.G.; Little, A.R.; Plotnikov, A.N.; Wu, D.; Holz, R.W.; et al. α-Latrotoxin Stimulates Exocytosis by the Interaction with a Neuronal G-Protein-Coupled Receptor. Neuron 1997, 18, 925–937. [Google Scholar] [CrossRef]
- Hamann, J.; Aust, G.; Arac, D.; Engel, F.B.; Formstone, C.; Fredriksson, R.; Hall, R.A.; Harty, B.L.; Kirchhoff, C.; Knapp, B.; et al. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein-Coupled Receptors. Pharmacol. Rev. 2015, 67, 338–367. [Google Scholar] [CrossRef]
- Lelyanova, V.G.; Thomson, D.; Ribchester, R.R.; Tonevitsky, E.A.; Ushkaryov, Y.A. Activation of α-Latrotoxin Receptors in Neuromuscular Synapses Leads to a Prolonged Splash Acetylcholine Release. Bull. Exp. Biol. Med. 2009, 147, 701–703. [Google Scholar] [CrossRef] [PubMed]
- Déak, F.; Liu, X.; Khvotchev, M.; Li, G.; Kavalali, E.T.; Sugita, S.; Sudhof, T.C. α-Latrotoxin Stimulates a Novel Pathway of Ca2+-Dependent Synaptic Exocytosis Independent of the Classical Synaptic Fusion Machinery. J. Neurosci. 2009, 29, 8639–8648. [Google Scholar] [CrossRef]
- Rohou, A.; Morris, E.P.; Makarova, J.; Tonevitsky, A.G.; Ushkaryov, Y.A. α-Latrotoxin Tetramers Spontaneously Form Two-Dimensional Crystals in Solution and Coordinated Multi-Pore Assemblies in Biological Membranes. Toxins 2024, 16, 248. [Google Scholar] [CrossRef]
- Orlova, E.V.; Rahman, M.A.; Gowen, B.; Volynski, K.E.; Ashton, A.C.; Manser, C.; van Heel, M.; Ushkaryov, Y.A. Structure of α-Latrotoxin Oligomers Reveals That Divalent Cation-Dependent Tetramers Form Membrane Pores. Nat. Struct. Biol. 2000, 7, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Mironov, S.L.; Sokolov, Y.V.; Chanturiya, A.N.; Lishko, V.K. Channels Produced by Spider Venoms in Bilayer Lipid Membrane: Mechanisms of Ion Transport and Toxic Action. Biochim. Biophys. Acta 1986, 862, 185–198. [Google Scholar] [CrossRef]
- Klink, B.U.; Alavizargar, A.; Kalyankumar, K.S.; Chen, M.; Heuer, A.; Gatsogiannis, C. Structural Basis of α-Latrotoxin Transition to a Cation-Selective Pore. Nat. Commun. 2024, 15, 8551. [Google Scholar] [CrossRef]
- McMahon, H.T.; Rosenthal, L.; Meldolesi, J.; Nicholls, D.G. α-Latrotoxin Releases Both Vesicular and Cytoplasmic Glutamate from Isolated Nerve Terminals. J. Neurochem. 1990, 55, 2039–2047. [Google Scholar] [CrossRef]
- Davletov, B.A.; Meunier, F.A.; Ashton, A.C.; Matsushita, H.; Hirst, W.D.; Lelianova, V.G.; Wilkin, G.P.; Dolly, J.O.; Ushkaryov, Y.A. Vesicle Exocytosis Stimulated by α-Latrotoxin Is Mediated by Latrophilin and Requires Both External and Stored Ca2+. EMBO J. 1998, 17, 3909–3920. [Google Scholar] [CrossRef]
- Volynski, K.E.; Capogna, M.; Ashton, A.C.; Thomson, D.; Orlova, E.V.; Manser, C.F.; Ribchester, R.R.; Ushkaryov, Y.A. Mutant α-Latrotoxin (LTXN4C) Does Not Form Pores and Causes Secretion by Receptor Stimulation. This Action Does Not Require Neurexins. J. Biol. Chem. 2003, 278, 31058–31066. [Google Scholar] [CrossRef]
- Capogna, M.; Volynski, K.E.; Emptage, N.J.; Ushkaryov, Y.A. The α-Latrotoxin Mutant LTXN4C Enhances Spontaneous and Evoked Transmitter Release in CA3 Pyramidal Neurons. J. Neurosci. 2003, 23, 4044–4053. [Google Scholar] [CrossRef]
- Ichtchenko, K.; Khvotchev, M.; Kiyatkin, N.; Simpson, L.; Sugita, S.; Südhof, T.C. α-Latrotoxin Action Probed with Recombinant Toxin: Receptors Recruit α-Latrotoxin but Do Not Transduce an Exocytotic Signal. EMBO J. 1998, 17, 6188–6199. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, L.; Zacchetti, D.; Madeddu, L.; Meldolesi, J. Mode of Action of α-Latrotoxin: Role of Divalent Cations in Ca2+-Dependent and Ca2+-Independent Effects Mediated by the Toxin. Mol. Pharmacol. 1990, 38, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Liou, J.; Kim, M.L.; Heo, W.D.; Jones, J.T.; Myers, J.W.; Ferrell, J.E.J.; Meyer, T. STIM Is a Ca2+ Sensor Essential for the Ca2+-Store-Depletion-Triggered Ca2+ Influx. Curr. Biol. 2005, 15, 1235–1241. [Google Scholar] [CrossRef]
- Huang, G.N.; Zeng, W.; Kim, J.Y.; Yuan, J.P.; Han, L.; Muallem, S.; Worley, P.F. STIM1 Carboxyl-Terminus Activates Native SOC, Icrac and TRPC1 Channels. Nat. Cell Biol. 2006, 8, 1003–1010. [Google Scholar] [CrossRef]
- Carrasco, S.; Meyer, T. STIM Proteins and the Endoplasmic Reticulum-Plasma Membrane Junctions. Annu. Rev. Biochem. 2011, 80, 973–1000. [Google Scholar] [CrossRef]
- Kodakandla, G.; Akimzhanov, A.M.; Boehning, D. Regulatory Mechanisms Controlling Store-Operated Calcium Entry. Front. Physiol. 2023, 14, 259. [Google Scholar] [CrossRef]
- Rubaiy, H.N. ORAI Calcium Channels: Regulation, Function, Pharmacology, and Therapeutic Targets. Pharmaceuticals 2023, 16, 162. [Google Scholar] [CrossRef]
- Prakriya, M.; Lewis, R.S. Store-Operated Calcium Channels. Physiol Rev. 2015, 95, 1383–1436. [Google Scholar] [CrossRef]
- Koss, D.J.; Riedel, G.; Platt, B. Intracellular Ca2+stores Modulate SOCCs and NMDA Receptors via Tyrosine Kinases in Rat Hippocampal Neurons. Cell Calcium 2009, 46, 39–48. [Google Scholar] [CrossRef]
- Stutzmann, G.E.; Mattson, M.P. Endoplasmic Reticulum Ca2+ Handling in Excitable Cells in Health and Disease. Pharmacol. Rev. 2011, 63, 700–727. [Google Scholar] [CrossRef]
- Tsang, C.W.; Elrick, D.B.; Charlton, M.P. α-Latrotoxin Releases Calcium in Frog Motor Nerve Terminals. J. Neurosci. 2000, 20, 8685–8692. [Google Scholar] [CrossRef]
- Jeffs, G.J.; Meloni, B.P.; Bakker, A.J.; Knuckey, N.W. The Role of the Na+/Ca2+ Exchanger (NCX) in Neurons Following Ischaemia. J. Clin. Neurosci. 2007, 14, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Matuz-Mares, D.; González-Andrade, M.; Araiza-Villanueva, M.G.; Vilchis-Landeros, M.M.; Vázquez-Meza, H. Mitochondrial Calcium: Effects of Its Imbalance in Disease. Antioxidants 2022, 11, 801. [Google Scholar] [CrossRef]
- Berridge, M.J.; Lipp, P.; Bootman, M.D. The Versatility and Universality of Calcium Signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Palty, R.; Silverman, W.F.; Hershfinkel, M.; Caporale, T.; Sensi, S.L.; Parnis, J.; Nolte, C.; Fishman, D.; Shoshan-Barmatz, V.; Herrmann, S.; et al. NCLX Is an Essential Component of Mitochondrial Na+/Ca2+ Exchange. Proc. Natl. Acad. Sci. USA 2010, 107, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Di Giuro, C.M.L.; Shrestha, N.; Malli, R.; Groschner, K.; van Breemen, C.; Fameli, N. Na+/Ca2+ Exchangers and Orai Channels Jointly Refill Endoplasmic Reticulum (ER) Ca2+ via ER Nanojunctions in Vascular Endothelial Cells. Pflugers Arch. Eur. J. Physiol. 2017, 469, 1287–1299. [Google Scholar] [CrossRef]
- Michel, L.Y.M.; Hoenderop, J.G.J.; Bindels, R.J.M. Towards Understanding the Role of the Na+-Ca2+ Exchanger Isoform 3. Rev. Physiol. Biochem. Pharmacol. 2015, 168, 31–57. [Google Scholar] [CrossRef]
- Boyman, L.; Williams, G.S.B.; Khananshvili, D.; Sekler, I.; Lederer, W.J. NCLX: The Mitochondrial Sodium Calcium Exchanger. J. Mol. Cell. Cardiol. 2013, 59, 205–213. [Google Scholar] [CrossRef]
- O’Hanlon, G.M.; Humphreys, P.D.; Goldman, R.S.; Halstead, S.K.; Bullens, R.W.M.M.; Plomp, J.J.; Ushkaryov, Y.; Willison, H.J. Calpain Inhibitors Protect against Axonal Degeneration in a Model of Anti-Ganglioside Antibody-Mediated Motor Nerve Terminal Injury. Brain 2003, 126, 2497–2509. [Google Scholar] [CrossRef]
- Sons, M.S.; Plomp, J.J. Rab3A Deletion Selectively Reduces Spontaneous Neurotransmitter Release at the Mouse Neuromuscular Synapse. Brain Res. 2006, 1089, 126–134. [Google Scholar] [CrossRef]
- Ceccarelli, B.; Hurlbut, W.P. Ca2+-Dependent Recycling of Synaptic Vesicles at the Frog Neuromuscular Junction. J. Cell Biol. 1980, 87, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Valtorta, F.; Fesce, R.; Grohovaz, F.; Haimann, C.; Hurlbut, W.P.; Iezzi, N.; Torri-Tarelli, F.; Villa, A.; Ceccarelli, B. Neurotransmutter Release and Synaptic Vesicle Recycling. Neuroscience 1990, 35, 477–489. [Google Scholar] [CrossRef]
- Anantharam, A.; Kreutzberger, A.J.B. Unraveling the Mechanisms of Calcium-Dependent Secretion. J. Gen. Physiol. 2019, 151, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Ashton, A.C.; Volynski, K.E.; Lelianova, V.G.; Orlova, E.V.; Van Renterghem, C.; Canepari, M.; Seagar, M.; Ushkaryov, Y.A. α-Latrotoxin, Acting via Two Ca2+-Dependent Pathways, Triggers Exocytosis of Two Pools of Synaptic Vesicles. J. Biol. Chem. 2001, 276, 44695–44703. [Google Scholar] [CrossRef] [PubMed]
- Deri, Z.; Dam-Vizi, V. Detection of Intracellular Free Na+ Concentration of Synaptosomes by a Fluorescent Indicator, Na(+)-Binding Benzofuran Isophthalate: The Effect of Veratridine, Ouabain, and α-Latrotoxin. J. Neurochem. 1993, 61, 818–825. [Google Scholar] [CrossRef]
- Prakriya, M.; Lewis, R.S. Separation and Characterization of Currents through Store-Operated CRAC Channels and Mg2+-Inhibited Cation (MIC) Channels. J. Gen. Physiol. 2002, 119, 487–507. [Google Scholar] [CrossRef]
- Song, M.; Chen, D.; Yu, S.P. The TRPC Channel Blocker SKF 96365 Inhibits Glioblastoma Cell Growth by Enhancing Reverse Mode of the Na+/Ca2+ Exchanger and Increasing Intracellular Ca2+. Br. J. Pharmacol. 2014, 171, 3432–3447. [Google Scholar] [CrossRef]
- Michelena, P.; de la Fuente, M.T.; Vega, T.; Lara, B.; Lopez, M.G.; Gandia, L.; Garcia, A.G. Drastic Facilitation by α-Latrotoxin of Bovine Chromaffin Cell Exocytosis without Measurable Enhancement of Ca2+ Entry or [Ca2+]I. J. Physiol 1997, 502 Pt 3, 481–496. [Google Scholar] [CrossRef]
- Malli, R.; Frieden, M.; Osibow, K.; Zoratti, C.; Mayer, M.; Demaurex, N.; Graier, W.F. Sustained Ca2+ Transfer across Mitochondria Is Essential for Mitochondrial Ca2+ Buffering, Store-Operated Ca2+ Entry, and Ca2+ Store Refilling. J. Biol. Chem. 2003, 278, 44769–44779. [Google Scholar] [CrossRef]
- Duszyński, J.; Kozieł, R.; Brutkowski, W.; Szczepanowska, J.; Zabłocki, K. The Regulatory Role of Mitochondria in Capacitative Calcium Entry. Biochim. Biophys. Acta Bioenerg. 2006, 1757, 380–387. [Google Scholar] [CrossRef]
- Ashton, A.C.; Rahman, M.A.; Volynski, K.E.; Manser, C.; Orlova, E.V.; Matsushita, H.; Davletov, B.A.; Van Heel, M.; Grishin, E.V.; Ushkaryov, Y.A. Tetramerisation of α-Latrotoxin by Divalent Cations Is Responsible for Toxin-Induced Non-Vesicular Release and Contributes to the Ca2+-Dependent Vesicular Exocytosis from Synaptosomes. Biochimie 2000, 82, 453–468. [Google Scholar] [CrossRef]
- Volynski, K.E.; Nosyreva, E.D.; Ushkaryov, Y.A.; Grishin, E.V. Functional Expression of α-Latrotoxin in Baculovirus System. FEBS Lett. 1999, 442, 25–28. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blackburn, J.K.; Islam, Q.S.; Benlaouer, O.; Tonevitskaya, S.A.; Petitto, E.; Ushkaryov, Y.A. α-Latrotoxin Actions in the Absence of Extracellular Ca2+ Require Release of Stored Ca2+. Toxins 2025, 17, 73. https://doi.org/10.3390/toxins17020073
Blackburn JK, Islam QS, Benlaouer O, Tonevitskaya SA, Petitto E, Ushkaryov YA. α-Latrotoxin Actions in the Absence of Extracellular Ca2+ Require Release of Stored Ca2+. Toxins. 2025; 17(2):73. https://doi.org/10.3390/toxins17020073
Chicago/Turabian StyleBlackburn, Jennifer K., Quazi Sufia Islam, Ouafa Benlaouer, Svetlana A. Tonevitskaya, Evelina Petitto, and Yuri A. Ushkaryov. 2025. "α-Latrotoxin Actions in the Absence of Extracellular Ca2+ Require Release of Stored Ca2+" Toxins 17, no. 2: 73. https://doi.org/10.3390/toxins17020073
APA StyleBlackburn, J. K., Islam, Q. S., Benlaouer, O., Tonevitskaya, S. A., Petitto, E., & Ushkaryov, Y. A. (2025). α-Latrotoxin Actions in the Absence of Extracellular Ca2+ Require Release of Stored Ca2+. Toxins, 17(2), 73. https://doi.org/10.3390/toxins17020073