Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = stochastic gravitational-wave background

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1839 KiB  
Article
Relic Gravitational Waves in the Noncommutative Foliated Riemannian Quantum Gravity
by César A. Zen Vasconcellos, Peter O. Hess, José A. de Freitas Pacheco, Fridolin Weber, Remo Ruffini, Dimiter Hadjimichef, Moisés Razeira, Benno August Ludwig Bodmann, Marcelo Netz-Marzola, Geovane Naysinger, Rodrigo Fraga da Silva and João G. G. Gimenez
Universe 2025, 11(6), 179; https://doi.org/10.3390/universe11060179 - 31 May 2025
Viewed by 898
Abstract
We present a study of relic gravitational waves based on a foliated gauge field theory defined over a spacetime endowed with a noncommutative algebraic–geometric structure. As an ontological extension of general relativity—concerning manifolds, metrics, and fiber bundles—the conventional space and time coordinates, typically [...] Read more.
We present a study of relic gravitational waves based on a foliated gauge field theory defined over a spacetime endowed with a noncommutative algebraic–geometric structure. As an ontological extension of general relativity—concerning manifolds, metrics, and fiber bundles—the conventional space and time coordinates, typically treated as classical numbers, are replaced by complementary quantum dual fields. Within this framework, consistent with the Bekenstein criterion and the Hawking–Hertog multiverse conception, singularities merge into a helix-like cosmic scale factor that encodes the topological transition between the contraction and expansion phases of the universe analytically continued into the complex plane. This scale factor captures the essence of an intricate topological quantum-leap transition between two phases of the branching universe: a contraction phase preceding the now-surpassed conventional concept of a primordial singularity and a subsequent expansion phase, whose transition region is characterized by a Riemannian topological foliated structure. The present linearized formulation, based on a slight gravitational field perturbation, also reveals a high sensitivity of relic gravitational wave amplitudes to the primordial matter and energy content during the universe’s phase transition. It further predicts stochastic homogeneous distributions of gravitational wave intensities arising from the interplay of short- and long-spacetime effects within the non-commutative algebraic framework. These results align with the anticipated future observations of relic gravitational waves, expected to pervade the universe as a stochastic, homogeneous background. Full article
(This article belongs to the Section Foundations of Quantum Mechanics and Quantum Gravity)
Show Figures

Figure 1

43 pages, 639 KiB  
Tutorial
Graviton Physics: A Concise Tutorial on the Quantum Field Theory of Gravitons, Graviton Noise, and Gravitational Decoherence
by Jen-Tsung Hsiang, Hing-Tong Cho and Bei-Lok Hu
Universe 2024, 10(8), 306; https://doi.org/10.3390/universe10080306 - 24 Jul 2024
Cited by 5 | Viewed by 2974
Abstract
The detection of gravitational waves in 2015 ushered in a new era of gravitational wave (GW) astronomy capable of probing the strong field dynamics of black holes and neutron stars. It has opened up an exciting new window for laboratory and space tests [...] Read more.
The detection of gravitational waves in 2015 ushered in a new era of gravitational wave (GW) astronomy capable of probing the strong field dynamics of black holes and neutron stars. It has opened up an exciting new window for laboratory and space tests of Einstein’s theory of classical general relativity (GR). In recent years, two interesting proposals have aimed to reveal the quantum nature of perturbative gravity: (1) theoretical predictions on how graviton noise from the early universe, after the vacuum of the gravitational field was strongly squeezed by inflationary expansion; (2) experimental proposals using the quantum entanglement between two masses, each in a superposition (gravitational cat, or gravcat) state. The first proposal focuses on the stochastic properties of quantum fields (QFs), and the second invokes a key concept of quantum information (QI). An equally basic and interesting idea is to ask whether (and how) gravity might be responsible for a quantum system becoming classical in appearance, known as gravitational decoherence. Decoherence due to gravity is of special interest because gravity is universal, meaning, gravitational interaction is present for all massive objects. This is an important issue in macroscopic quantum phenomena (MQP), underlining many proposals in alternative quantum theories (AQTs). To fully appreciate or conduct research in these exciting developments requires a working knowledge of classical GR, QF theory, and QI, plus some familiarity with stochastic processes (SPs), namely, noise in quantum fields and decohering environments. Traditionally a new researcher may be conversant in one or two of these four subjects: GR, QFT, QI, and SP, depending on his/her background. This tutorial attempts to provide the necessary connective tissues between them, helping an engaged reader from any one of these four subjects to leapfrog to the frontier of these interdisciplinary research topics. In the present version, we shall address the three topics listed in the title, excluding gravitational entanglement, because, despite the high attention some recent experimental proposals have received, its nature and implications in relation to quantum gravity still contain many controversial elements. Full article
(This article belongs to the Special Issue Quantum Field Theory of Open Systems)
Show Figures

Figure 1

23 pages, 603 KiB  
Article
PeV-Scale SUSY and Cosmic Strings from F-Term Hybrid Inflation
by Constantinos Pallis
Universe 2024, 10(5), 211; https://doi.org/10.3390/universe10050211 - 8 May 2024
Cited by 13 | Viewed by 1232
Abstract
We consider F-term hybrid inflation (FHI) and SUSY breaking in the context of a BL extension of the MSSM that largely respects a global U(1)R symmetry. The hidden sector Kaehler manifold enjoys an enhanced [...] Read more.
We consider F-term hybrid inflation (FHI) and SUSY breaking in the context of a BL extension of the MSSM that largely respects a global U(1)R symmetry. The hidden sector Kaehler manifold enjoys an enhanced SU(1,1)/U(1) symmetry, with the scalar curvature determined by the achievement of a SUSY-breaking de Sitter vacuum without undesirable tuning. FHI turns out to be consistent with the data, provided that the magnitude of the emergent soft tadpole term is confined to the range (1.2100) TeV, and it is accompanied by the production of BL cosmic strings. If these are metastable, they are consistent with the present observations from PTA experiments on the stochastic background of gravitational waves with dimensionless tension Gμcs(19.2)·108. The μ parameter of the MSSM arises by appropriately adapting the Giudice–Masiero mechanism and facilitates the out-of-equilibrium decay of the R saxion at a reheat temperature lower than about 71 GeV. Due to the prolonged matter-dominated era, the gravitational wave signal is suppressed at high frequencies. The SUSY mass scale turns out to lie in the PeV region. Full article
(This article belongs to the Special Issue Probing the Early Universe)
Show Figures

Figure 1

18 pages, 349 KiB  
Article
Primordial Black Holes from Spatially Varying Cosmological Constant Induced by Field Fluctuations in Extra Dimensions
by Arkady A. Popov, Sergey G. Rubin and Alexander S. Sakharov
Universe 2024, 10(4), 166; https://doi.org/10.3390/universe10040166 - 31 Mar 2024
Cited by 1 | Viewed by 1869
Abstract
The origin and evolution of supermassive black holes (SMBHs) in our universe have sparked controversy. In this study, we explore the hypothesis that some of these black holes may have seeded from the direct collapse of dark energy domains with density significantly higher [...] Read more.
The origin and evolution of supermassive black holes (SMBHs) in our universe have sparked controversy. In this study, we explore the hypothesis that some of these black holes may have seeded from the direct collapse of dark energy domains with density significantly higher than the surrounding regions. The mechanism of the origin of such domains relies on the inflationary evolution of a scalar field acting in D dimensions, which is associated with the cosmological constant in our four-dimensional spacetime manifold. Inner space quantum fluctuations of the field during inflation are responsible for the spatial variations of the dark energy density in our space. This finding holds particular significance, especially considering recent evidence from pulsar timing array observations, which supports the existence of a stochastic gravitational wave background consisting of SMBH mergers. Full article
(This article belongs to the Special Issue The Friedmann Cosmology: A Century Later)
Show Figures

Figure 1

8 pages, 383 KiB  
Communication
Modified Supergravity Phenomenology in Gravitational Waves Era
by Andrea Addazi and Qingyu Gan
Universe 2022, 8(5), 280; https://doi.org/10.3390/universe8050280 - 12 May 2022
Cited by 1 | Viewed by 1730
Abstract
We discuss phenomenological aspects of modified supergravity (MSG) in gravitational wave (GW) physics. MSG naturally provides double inflation and primordial black holes (PBHs) as cold dark matter. Intriguingly, MSG predicts a large amplification of the scalar and tensor perturbation power spectrum, generating a [...] Read more.
We discuss phenomenological aspects of modified supergravity (MSG) in gravitational wave (GW) physics. MSG naturally provides double inflation and primordial black holes (PBHs) as cold dark matter. Intriguingly, MSG predicts a large amplification of the scalar and tensor perturbation power spectrum, generating a secondary GW stochastic background which can be tested in space-based interferometers. Full article
Show Figures

Figure 1

18 pages, 2918 KiB  
Article
Detectability of the Cross-Correlation between CMB Lensing and Stochastic GW Background from Compact Object Mergers
by Giulia Capurri, Andrea Lapi and Carlo Baccigalupi
Universe 2022, 8(3), 160; https://doi.org/10.3390/universe8030160 - 3 Mar 2022
Cited by 8 | Viewed by 2253
Abstract
The anisotropies of the Stochastic Gravitational-Wave Background (SGWB), produced by merging compact binaries, constitute a possible new probe of the Large-Scale Structure (LSS). However, the significant shot noise contribution caused by the discreteness of the GW sources and the poor angular resolution of [...] Read more.
The anisotropies of the Stochastic Gravitational-Wave Background (SGWB), produced by merging compact binaries, constitute a possible new probe of the Large-Scale Structure (LSS). However, the significant shot noise contribution caused by the discreteness of the GW sources and the poor angular resolution of the instruments hampers the detection of the intrinsic anisotropies induced by the LSS. In this work, we investigate the potential of cross-correlating forthcoming high precision measurements of the SGWB energy density and the Cosmic Microwave Background (CMB) lensing convergence to mitigate the effect of shot noise. Combining a detailed model of stellar and galactic astrophysics with a novel framework to distribute the GW emitters in the sky, we compute the auto- and cross-correlation power spectra for the two cosmic fields, evaluate the shot noise contribution and predict the signal-to-noise ratio. The results of our analysis show that the SGWB energy density correlates significantly with the CMB lensing convergence and that the cross-correlation between these two cosmic fields reduces the impact of instrumental and shot noise. Unfortunately, the S/N is not high enough to detect the intrinsic SGWB anisotropies. Nevertheless, a network composed of both present and future generation GW interferometers, operating for at least 10 yrs, should be able to measure the shot noise contribution. Full article
Show Figures

Figure 1

19 pages, 350 KiB  
Article
Gravitational Waves: The Theorist’s Swiss Knife
by Mairi Sakellariadou
Universe 2022, 8(2), 132; https://doi.org/10.3390/universe8020132 - 19 Feb 2022
Cited by 6 | Viewed by 2163
Abstract
Gravitational waves provide a novel and powerful way to test astrophysical models of compact objects, early universe processes, beyond the Standard Model particle physics, dark matter candidates, Einstein’s theory of General Relativity and extended gravity models, and even quantum gravity candidate theories. A [...] Read more.
Gravitational waves provide a novel and powerful way to test astrophysical models of compact objects, early universe processes, beyond the Standard Model particle physics, dark matter candidates, Einstein’s theory of General Relativity and extended gravity models, and even quantum gravity candidate theories. A short introduction to the gravitational-wave background and the method we are using to detect it will be presented. Constraints on various astrophysical/cosmological models from the non-detectability of the gravitational-wave background will be discussed. Gravitational waves from transients will be highlighted and their physical implications will be summarised. Full article
(This article belongs to the Special Issue The Quantum & The Gravity)
64 pages, 3716 KiB  
Review
Stochastic Gravitational-Wave Backgrounds: Current Detection Efforts and Future Prospects
by Arianna I. Renzini, Boris Goncharov, Alexander C. Jenkins and Patrick M. Meyers
Galaxies 2022, 10(1), 34; https://doi.org/10.3390/galaxies10010034 - 14 Feb 2022
Cited by 85 | Viewed by 9406
Abstract
The collection of individually resolvable gravitational wave (GW) events makes up a tiny fraction of all GW signals that reach our detectors, while most lie below the confusion limit and are undetected. Similarly to voices in a crowded room, the collection of unresolved [...] Read more.
The collection of individually resolvable gravitational wave (GW) events makes up a tiny fraction of all GW signals that reach our detectors, while most lie below the confusion limit and are undetected. Similarly to voices in a crowded room, the collection of unresolved signals gives rise to a background that is well-described via stochastic variables and, hence, referred to as the stochastic GW background (SGWB). In this review, we provide an overview of stochastic GW signals and characterise them based on features of interest such as generation processes and observational properties. We then review the current detection strategies for stochastic backgrounds, offering a ready-to-use manual for stochastic GW searches in real data. In the process, we distinguish between interferometric measurements of GWs, either by ground-based or space-based laser interferometers, and timing-residuals analyses with pulsar timing arrays (PTAs). These detection methods have been applied to real data both by large GW collaborations and smaller research groups, and the most recent and instructive results are reported here. We close this review with an outlook on future observations with third generation detectors, space-based interferometers, and potential noninterferometric detection methods proposed in the literature. Full article
(This article belongs to the Special Issue Present and Future of Gravitational Wave Astronomy)
Show Figures

Figure 1

20 pages, 518 KiB  
Review
Principles of Gravitational-Wave Detection with Pulsar Timing Arrays
by Michele Maiorano, Francesco De Paolis and Achille A. Nucita
Symmetry 2021, 13(12), 2418; https://doi.org/10.3390/sym13122418 - 14 Dec 2021
Cited by 11 | Viewed by 4725
Abstract
Pulsar timing uses the highly stable pulsar spin period to investigate many astrophysical topics. In particular, pulsar timing arrays make use of a set of extremely well-timed pulsars and their time correlations as a challenging detector of gravitational waves. It turns out that [...] Read more.
Pulsar timing uses the highly stable pulsar spin period to investigate many astrophysical topics. In particular, pulsar timing arrays make use of a set of extremely well-timed pulsars and their time correlations as a challenging detector of gravitational waves. It turns out that pulsar timing arrays are particularly sensitive to ultra-low-frequency gravitational waves, which makes them complementary to other gravitational-wave detectors. Here, we summarize the basics, focusing especially on supermassive black-hole binaries and cosmic strings, which have the potential to form a stochastic gravitational-wave background in the pulsar timing array detection band, and the scientific goals on this challenging topic. We also briefly outline the recent interesting results of the main pulsar timing array collaborations, which have found strong evidence of a common-spectrum process compatible with a stochastic gravitational-wave background and mention some new perspectives that are particularly interesting in view of the forthcoming radio observatories such as the Five hundred-meter Aperture Spherical Telescope, the MeerKAT telescope, and the Square Kilometer Array. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

9 pages, 336 KiB  
Communication
The Stochastic Gravitational Wave Background from Magnetars
by Sourav Roy Chowdhury and Maxim Khlopov
Universe 2021, 7(10), 381; https://doi.org/10.3390/universe7100381 - 14 Oct 2021
Cited by 10 | Viewed by 1790
Abstract
Magnetars have already been a potential candidate as gravitational wave sources that could be detected by current and future terrestrial as well as ground-based gravitational wave detectors. In this article, we focus on the gravitational wave emission from the distorted rotating neutron stars. [...] Read more.
Magnetars have already been a potential candidate as gravitational wave sources that could be detected by current and future terrestrial as well as ground-based gravitational wave detectors. In this article, we focus on the gravitational wave emission from the distorted rotating neutron stars. The deformation is assumed to be symmetric around an axis that is perpendicular to the rotation axis. The form is applied in the context of a neutron star whose magnetic field has been deformed on its own. By introducing the effects from all magnetars in the Universe, based on various proposed magnetic field configurations, such as poloidal and toroidal, the stochastic gravitational wave background can be generated. We choose to figure out exactly how the observations of the stochastic gravitational wave background should be used to understand much more about physics correlated with the magnetar behavior, based on the restriction on the ellipticity of the magnetar. Full article
Show Figures

Figure 1

25 pages, 332 KiB  
Article
Role of Quantum Entropy and Establishment of H-Theorems in the Presence of Graviton Sinks for Manifestly-Covariant Quantum Gravity
by Massimo Tessarotto and Claudio Cremaschini
Entropy 2019, 21(4), 418; https://doi.org/10.3390/e21040418 - 19 Apr 2019
Cited by 7 | Viewed by 3264
Abstract
Based on the introduction of a suitable quantum functional, identified here with the Boltzmann–Shannon entropy, entropic properties of the quantum gravitational field are investigated in the framework of manifestly-covariant quantum gravity theory. In particular, focus is given to gravitational quantum states in a [...] Read more.
Based on the introduction of a suitable quantum functional, identified here with the Boltzmann–Shannon entropy, entropic properties of the quantum gravitational field are investigated in the framework of manifestly-covariant quantum gravity theory. In particular, focus is given to gravitational quantum states in a background de Sitter space-time, with the addition of possible quantum non-unitarity effects modeled in terms of an effective quantum graviton sink localized near the de Sitter event horizon. The theory of manifestly-covariant quantum gravity developed accordingly is shown to retain its emergent-gravity features, which are recovered when the generalized-Lagrangian-path formalism is adopted, yielding a stochastic trajectory-based representation of the quantum wave equation. This permits the analytic determination of the quantum probability density function associated with the quantum gravity state, represented in terms of a generally dynamically-evolving shifted Gaussian function. As an application, the study of the entropic properties of quantum gravity is developed and the conditions for the existence of a local H-theorem or, alternatively, of a constant H-theorem are established. Full article
(This article belongs to the Special Issue Entropy in Covariant Quantum Gravity)
36 pages, 410 KiB  
Article
Generalized Lagrangian Path Approach to Manifestly-Covariant Quantum Gravity Theory
by Massimo Tessarotto and Claudio Cremaschini
Entropy 2018, 20(3), 205; https://doi.org/10.3390/e20030205 - 19 Mar 2018
Cited by 19 | Viewed by 6053
Abstract
A trajectory-based representation for the quantum theory of the gravitational field is formulated. This is achieved in terms of a covariant Generalized Lagrangian-Path (GLP) approach which relies on a suitable statistical representation of Bohmian Lagrangian trajectories, referred to here as GLP-representation. The [...] Read more.
A trajectory-based representation for the quantum theory of the gravitational field is formulated. This is achieved in terms of a covariant Generalized Lagrangian-Path (GLP) approach which relies on a suitable statistical representation of Bohmian Lagrangian trajectories, referred to here as GLP-representation. The result is established in the framework of the manifestly-covariant quantum gravity theory (CQG-theory) proposed recently and the related CQG-wave equation advancing in proper-time the quantum state associated with massive gravitons. Generally non-stationary analytical solutions for the CQG-wave equation with non-vanishing cosmological constant are determined in such a framework, which exhibit Gaussian-like probability densities that are non-dispersive in proper-time. As a remarkable outcome of the theory achieved by implementing these analytical solutions, the existence of an emergent gravity phenomenon is proven to hold. Accordingly, it is shown that a mean-field background space-time metric tensor can be expressed in terms of a suitable statistical average of stochastic fluctuations of the quantum gravitational field whose quantum-wave dynamics is described by GLP trajectories. Full article
(This article belongs to the Special Issue Emergent Quantum Mechanics – David Bohm Centennial Perspectives)
47 pages, 424 KiB  
Article
Dark Energy and Inflation from Gravitational Waves
by Leonid Marochnik
Universe 2017, 3(4), 72; https://doi.org/10.3390/universe3040072 - 18 Oct 2017
Cited by 5 | Viewed by 4830
Abstract
In this seven-part paper, we show that gravitational waves (classical and quantum) produce the accelerated de Sitter expansion at the start and at the end of the cosmological evolution of the Universe. In these periods, the Universe contains no matter fields but contains [...] Read more.
In this seven-part paper, we show that gravitational waves (classical and quantum) produce the accelerated de Sitter expansion at the start and at the end of the cosmological evolution of the Universe. In these periods, the Universe contains no matter fields but contains classical and quantum metric fluctuations, i.e., it is filled with classical and quantum gravitational waves. In such evolution of the Universe, dominated by gravitational waves, the de Sitter state is the exact solution to the self-consistent equations for classical and quantum gravitational waves and background geometry for the empty space-time with FLRW metric. In both classical and quantum cases, this solution is of the instanton origin since it is obtained in the Euclidean space of imaginary time with the subsequent analytic continuation to real time. The cosmological acceleration from gravitational waves provides a transparent physical explanation to the coincidence, threshold and “old cosmological constant” paradoxes of dark energy avoiding recourse to the anthropic principle. The cosmological acceleration from virtual gravitons at the start of the Universe evolution produces inflation, which is consistent with the observational data on CMB anisotropy. Section 1 is devoted to cosmological acceleration from classical gravitational waves. Section 2 is devoted to the theory of virtual gravitons in the Universe. Section 3 is devoted to cosmological acceleration from virtual gravitons. Section 4 discusses the consistency of the theory with observational data on dark energy and inflation. The discussion of mechanism of acceleration and cosmological scenario are contained in Sections 5 and 6. Appendix contains the theory of stochastic nonlinear gravitational waves of arbitrary wavelength and amplitude in an isotropic Universe. Full article
(This article belongs to the Special Issue Progress in Cosmology in the Centenary of the 1917 Einstein Paper)
Back to TopTop