Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = steroidal 5α-reductase type 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6133 KB  
Article
Promegestone Prevents Lipopolysaccharide-Induced Cervical Remodeling in Pregnant Mice
by Amna Nadeem, Lubna Nadeem, Stephen James Lye and Oksana Shynlova
Cells 2025, 14(4), 242; https://doi.org/10.3390/cells14040242 - 7 Feb 2025
Cited by 1 | Viewed by 1333
Abstract
In most mammals, a withdrawal of the pro-gestational hormone progesterone (P4) is necessary for labor onset. In murine cervix, P4 withdrawal is mediated by enzymes steroid 5-alpha-reductase type 1 (SRD5A1) and 20-alpha-hydroxysteroid-dehydrogenase (20α-HSD). Previously, we have shown that inflammatory stimuli induce 20α-HSD levels [...] Read more.
In most mammals, a withdrawal of the pro-gestational hormone progesterone (P4) is necessary for labor onset. In murine cervix, P4 withdrawal is mediated by enzymes steroid 5-alpha-reductase type 1 (SRD5A1) and 20-alpha-hydroxysteroid-dehydrogenase (20α-HSD). Previously, we have shown that inflammatory stimuli induce 20α-HSD levels in uterine muscle (myometrium). Here, we hypothesized that (1) infectious inflammation alters the levels of both P4-metabolizing enzymes in mouse cervix, which consequently ceases P4-mediated inhibition of cervical remodeling, thereby inducing preterm labor (PTL); (2) a progestin, selective progesterone receptor modulator promegestone (aka R5020), non-metabolizable by 20α-HSD, can block lipopolysaccharide (LPS)-induced PTL in mice by maintaining P4 signaling and preventing cervical remodeling. Using RT-PCR and IHC/IF methods, we evaluated the effect of inflammation on the expression of both enzymes in mouse cervix and determined if R5020 can prevent cervical remodeling and PTL in mice. We found significant induction of SRD5A1 and 20α-HSD proteins (p < 0.01), as well as transcript levels of pro-inflammatory cytokines Il1b, Il6, chemokines Cxcl1, Ccl2, cervical ripening enzyme Has2, hyaluronic acid binding protein/HABP (p < 0.05), and a simultaneous decrease in major extracellular fibrillar proteins, collagen type 1 and type 3 (col1a1, col3a1), in mouse cervix during PTL. The prophylactic administration of R5020 in pregnant mice significantly inhibited cervical remodeling and prevented PTL irrespective of the route of LPS-induction, systemic or local. We concluded that R5020 is a promising novel drug application for preterm birth prevention. Full article
(This article belongs to the Section Reproductive Cells and Development)
Show Figures

Figure 1

16 pages, 6793 KB  
Article
Exploring the Inhibitory Potential of Phytosterols β-Sitosterol, Stigmasterol, and Campesterol on 5-Alpha Reductase Activity in the Human Prostate: An In Vitro and In Silico Approach
by Mădălina-Georgiana Buț, Amelia Tero-Vescan, Amalia Pușcaș, George Jîtcă and Gabriel Marc
Plants 2024, 13(22), 3146; https://doi.org/10.3390/plants13223146 - 8 Nov 2024
Cited by 5 | Viewed by 5800
Abstract
Steroidal 5α-reductase type 2 (S5αR2) is a key enzyme involved in the conversion of testosterone (TST) to dihydrotestosterone (DHT), a crucial process in the development of benign prostatic hyperplasia (BPH). Phytosterols (PSs), natural plant-derived compounds, have been proposed as potential inhibitors of S5αR2, [...] Read more.
Steroidal 5α-reductase type 2 (S5αR2) is a key enzyme involved in the conversion of testosterone (TST) to dihydrotestosterone (DHT), a crucial process in the development of benign prostatic hyperplasia (BPH). Phytosterols (PSs), natural plant-derived compounds, have been proposed as potential inhibitors of S5αR2, but studies on their efficacy are limited. This study evaluates the inhibitory effects of three PSs (β-sitosterol, stigmasterol, and campesterol) on S5αR2 activity using a combined in vitro and in silico approach. The inhibitory activity of the respective PSs was assessed in vitro, by measuring TST and DHT, while molecular docking and dynamics explored PS interactions with S5αR2’s active site. The in vitro tests indicated significantly higher IC50 values (β-sitosterol, 3.24 ± 0.32 µM; stigmasterol, 31.89 ± 4.26 µM; and campesterol, 15.75 ± 5.56 µM) for PSs compared to dutasteride (4.88 × 10−3 ± 0.33 µM), suggesting a lower efficiency in inhibiting S5αR2. The in silico studies confirmed these observations, explained by the lower binding affinity identified for PSs to the enzyme’s active site in the molecular docking studies and the reduced stability of the interactions with the active site of the enzyme during the molecular dynamics simulations compared to dutasteride. The results suggest that PSs exhibit low-to-negligible inhibitory activity against S5αR2 (µM range) compared to the synthetic inhibitor dutasteride (nM range). Among the three PSs studied, β-sitosterol showed the highest inhibitory activity and the best stability in its interaction with S5αR2, when compared with stigmasterol and campesterol. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

22 pages, 4950 KB  
Article
Synthesis, In Vitro Biological Evaluation of Antiproliferative and Neuroprotective Effects and In Silico Studies of Novel 16E-Arylidene-5α,6α-epoxyepiandrosterone Derivatives
by Vanessa Brito, Mariana Marques, Marta Esteves, Catarina Serra-Almeida, Gilberto Alves, Paulo Almeida, Liliana Bernardino and Samuel Silvestre
Biomedicines 2023, 11(3), 812; https://doi.org/10.3390/biomedicines11030812 - 7 Mar 2023
Cited by 1 | Viewed by 3167
Abstract
Steroids constitute an important class of pharmacologically active molecules, playing key roles in human physiology. Within this group, 16E-arylideneandrostane derivatives have been reported as potent anti-cancer agents for the treatment of leukemia, breast and prostate cancers, and brain tumors. Additionally, 5α,6α-epoxycholesterol [...] Read more.
Steroids constitute an important class of pharmacologically active molecules, playing key roles in human physiology. Within this group, 16E-arylideneandrostane derivatives have been reported as potent anti-cancer agents for the treatment of leukemia, breast and prostate cancers, and brain tumors. Additionally, 5α,6α-epoxycholesterol is an oxysterol with several biological activities, including regulation of cell proliferation and cholesterol homeostasis. Interestingly, pregnenolone derivatives combining these two modifications were described as potential neuroprotective agents. In this research, novel 16E-arylidene-5α,6α-epoxyepiandrosterone derivatives were synthesized from dehydroepiandrosterone by aldol condensation with different aldehydes followed by a diastereoselective 5α,6α-epoxidation. Their cytotoxicity was evaluated on tumoral and non-tumoral cell lines by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Furthermore, the assessment of the neuroprotective activity of these derivatives was performed in a dopaminergic neuronal cell line (N27), at basal conditions, and in the presence of the neurotoxin 6-hydroxydopamine (6-OHDA). Interestingly, some of these steroids had selective cytotoxic effects in tumoral cell lines, with an IC50 of 3.47 µM for the 2,3-dichlorophenyl derivative in the breast cancer cell line (MCF-7). The effects of this functionalized epoxide on cell proliferation (Ki67 staining), cell necrosis (propidium iodide staining), as well as the analysis of the nuclear area and near neighbor distance in MCF-7 cells, were analyzed. From this set of biological studies, strong evidence of the activation of apoptosis was found. In contrast, no significant neuroprotection against 6-OHDA-induced neurotoxicity was observed for the less cytotoxic steroids in N27 cells. Lastly, molecular docking simulations were achieved to verify the potential affinity of these compounds against important targets of steroidal drugs (androgen receptor, estrogen receptor α, and 5α-reductase type 2, 17α-hydroxylase-17,20-lyase and aromatase enzymes). This in silico study predicted a strong affinity between most novel steroidal derivatives and 5α-reductase and 17α-hydroxylase-17,20-lyase enzymes. Full article
(This article belongs to the Special Issue Biomedicines: 10th Anniversary)
Show Figures

Graphical abstract

16 pages, 1980 KB  
Article
Regulatory Effects of Thai Rice By-Product Extracts from Oryza sativa L. cv. Bue Bang 3 CMU and Bue Bang 4 CMU on Melanin Production, Nitric Oxide Secretion, and Steroid 5α-Reductase Inhibition
by Warintorn Ruksiriwanich, Pichchapa Linsaenkart, Chiranan Khantham, Anurak Muangsanguan, Korawan Sringarm, Pensak Jantrawut, Chanakan Prom-u-thai, Sansanee Jamjod, Supapohn Yamuangmorn, Chaiwat Arjin, Pornchai Rachtanapun, Kittisak Jantanasakulwong, Yuthana Phimolsiripol, Francisco J. Barba, Sarana Rose Sommano, Romchat Chutoprapat and Korawinwich Boonpisuttinant
Plants 2023, 12(3), 653; https://doi.org/10.3390/plants12030653 - 2 Feb 2023
Cited by 13 | Viewed by 5068
Abstract
Alopecia and gray hair are common hair abnormalities affecting physical appearance and causing psychological problems. Chemical treatments partially restore hair disorders but have distressing side effects. Bioactive plant compounds constitute promising sources of potential medicinal substances instead of chemical agents, producing high side [...] Read more.
Alopecia and gray hair are common hair abnormalities affecting physical appearance and causing psychological problems. Chemical treatments partially restore hair disorders but have distressing side effects. Bioactive plant compounds constitute promising sources of potential medicinal substances instead of chemical agents, producing high side effects. In this study, we focused on the waste of local rice cultivars: Bue Bang 3 CMU (BB3CMU) and Bue Bang 4 CMU (BB4CMU) from the north of Thailand. The rice bran oil (RBO), defatted rice bran extract (DFRB), and rice husk (H) were determined for in vitro hair revitalization in melanin production, nitric oxide (NO) secretion, and steroid 5α-reductase inhibition. The results indicated that BB4CMU-RBO with high contents of iron, zinc, and free fatty acids showed a comparable induction of melanin production on melanocytes (130.18 ± 9.13% of control) to the standard drug theophylline with no significant difference (p > 0.05). This promising melanin induction could be related to activating the NO secretion pathway, with the NO secretion level at 1.43 ± 0.05 µM. In addition, BB4CMU-RBO illustrated a significant inhibitory effect on both steroid 5α-reductase genes (SRD5A) type 1 and type 2, which relates to its primary source of tocopherols. Hence, rice bran oil from the Thai rice variety BB4CMU could be applied as a promising hair revitalizing candidate, from natural resources, to help promote hair growth and re-pigmentation effects. Full article
(This article belongs to the Special Issue Research of Bioactive Substances in Plant Extracts II)
Show Figures

Figure 1

18 pages, 3592 KB  
Article
Novel 4-Azapregnene Derivatives as Potential Anticancer Agents: Synthesis, Antiproliferative Activity and Molecular Docking Studies
by Vanessa Brito, Adriana Oliveira Santos, Gilberto Alves, Paulo Almeida and Samuel Silvestre
Molecules 2022, 27(18), 6126; https://doi.org/10.3390/molecules27186126 - 19 Sep 2022
Cited by 4 | Viewed by 2761
Abstract
A series of novel 21E-arylidene-4-azapregn-5-ene steroids has been successfully designed, synthesized and structurally characterized, and their antiproliferative activity was evaluated in four different cell lines. Within this group, the 21E-(pyridin-3-yl)methylidene derivative exhibited significant cytotoxic activity in hormone-dependent cells LNCaP [...] Read more.
A series of novel 21E-arylidene-4-azapregn-5-ene steroids has been successfully designed, synthesized and structurally characterized, and their antiproliferative activity was evaluated in four different cell lines. Within this group, the 21E-(pyridin-3-yl)methylidene derivative exhibited significant cytotoxic activity in hormone-dependent cells LNCaP (IC50 = 10.20 µM) and T47-D cells (IC50 = 1.33 µM). In PC-3 androgen-independent cells, the steroid 21E-p-nitrophenylidene-4-azapregn-5-ene was the most potent of this series (IC50 = 3.29 µM). Considering these results, the 21E-(pyridin-3-yl)methylidene derivative was chosen for further biological studies on T47-D and LNCaP cells, and it was shown that this azasteroid seems to lead T47-D cells to apoptotic death. Finally, molecular docking studies were performed to explore the affinity of these 4-azapregnene derivatives to several steroid targets, namely 5α-reductase type 2, estrogen receptor α, androgen receptor and CYP17A1. In general, compounds presented higher affinity to 5α-reductase type 2 and estrogen receptor α. Full article
(This article belongs to the Special Issue Steroid Compounds with Potential Biological Activity)
Show Figures

Graphical abstract

15 pages, 1113 KB  
Review
Is Dutasteride a Therapeutic Alternative for Amyotrophic Lateral Sclerosis?
by Belén Proaño, Julia Casani-Cubel, María Benlloch, Ana Rodriguez-Mateos, Esther Navarro-Illana, Jose María Lajara-Romance and Jose Enrique de la Rubia Ortí
Biomedicines 2022, 10(9), 2084; https://doi.org/10.3390/biomedicines10092084 - 25 Aug 2022
Cited by 5 | Viewed by 7974
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that is characterized by the loss of upper and lower motor neurons (MNs) in the cerebral cortex, brainstem and spinal cord, with consequent weakness, atrophy and the progressive paralysis of all muscles. There is currently [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that is characterized by the loss of upper and lower motor neurons (MNs) in the cerebral cortex, brainstem and spinal cord, with consequent weakness, atrophy and the progressive paralysis of all muscles. There is currently no medical cure, and riluzole and edaravone are the only two known approved drugs for treating this condition. However, they have limited efficacy, and hence there is a need to find new molecules. Dutasteride, a dual inhibitor of type 1 and type 2 5α-reductase (5AR) enzymes, the therapeutic purposes of which, to date, are the treatment of benign prostatic hyperplasia and androgenic alopecia, shows great anti-ALS properties by the molecular-topology methodology. Based on this evidence, this review aims to assess the effects of dutasteride on testosterone (T), progesterone (PROG) and 17β-estradiol (17BE) as a therapeutic alternative for the clinical improvement of ALS, based on the hormonal, metabolic and molecular pathways related to the pathogenesis of the disease. According to the evidence found, dutasteride shows great neuroprotective, antioxidant and anti-inflammatory effects. It also appears effective against glutamate toxicity, and it is capable of restoring altered dopamine activity (DA). These effects are achieved both directly and through steroid hormones. Therefore, dutasteride seems to be a promising molecule for the treatment of ALS, although clinical studies are required for confirmation. Full article
Show Figures

Figure 1

11 pages, 480 KB  
Review
Primary Amenorrhea Due to Anatomical Abnormalities of the Reproductive Tract: Molecular Insight
by Karina Kapczuk and Witold Kędzia
Int. J. Mol. Sci. 2021, 22(21), 11495; https://doi.org/10.3390/ijms222111495 - 25 Oct 2021
Cited by 13 | Viewed by 4832
Abstract
Congenital anomalies of the female reproductive tract that present with primary amenorrhea involve Müllerian aplasia, also known as Mayer–Rokitansky–Küster–Hauser syndrome (MRKHS), and cervical and vaginal anomalies that completely obstruct the reproductive tract. Karyotype abnormalities do not exclude the diagnosis of MRKHS. Familial cases [...] Read more.
Congenital anomalies of the female reproductive tract that present with primary amenorrhea involve Müllerian aplasia, also known as Mayer–Rokitansky–Küster–Hauser syndrome (MRKHS), and cervical and vaginal anomalies that completely obstruct the reproductive tract. Karyotype abnormalities do not exclude the diagnosis of MRKHS. Familial cases of Müllerian anomalies and associated malformations of the urinary and skeletal systems strongly suggest a complex genetic etiology, but so far, the molecular mechanism in the vast majority of cases remains unknown. Primary amenorrhea may also be the first presentation of complete androgen insensitivity syndrome, steroid 5α-reductase type 2 deficiency, 17β-hydroxysteroid dehydrogenase type 3 deficiency, and Leydig cells hypoplasia type 1; therefore, these disorders should be considered in the differential diagnosis of the congenital absence of the uterus and vagina. The molecular diagnosis in the majority of these cases can be established. Full article
(This article belongs to the Special Issue Molecular and Hormonal Advances in Amenorrhea)
Show Figures

Figure 1

21 pages, 6684 KB  
Article
Finasteride-Induced Inhibition of 5α-Reductase Type 2 Could Lead to Kidney Damage—Animal, Experimental Study
by Mirza Saim Baig, Agnieszka Kolasa-Wołosiuk, Anna Pilutin, Krzysztof Safranow, Irena Baranowska-Bosiacka, Joanna Kabat-Koperska and Barbara Wiszniewska
Int. J. Environ. Res. Public Health 2019, 16(10), 1726; https://doi.org/10.3390/ijerph16101726 - 16 May 2019
Cited by 21 | Viewed by 11173
Abstract
In the pharmacological treatment of prostate cancer, benign prostatic hyperplasia and androgenetic alopecia finasteride is commonly used. This drug inhibits 5α-reductase type 2, which is why finasteride affects androgen homeostasis, since testosterone (T) cannot be reduced to dihydrotestosterone (DHT). As studies on sex-related [...] Read more.
In the pharmacological treatment of prostate cancer, benign prostatic hyperplasia and androgenetic alopecia finasteride is commonly used. This drug inhibits 5α-reductase type 2, which is why finasteride affects androgen homeostasis, since testosterone (T) cannot be reduced to dihydrotestosterone (DHT). As studies on sex-related renal injuries suggest a high probability of androgen-induced renal dysfunction, the aim of this study was to determine the potential harmful effects of finasteride on the kidneys of rats. The study was performed on sexually mature male Wistar rats given finasteride. Histological sections of the kidneys were used for immunohistochemical visualization of the androgen receptor (AR), junctional proteins (occluding (Occ); E-cad, N-cad, E-/N-cadherin; β-cat, β-catenin; connexin 43 (Cx43)), proliferating cell nuclear antigen (PCNA), IL-6, and lymphocyte markers (CD3 for T cell, CD19 for B cell). The TUNEL method was used for cell apoptosis identification, and picro sirius red staining was used to assess collagen fibers thickness. The levels of T, DHT and estradiol (E2) were determined in blood serum. It was shown that finasteride treatment affected steroid hormone homeostasis, altered the expression of AR and intracellular junction proteins, changed the ratio between cell apoptosis and proliferation, and caused lymphocyte infiltration and an increase of IL-6. The thickening of collagen fibers was observed as tubular fibrosis and glomerulosclerosis. Summarizing, finasteride-induced hormonal imbalance impaired the morphology (i.e., dysplastic glomeruli, swollen proximal convoluted tubules) and physiology (changed level of detected proteins/markers expression) of the kidneys. Therefore, it is suggested that patients with renal dysfunction or following renal transplantation, with androgen or antiandrogen supplementation, should be under special control and covered by extended diagnostics, because the adverse negative effect of DHT deficiency on the progression of kidney disease cannot be ignored. Full article
(This article belongs to the Section Health Care Sciences & Services)
Show Figures

Figure 1

Back to TopTop